
Math 396. Covariant derivative, parallel transport, and General Relativity

1. Motivation

Let M be a smooth manifold with corners, and let (E,∇) be a C∞ vector bundle with connection
over M . Let γ : I → M be a smooth map from a nontrivial interval to M (a “path” in M); keep
in mind that γ may not be injective and that its velocity may be zero at a rather arbitrary closed
subset of I (so we cannot necessarily extend the standard coordinate on I near each t0 ∈ I to part
of a local coordinate system on M near γ(t0)). In pseudo-Riemannian geometry E = TM and ∇
is a specific connection arising from the metric tensor (the Levi-Civita connection; see §4).

A very fundamental concept is that of a (smooth) section along γ for a vector bundle on M .
Before we give the official definition, we consider an example.

Example 1.1. To each t0 ∈ I there is associated a velocity vector

γ′(t0) = dγ(t0)(∂t|t0) ∈ Tγ(t0)(M) = (γ∗(TM))(t0).

Hence, we get a set-theoretic section of the pullback bundle γ∗(TM) → I by assigning to each time
t0 the velocity vector γ′(t0) at that time. This is not just a set-theoretic section, but a smooth
section.

Indeed, this problem is local, so pick t0 ∈ I and an open U ⊆ M containing γ(J) for an open
neighborhood J ⊆ I around t0, with J and U so small that U admits a C∞ coordinate system
{x1, . . . , xn}. Let γi = xi ◦ γ|J ; these are smooth functions on J since γ is a smooth map from I
into M . By the usual rules for computing velocity vectors (i.e., the Chain Rule), for t ∈ J we have

γ′(t) =
∑

i

γ′i(t)∂xi |γ(t) =
∑

i

γ′i(t)(γ
∗(∂xi))(t)

in Tγ(t)(M) = (γ∗(TM))(t). In other words, as set-theoretic sections of γ∗(TM) over J we have
γ′ =

∑
i γ
′
i · γ∗(∂xi)|J . Since the γ∗(∂xi)’s constitute a local frame for the bundle γ∗(TM) over J

(as the ∂xi ’s are a local frame for the bundle TM over U), the desired smoothness over J is exactly
the fact that the coefficient functions γ′i with respect to this frame are smooth functions on J .

Definition 1.2. If E → M is a vector bundle, a (smooth) section of E along γ is an element of
the space (γ∗(E))(I) of smooth global sections of the pullback bundle γ∗(E) → I.

By the universal property of pullback bundles, we can identify smooth sections s : I → γ∗(E)
with smooth maps of manifolds ŝ : I → E fitting into a commutative diagram

(1.1) E

��
I

bs >>~~~~~~~~
γ

// M

where the right vertical map is the structure map of the bundle over M .

Remark 1.3. In the classical literature with E = TM one sees the notion of “vector field along a
parametric curve γ : I → M”: a family {~v(t)}t∈I of tangent vectors ~v(t) ∈ Tγ(t)(M) such that for
local coordinates {xi} on M near any γ(t0) the local basis expansion ~v(t) =

∑
vi(t)∂xi |γ(t) for t

near t0 has smooth coefficient functions vi. This is exactly a concrete description of the preceding
definition. In natural examples the path may cross itself, stop at some time, or change direction
(i.e., γ may be non-injective or not a local immersion), so time along γ may fail to be part of a
local coordinate system on M around points of γ(I). By working with the bundle γ∗(TM) over I,
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or with diagrams like (1.1), the apparent complications of working “in M” with vector fields along
a self-intersecting or non-immersive γ are eliminated.

Consider our bundle with connection (E,∇) over M . For any path γ : I → M and any t0 ∈ I,
there is a distinguished class of sections of E along γ, namely the ones that are flat with respect
to the pullback connection γ∗(∇) on γ∗(E). More precisely, recall from our study of connections
on bundles over I that for each element of a fiber there is a unique global section extending that
element such that the global section is flat for the connection. In our case, for each t0 ∈ I and
s0 ∈ E(γ(t0)) = (γ∗E)(t0) there exists a unique γ∗(∇)-flat section s̃0 ∈ (γ∗(E))(I) such that
s̃0(t0) = s0. Specializing at any t1 ∈ I then defines a linear isomorphism

Pt1,t0,γ : E(γ(t0)) = (γ∗(E))(t0) ' (γ∗(E))(t1) = E(γ(t1))

via s0 7→ s̃0(t1). This is called parallel transport. (Of course, this concept depends heavily on
the particular connection being used on E and on the particular path γ linking m0 = γ(t0) to
m1 = γ(t1).) Observe that Pt0,t0,γ is the identity (why?), and since a global flat section over I
is uniquely determined by its value in one fiber it follows that for any t0, t1, t2 ∈ I we have the
transitivity law Pt2,t1,γ ◦ Pt1,t0,γ = Pt2,t0,γ . For example, Pt0,t1,γ = P−1

t1,t0,γ . This is all “physically
obvious”.

Example 1.4. Let us give the example that explains the reason we use the word “parallel”. Let
M be an open subset in a finite-dimensional vector space, so there is a canonical trivialization
TM ' M × V . There is a unique connection ∇ on E = TM for which the locally constant vector
fields are the flat sections. Indeed, pick an ordered basis {e1, . . . , en} of V and let {x1, . . . , xn} be
the dual basis of V ∨ and e1, . . . , en the associated frame of constant vector fields over M (such that
ei(m) = ei under the canonical isomorphism Tm(M) ' V for all m ∈ M). A smooth vector field
over an open U ⊆ M has the unique form ~v =

∑
aiei for smooth functions ai on U , and we define

∇(~v) =
∑

dai ⊗ ei ∈ (T ∗M ⊗ TM)(U).

One readily checks that this is a connection on TM , and that the flat sections ~v over an open are
those vector fields for which all dai vanish, which is to say that ~v has locally constant coefficients
with respect to the frame {ei}. By the Leibnitz Rule and the existence of a global frame consisting
of constant vector fields, this is the only possible connection that kills the constant vector fields,
and so we have both uniqueness and existence.

Now with respect to this canonical connection ∇, what is the parallel transport isomorphism
Pt1,t0,γ along a path γ : I → M? Put another way, what are the γ∗(∇)-flat sections of γ∗(TM)?
Since ∇(ei) = 0 for all i, by the characterization of pullback connections we have (γ∗(∇))(γ∗(ei)) =
0 for all i. Thus, {γ∗(ei)} is a global frame of flat sections along γ and a vector field

∑
aiγ

∗(ei) is
γ∗(∇)-flat if and only if a′i = 0 on I for all i. Hence, over the connected I all functions ai must be
constant, so the flat sections of γ∗(TM) are precisely the vector fields γ∗(v) along γ, where v ∈ V
and v is the associated constant vector field on M . That is, its value in each fiber Tγ(t)(M) ' V
is v. Since we visualize the canonical isomorphisms Tm(M) ' V as corresponding to “parallel
translation” from the origin to m, the picture of γ∗(v) is as the collection of parallel translates of v
with “initial endpoint” moving along γ. It looks like something that deserves to be called parallel
transport along γ!

In practice it is convenient to permit time reparameterization of our path, which is to say that
we precompose γ with a smooth isomorphism between intervals in R. Fortunately, such time
reparameterization does not affect parallel transport:
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Lemma 1.5. With notation and hypotheses as above, let γ : I → M be a smooth path and let
ϕ : J ' I be a C∞ isomorphism from an interval J ⊆ R. Let τi = γ−1(ti) for t0, t1 ∈ I and let
mi = γ(ti). The parallel transport isomorphisms

Pt1,t0,γ , Pτ1,τ0,γ◦ϕ : E(m0) ⇒ E(m1)

coincide.

Proof. Since pullback (for bundles, connections, and sections of bundles) is compatible with com-
position of smooth maps, we may replace (M,E,∇) with (I, γ∗(E), γ∗(∇)) to reduce to the special
case that M = I is a nontrivial interval over which we have a bundle with connection (E,∇). By
the very definition of parallel transport in terms of flat global sections across an entire interval
(and its specialization at pairs of points), we are thereby reduced to showing that if s ∈ E(I) is a
∇-flat section then for any smooth isomorphism ϕ : J ' I the pullback section ϕ∗(s) ∈ (ϕ∗E)(J) is
ϕ∗(∇)-flat. But this is immediate from the local identities that uniquely characterize the pullback
connection: in our situation, for any τ ∈ J and t := ϕ(τ) ∈ I we have

((ϕ∗(∇))(ϕ∗(s)))(τ) = (dϕ(τ)∨ ⊗ 1)((∇(s))(t)) = 0

since ∇(s) = 0. Hence, ϕ∗(s) is indeed ϕ∗(∇)-flat since τ was arbitrary. �

In Example 1.4 there is a very special property: if we let m0 = γ(t0) and m1 = γ(t1) then
Pt1,t0,γ : E(m0) ' E(m1) only depends on m0 and m1, not on γ. Indeed, in that example we shows
that Pt1,t0,γ is the composite E(m0) = Tm0(M) ' V ' Tm1(M) = E(m1) of isomorphisms that
have nothing to do with γ. In general, if γ, γ̂ : I ⇒ M are two paths (over a common time interval)
in a smooth manifold with corners M and if γ̂(t0) = γ(t0) = m0 and γ̂(t1) = γ(t1) = m1, then for
a bundle with connection (E,∇) over M the two resulting parallel transport isomorphisms

Pt1,t0,γ , Pt1,t0,bγ : E(m0) ' E(m1)

are usually very different. An important special case is when t0 6= t1 but m0 = m1 and γ̂ is
the constant map (t 7→ m0 for all t), in which case Pt1,t0,bγ is the identity on E(m0) (why?) but
Pt1,t0,γ : E(m0) ' E(m0) may not be the identity. That is, parallel transport in E with respect
to ∇ along the windy path γ from m0 back to itself through the time interval between t0 and t1
may be a nontrivial automorphism of E(m0). Such a phenomenon is called nontrivial holonomy,
and if we restrict attention to paths γ : [0, 1] → M with γ(0) = γ(1) = m0 then the image of
the map γ 7→ P1,0,γ ∈ Aut(E(m0)) sending “(piecewise) smooth loops” at m0 to parallel transport
automorphisms of E(m0) is a subgroup of Aut(E(m0)) called the holonomy group of (E,∇) at m0.
(So the point is that the holonomy group may be rather non-trivial.) Strictly speaking, to make
this definition work we have to take care of the problem that a concatenation of smooth loops may
be just piecewise smooth (e.g., one loop may end with a different velocity than that with which
the next loop begins); Remark 1.7 addresses the important (but ultimately trivial) technical issue
of allowing γ to be piecewise smooth.

Natural geometric examples of nontrivial holonomy with E = TM are given on the unit sphere
S2 ⊆ R3 in §6, with γ any latitude circle (with constant-speed parameterization) away from the
north and south poles. If p is a point on such a circle, then the circle can (in a sense that is physically
obvious, and not hard to define rigorously) be “smoothly contracted” to p in S2 without moving p.
Thus, parallel transport Pt1,t0,γ ∈ Isom(E(m0), E(m1)) is extremely sensitive to deformation of the
path γ (keeping the positions m0 = γ(t0) and m1 = γ(t1) fixed). The absence of this sensitivity in
Example 1.4 (with E = TM and ∇ there actually determined by the metric tensor in a sense to
be explained in Example 4.3) reflects the flat nature of Euclidean geometry, as will be made a bit
more precise in the discussion immediately following Theorem 3.11.
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By the definition of parallel transport, the γ∗(∇)-flat sections of E along γ are precisely those
generated by parallel transport along γ from the fiber E(γ(t0)) = (γ∗E)(t0) over a point t0 ∈ I.
We would like to give a description of parallel transport as the kernel of a suitable differentiation
process of classical flavor on the interval I, generalizing Example 1.4 in which the vanishing of
partials ∂ai/∂xj of all local coefficient functions ai characterized the flat sections. This sought-
after process will be called covariant differentiation (along γ with respect to ∇).

Example 1.6. For any pseudo-Riemannian manifold with corners (M,ds2), the tangent bundle
E = TM admits a certain canonical connection ∇ determined by the metric tensor; this connection
is called the Levi-Civita connection (see §4). Thus, it makes sense to ask whether a path γ in M
has its associated vector field γ′ along γ given by parallel transport with respect to this connection.
That is, does Pt1,t0,γ(γ′(t0)) = γ′(t1) for all t0, t1? Such γ are called geodesics in (M,ds2) provided
that γ is not a constant path concentrated at a point of M . (By Example 3.5, non-constancy of
such a γ is equivalent to the condition that γ′(t) 6= 0 for all t, or even for one t.)

A very important example of geodesics arises in General Relativity, according to which gravity
is not a force but rather is a manifestation of geometry. Let us review some basic terminology to
discuss General Relativity from the viewpoint of the mathematician. (The reader uninterested in
such things, if such a reader can possibly exist, may safely skip this and all subsequent digressions
into physics.) A spacetime is a 4-dimensional oriented and connected smooth Lorentzian manifold
(U,ds2) endowed with a time orientation (in the sense of §5 in the handout on orientations of
manifolds). This Lorentzian manifold is equipped with its associated Levi-Civita connection (as
mentioned in Example 1.6 and developed in §4), and for each u ∈ U a connected component of the
local time cone

{v ∈ Tu(U) | 〈v, v〉u < 0}
is selected in a “continuously varying” manner by the time orientation; we call the chosen component
the future half-cone at u (and the other connected component is of course called the past half-cone
at u). A particle is a path γ : I → U such that for all t ∈ I two conditions hold: the vector
γ′(t) ∈ Tγ(t)(U) is a nonzero point in the closure of the future half-cone at γ(t) (everything moves
into the future, even if we see it “at rest” in a 3-dimensional sense!) and 〈γ′(t), γ′(t)〉γ(t) = −m2

for some m ≥ 0. The constant m is called the rest mass of the particle. The vector field γ′ in the
rank-4 bundle γ∗(TU) is called the energy-momentum vector field: it encodes data corresponding
to both energy and momentum in classical physics, and generally there is no canonical (orthogonal)
decomposition of TU into “spacelike” and “timelike” subbundles, so one cannot intrinsically extract
something like classical absolute energy or absolute momentum from γ′ (but something can be done
in a relative sense, as we will see in Example 3.6). In particular, a particle has no way to detect
anything like its own absolute velocity akin to the classical case (unless the particle is massless;
see Example 3.6). Of course, in some special models of U (such as Minkowski space) there is a
such an orthogonal decomposition given for TU, but there is no reason to beleive that these special
models reflect reality so one should keep more general possibilities in mind for the structure of the
spacetime manifold.

Following Einstein, the particle is said to be in free fall during a nontrivial time interval J ⊆ I
if γ|J is a geodesic. In general, the failure of γ to be a geodesic during a nontrivial time interval
J ⊆ I is physically understood to indicate the presence of non-gravitational effects. We will prove
in Remark 2.7 that if we specify the position γ(t0) and velocity γ′(t0) of a geodesic γ : I → M
in a pseudo-Riemannian manifold with corners at a time t0 ∈ I then γ is uniquely determined
(up to possibly extending its interval of definition). This fits well with our physical picture of
the deterministic nature of free fall motion in a gravitational field, and is essentially the reason
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that Einstein identified geodesic trajectories in U (having “velocity” vector field, or rather energy-
momentum vector field, that is non-vanishing and lying in the closure of the future half-cone at all
points) with the classical idea of free fall motion. Though this uniqueness principle for geodesics
sounds analogous to the one for integral curves for vector fields in any smooth manifold (without
specifying any metric structure at all), there is a fundamental difference: for the integral curve we
have to specify a velocity field over the entire manifold to get the ODE, whereas in the geodesic
case the metric tensor determines the ODE. Thus, though the theories of (non-constant) integral
curves to vector fields on smooth manifolds and geodesic paths in pseudo-Riemannian manifolds
do share some superficial similarities and flavor, neither logically follows from the other.

Remark 1.7. Strictly speaking, one should really define parallel transport Pt1,t0,γ : E(γ(t0)) '
E(γ(t1)) not only for smooth paths γ : I → M but also for paths γ that are piecewise smooth in the
sense that I is a locally finite union of closed nontrivial subintervals Ij that meet only at endpoints
and such that γ|Ij is smooth for all j. The reason we require this is that when we concatenate
paths it is rare for the resulting path to be smooth; rather, it is usually just piecewise smooth. Of
course, to have a flexible theory for concatenating paths we make essential use of Lemma 1.5 to
give us flexibility in shifting time parameterizations.

To do parallel transport from t0 to t1 in the piecewise smooth case, we consider the finitely
many adjacent subintervals Ij with the first containing t0 and the last containing t1. Applying
the preceding theory of “smooth” parallel transport to go from t0 to t1 step by step through
the endpoints of these Ij ’s then defines the desired isomorphism Pt1,t0,γ , and by the associativity
condition in the smooth case it is clear that the choice of Ij ’s does not affect this definition (and more
importantly that this extended notion of parallel transport still satisfies the desired associativity
conditions as in the smooth case). We will not comment on this issue again, but the interested
reader will be easily able to adapt all that follows to the case of piecewise smooth paths by essentially
copying the above procedure of chopping up the time interval into such Ij ’s as above (and checking
that this choice never matters).

2. Covariant differentiation and geodesics

Let Vγ be the finite-dimensional vector space of γ∗(∇)-flat sections of γ∗(E) over I, so Vγ maps
isomorphically to each fiber (γ∗(E))(t) = E(γ(t)) under specialization at t (the composite isomor-
phism E(γ(t)) ' Vγ ' E(γ(t′)) for t, t′ ∈ I is exactly the parallel transport isomorphism Pt′,t,γ

mentioned above). Hence, the natural map of C∞ vector bundles I × Vγ → γ∗(E) over I is an
isomorphism (as it is so on fibers over I). Using the inverse isomorphism, we may therefore de-
scribe smooth sections s of γ∗(E) over I as smooth maps s̃ : I → Vγ in the sense of multivariable
calculus. In the language of parallel transport, if we fix some t0 ∈ I and identify Vγ with E(γ(t0))
via specialization at t0 then s̃(t) ∈ Vγ ' E(γ(t0)) is Pt0,t,γ(s(t)) for all t ∈ I.

For the smooth map s̃ : I → Vγ from an interval to a finite-dimensional vector space, it makes
sense to differentiate it! This gives another smooth map s̃′ : I → Vγ . Converting back into the
language of sections of E along γ, this “is” a smooth section I → γ∗(E). We call this section
the covariant derivative of s with respect to ∇ along γ, and it is denoted via the notation Ds

dt
that suppresses both the path and the connection. (In an evident manner, covariant differentiation
commutes with shrinking the interval I and the target M .) The operation D

dt is a self-map of
(γ∗(E))(I), and in the language of parallel transport with respect to γ∗(∇) if we identify Vγ as
above with E(γ(t0)) via specialization at t0 then Ds

dt (t1) ∈ E(γ(t1)) is equal to

Pt1,t0,γ(s̃′(t1)) = Pt1,t0,γ(
d
dt
|t1Pt0,t(s(t))) ∈ E(γ(t1)).
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In words, if we fix some t0 ∈ I then all fibers of γ∗(E) are identified with (γ∗(E))(t0) = E(γ(t0)) via
parallel transport by γ∗(∇) and we may thereby form “difference quotients” in E(γ(t0)) between
values of s in fibers at different times. For each t1 ∈ I we pass to the limit on such difference
quotients in the finite-dimensional vector space E(γ(t0)) as t → t1 and then parallel-transport
the result from E(γ(t0)) = (γ∗(E)(t0) back to the fiber (γ∗(E))(t1) = E(γ(t1)). This dynamic
description may make the covariant derivative look uncomputable, since parallel transport in general
requires solving linear ODE’s and this is usually impossible to do in closed form. However, we shall
show that locally along the path where we have local coordinates on M and a local frame for the
bundle E there is a very simple formula for Ds

dt in terms of the associated Christoffel symbols of
the connection (pulled back along γ to smooth functions on small opens in I).

Remark 2.1. There is one immediate observation that should be made: the equation Ds
dt = 0 for

s ∈ (γ∗(E))(I) is exactly the equation of γ∗(∇)-flatness, or in more classical language D
dt = 0 is the

equation governing parallel transport in E (along paths) with respect to ∇. Indeed, by definition
Ds
dt = 0 says that the old-fashioned vector space derivative s̃′ : I → Vγ is zero, which is to say
that the map s̃ : I → Vγ is constant. But this latter map encodes exactly the original section s
of the bundle γ∗(E) → I trivialized via the space Vγ of global flat sections (via the specialization
isomorphisms Vγ ' E(γ(t)) for all t), with respect to which the constant maps to Vγ are precisely
the elements of Vγ ⊆ (γ∗(E))(I), which is to say the flat sections. In more dynamic (but equivalent!)
terms, since we have seen that s̃(t) = Pt0,t,γ(s(t)) in Vγ = E(γ(t0)) for all t, the constancy of s̃ says
Pt0,t,γ(s(t)) = s̃(t0) for all t, and since s̃(t0) = s(t0) this says exactly (upon applying Pt,t0,γ = P−1

t0,t,γ)
that s(t) = Pt,t0,γ(s(t0)) for all t: s is generated by parallel transport.

In order to give a local formula for the covariant derivative, we first observe one basic property
of Leibnitz type:

Lemma 2.2. The operator D
dt on the space of sections of E along γ is R-linear, and for f ∈ C∞(I)

and s ∈ (γ∗(E))(I) we have
D(fs)

dt
= f ′ · s + f · Ds

dt
.

Proof. Passing to the language of smooth maps s̃ : I → Vγ , this is just the classical fact that
ordinary differentiation of such maps is R-linear and satisfies the Leibnitz Rule with respect to
multiplication against smooth functions. �

Remark 2.3. As a quick application of Lemma 2.2, let us explain in more succinct terms how the
covariant differentiation of sections of E along γ with respect to ∇ is really just another way to
describe the pullback connection γ∗(∇) acting on (γ∗(E))(I) via the canonical trivialization of Ω1

I

by the section dt. More precisely, we claim that (γ∗(∇))(s) = dt⊗Ds
dt in (Ω1

I⊗γ∗(E))(I). The entire
construction of D

dt was given in terms of the pullback bundle γ∗(E) and the pullback connection
γ∗(∇) (which defines the process of parallel transport along γ), so we lose nothing and simplify our
notation considerably by renaming this pullback data as E and ∇ and work over I. The problem
is really to show that if (E,∇) is a smooth vector bundle with connection over the interval I and if
s ∈ E(I) is a global smooth section then ∇(s) = dt⊗ Ds

dt in (Ω1
I⊗E)(I) or equivalently ∇∂t(s) = Ds

dt
in E(I). Observe that both sides of this proposed identity are additive in s, and both have the
same Leibnitz-type behavior with respect to multiplication of s against a smooth function f on I
(here we use Lemma 2.2). Hence, if the desired identity holds for s1, . . . , sn ∈ E(I) then it holds
for any C∞(I)-linear combination

∑
ajsj .

By the classification of bundles with connection over an interval, the vector space of ∇-flat
sections in E(I) is finite-dimensional and if {s1, . . . , sn} is a basis of this space then these give a
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global trivialization of the bundle E. Hence, it is enough to prove the desired identity for these
sj ’s, or more specifically for ∇-flat s ∈ E(I). These satisfy ∇(s) = 0, and by Remark 2.1 (with γ

the identity map) they also satisfy Ds
dt = 0.

We need one final lemma, which is “general nonsense” for pullback connections with respect to
smooth maps between manifolds with corners:

Lemma 2.4. Let f : M ′ → M be a smooth map between smooth manifolds with corners, and
let (E,∇) be a smooth vector bundle with connection over M . Let (E′,∇′) be the pullback bundle
with connection over M ′. For any open U ⊆ M with preimage U ′, section s ∈ E(U), and point
m′ ∈ U ′, the values ∇′(f∗(s))(m′) ∈ Tm′(M ′)∨⊗E′(m′) = Tm′(M ′)∨⊗E(f(m′)) and ∇(s)(f(m′)) ∈
Tf(m′)(M)∨ ⊗ E(f(m′)) satisfy

(2.1) ∇′(f∗(s))(m′) = (df(m′)∨ ⊗ 1)(∇(s)(f(m′))).

In particular, if γ : I → M is a smooth path and s ∈ E(U) is a section over an open U ⊆ M

containing γ(I) then D(γ∗s)
dt (t0) ∈ E(γ(t0)) is the pairing of ∇(s)(γ(t0)) ∈ Tγ(t0)(M)∨ ⊗ E(γ(t0))

against the velocity vector γ′(t0) ∈ Tγ(t0)(M).

Proof. The first part is just the evaluation at m′ for the local identities that uniquely characterize
the pullback connection ∇′ = f∗(∇). (Loosely speaking, ∇′(f∗(s)) = f∗(∇(s)).) The second part
is the special case f = γ because of Remark 2.3. �

The identity at the end of Lemma 2.4 is classically written as “Ds
dt = ∇γ′(s)”, which is terribly

confusing notation at first glance because the s on the left is really γ∗(s) ∈ (γ∗(E))(I) and more
seriously the velocity field γ′ along γ is not a section of VecM over an open in M (nor does it locally
extend to one if γ is not an immersion) and it is not a section of VecI over an open in I either, so
the notation ∇γ′ does not make sense as an operator on sections of E over opens in M (whence it
must not be confused with the operator ∇~v on sections of E|U for smooth vector fields ~v over opens
U in M) nor does it make sense as an operator on sections of γ∗(E) over I (whence it must not
be confused with the operator γ∗(∇)~w on (γ∗(E))(I) for ~w ∈ VecI(I)). The content of the classical
statement “Ds

dt = ∇γ′(s)”, or even of (2.1), is that the left side involves a differential operator over
opens in the source manifold and the right side involves a differential operator ∇ over opens in the
target manifold.

We have finally reached the point where we can prove the classical local formula for covariant
differentiation in terms of the connection coefficients Γk

ij :

Theorem 2.5. Let (E,∇) be a smooth vector bundle with connection over a smooth manifold with
corners M . Let γ : I → M be a smooth path. Let U ⊆ M be an open set admitting smooth
coordinates {x1, . . . , xn} and assume E|U admits a trivializing frame {e1, . . . , er}. Let Γk

ij be the
associated Christoffel symbols, which is to say ∇(ej) =

∑
i,k Γk

ijdxi ⊗ ek. On J = γ−1(U) ⊆ I, let
γi = xi ◦ γ be the local coordinates of the path.

For any section s of E along γ, with s|J =
∑

ajγ
∗(ej), we have

Ds

dt
=

∑
k

(a′k +
∑
i,j

ajγ
′
i · (Γk

ij ◦ γ))γ∗(ek)

in (γ∗E)(J).

As promised, this theorem gives a simple explicit local formula for covariant differentiation in
terms of three pieces of data: (i) the local coefficients of the section s ∈ (γ∗(E))(I) with respect to
a pullback frame, (ii) the local coordinates of the path γ (with respect to local coordinates on the
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target), and (iii) the pullback along γ of the Christoffel symbols with respect to these local choices
of frame and coordinates on E and M . Note, for example, that if we were so lucky as to have these
Christoffel symbols vanish then (with such choices of local frame and local coordinates!) covariant
differentiation would be given over the open J ⊆ I by componentwise differentiation with respect
to the pullback frame for all γ; that is,

∑
ajγ

∗(ej) 7→
∑

a′jγ
∗(ej). One is almost never so lucky.

Proof. The problem is intrinsic to γ|J since covariant differentiation commutes with shrinking I and
M , so we can assume U = M and J = I. In particular, γ∗(E) has the trivializing frame {γ∗(ej)}.
Both sides of the proposed identity are additive in s, and by Lemma 2.2 (and a simple explicit
calculation on the right side) both sides have the same behavior with respect to multiplication of
s against a smooth function on I. Hence, since s is a C∞(I)-linear combination of the γ∗(ej)’s, we
are reduced to the case s = γ∗(ej0) for some j0. In this case, the coefficient functions ai are equal
to δij0 , so in particular all a′i vanish. By Lemma 2.4, the value of Ds

dt in (γ∗(E))(t0) = E(γ(t0)) is
the pairing of ∇(ej0)(γ(t0)) ∈ Tγ(t0)(M)∨⊗E(γ(t0)) against the tangent vector γ′(t0) ∈ Tγ(t0)(M).

Since γ′(t0) =
∑

γ′i(t0)∂xi |γ(t0), by using the definition of the Christoffel symbols we see that
pairing ∇(ej0)(γ(t0)) against γ′(t0) gives the output∑

i,k

Γk
ij0(γ(t0))γ′i(t0)ek(γ(t0)) =

∑
k

(
∑

i

γ′i(t0) · (Γk
ij0 ◦ γ)(t0))γ∗(ek)(t0).

This is exactly the desired formula in the special case s = γ∗(ej0). �

Example 2.6. Consider the special case E = TM , and suppose that γ : I → M is a path. As we
have seen in Example 1.1, the velocity γ′ is a section of E along γ. It therefore make sense, given
any connection ∇ on TM , to form the covariant derivative of the velocity; this is the notion of
acceleration “determined” by ∇. (The velocity vector field γ′ along γ makes sense without the data
of a connection, but the acceleration vector field γ′′ along γ cannot be defined until we define a
concept of differentiation for sections of TM along γ; this is exactly what ∇ does.) The vanishing
of γ′′ := Dγ′

dt , which is to say the parallelism of γ′ along γ with respect to ∇, is akin to the classical
concept of “motion with constant velocity” (i.e., in a straight line at constant speed); cf. Example
1.6.

In terms of local coordinates {x1, . . . , xn} on an open U ⊆ M and the associated trivializing
frame {∂x1 , . . . , ∂xn} of E|U = TM |U , we get Christoffel symbols Γk

ij and on γ−1(U) we have
γ′(t) =

∑
i γ
′
i(t)∂xi |γ(t) with γi = xi ◦ γ the component functions of the path of motion. What is

the equation of parallelism of γ′ along γ with respect to ∇ in terms of the γi’s and Γk
ij ’s? Well, by

Theorem 2.5 (with aj = γ′j) the equation is

0 =
∑

k

(γ′′k +
∑
i,j

γ′jγ
′
i · (Γk

ij ◦ γ))γ∗(∂xk
),

or in other words

(2.2) γ′′k = −
∑
i,j

γ′jγ
′
i · (Γk

ij ◦ γ)

for all k. If we are in the special case that the Christoffel symbols all vanish then the system (2.2)
for all k is the classical system of equations γ′′k = 0 (for all k) that defines a linearly parameterized
straight line (or point!) γ : t 7→ v0 + tv1 in an open in a finite-dimensional inner product space (i.e.,
constant speed motion in the Newtonian sense). When M is endowed with a pseudo-Riemannian
metric ds2, it is a basic result of Levi-Civita (see §4) that there is a unique connection on TM
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that satisfies two nice properties encoded in terms of parallel transport and covariant differenti-
ation. This distinguished connection determined solely by the metric tensor (the “geometry” of
the situation) is called the Levi-Civita connection on the tangent bundle TM of (M,ds2), and it
gives rise to a concept of “zero acceleration paths” in M : the paths γ satisfying the condition
Dγ′

dt = 0. Such paths that are non-constant are called geodesics for the metric tensor. (See Remark
2.1 for the consistency with the definition of geodesics in Example 1.6, and see Example 3.5 for
the fact that 〈γ′(t), γ′(t)〉γ(t) is independent of t, so it is nowhere zero in the Riemannian case. In
the general pseudo-Riemannian case this constant can vanish, as happens for massless particles in
General Relativity.) Since the Levi-Civita connection is determined by the geometry (the metric
tensor), so is the concept of geodesic in pseudo-Riemannian geometry.

Remark 2.7. Let ∇ be any connection on E = TM for a smooth manifold with corners M . Let
γ, γ̂ : I ⇒ M be two paths in M that have the same position m0 and the same velocity ~v0 ∈ Tm0(M)
at a common time t0 ∈ I. Assume moreover that γ and γ̂ are ∇-geodesic in the sense that
γ′ ∈ (γ∗(TM))(I) is γ∗(∇)-flat and γ̂′ ∈ (γ̂∗(TM))(I) is γ̂∗(∇)-flat (or equivalently, γ′ is parallel
along γ and γ̂′ is parallel along γ̂, with parallelism defined by ∇). We claim that γ = γ̂. (Thus,
for example, a geodesic on a pseudo-Riemannian manifold is uniquely determined by specifying its
position and velocity at a single time, up to possibly extending its interval of definition.) By local
compactness arguments on I much like in the proof of global uniqueness for solutions to first-order
ODE initial-value problems, we may reduce to the case when γ(I) is contained in a coordinate
domain on M , so we can replace M with this coordinate domain to reduce to showing that the
system of equations (2.2) has at most one solution with a specified initial value.

That is, given smooth functions hk
ij : I → R for 1 ≤ i, j ≤ n and 1 ≤ k ≤ N , we seek to prove

that any two solutions I → RN to the system of non-linear ODE’s

y′′k +
∑
i,j

hk
ijy

′
jy
′
i = 0

for 1 ≤ k ≤ N are equal if they agree at a point t0 ∈ I and have the same first-derivatives at t0 too.
(Note that we do not claim existence across all of I, but merely uniqueness upon specification of
an “initial” value at some t0 ∈ I, and in practice geodesics may fail to propogate for all time. The
situation is analogous to the case of intervals of definition of integral curves for vector fields; for
example, in a compact Riemannian manifold it is a serious theorem that geodesics do propogate
for all time, much as we have seen is the case for integral curves of smooth vector fields on compact
manifolds.) We simply use the old engineering trick to drop the order of the non-linear ODE: for
a smooth map φ : I → R2N with component functions φ1, . . . , φ2N , we consider the system of
first-order ODE’s φ′k = φk+N for 1 ≤ k ≤ N and

φ′k = −
∑

1≤i,j≤N

hk−N
ij φi+Nφj+N

for N + 1 ≤ k ≤ 2N . This can be written in the form φ′(t) = A(t, φ(t)) where A : I ×R2N → R2N

is the smooth map

A(t, c1, . . . , c2N ) = (cN+1, . . . , c2N ,−
∑
i,j

h1
ij(t)ci+Ncj+N , . . . ,−

∑
i,j

hN
ij (t)ci+Ncj+N ).

It is clear that to give y1, . . . , yN solving the given system of second-order non-linear ODE’s with
initial values yi(t0) = ai ∈ R and initial derivatives y′i(t0) = bi at some t0 ∈ I for all 1 ≤ i ≤ N
is equivalent to giving a solution φ to the new first-order R2N -valued non-linear ODE with initial
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value φ(t0) = (a1, . . . , aN , b1, . . . , bN ) ∈ R2N . Thus, the global uniqueness theorem for vector-
valued first-order (possible non-linear!) initial-value ODE’s on an interval gives the required result.

To illustrate the simplest geodesics of all, consider the case that M is open in a finite-dimensional
vector space V . We have the canonical trivialization TM ' M × V and this allows us to use any
non-degenerate quadratic form q on V to define a pseudo-Riemannian smooth metric tensor ds2

q on
TM via the canonical isomorphisms Tm(M) ' V for all m ∈ V . We will see in Example 4.3 that
the Levi-Civita connection for this example is the connection ∇ as in Example 1.4, with respect
to which we have seen that the locally constant vector fields are the flat sections and the Γk

ij ’s for
any linear coordinate system restricted to M ⊆ V are all identically 0. Thus, in such cases the
geodesics are precisely the non-empty connected opens in M ∩ L for affine lines L in V (i.e., lines
possibly displaced from the origin by a translation) equipped with linear parameterization.

In general, geodesics are the key to pseudo-Riemannian geometry: they play the role of straight
lines in classical Euclidean geometry. Though one can say that (in local coordinates) geodesics are
simply solutions to the second-order system of ODE’s given brutally by the system (2.2) for all k
(these are highly non-linear when the Γk

ij ’s aren’t all zero), this viewpoint sheds very little light
on the remarkable geometrical properties of geodesics. One has to do some serious geometric work
to unlock the power of the concept of geodesics. For example, it is not obvious but true in the
Riemannian case that geodesics are characterized by a certain kind of local “length-minimizing”
property, akin to the familiar feature of straight lines in a finite-dimensional inner product space,
and it is true but not at all evident that for any m ∈ M and any nonzero ~v ∈ Tm(M) there is
a unique geodesic γ in M through m at time 0 (with maximal interval of definition) such that
the velocity γ′(0) at time 0 is equal to ~v. This latter feature of geodesics generalizes the classical
observation in a finite-dimensional vector space V that there is a unique linearly parameterized
(“constant speed”) affine line L passing through a point m0 ∈ V at time 0 with a specified nonzero
velocity v ∈ Tm0(V ) = V : the parametric line t 7→ m0 + tv in V .

Remark 2.8. It is perhaps worth noting that a connection ∇ on E is uniquely determined by its
associated covariant differentiation operators on the spaces (γ∗(E))(I) of sections along all paths
γ : I → M . Indeed, if {xi} is a local coordinate system on an open U ⊆ M and {ej} is a local frame
for E over U then by taking γ to be the xi-coordinate axis through a point m ∈ U the covariant
derivative D(γ∗(ej))

dt along γ has value at m equal to
∑

k Γk
ij(m)γ∗(ek) by Theorem 2.5. Hence, this

procedure determines the values Γk
ij(m) at the arbitrary point m ∈ U , so it determines ∇|U for any

open coordinate domain U , whence it determines ∇ globally (by locality of connections).

3. Metric compatibility and symmetry

We now assume that our vector bundle E is endowed with extra structure, namely a pseudo-
Riemannian metric that we shall denote 〈·, ·〉. A linear isomorphism of fibers E(m) ' E(m′) is
called an isometry if it carries 〈·, ·〉m to 〈·, ·〉m′ . The following lemma links several natural properties:

Lemma 3.1. Let (E,∇) be a smooth vector bundle with connection over a smooth manifold with
corners M , and suppose E is endowed with a pseudo-Riemannian metric tensor 〈·, ·〉. The following
three conditions are equivalent:

(1) for all smooth paths γ : I → M , parallel transport Pt1,t0,γ : E(γ(t0)) ' E(γ(t1)) is an
isometry,

(2) for all open U ⊆ M , sections s1, s2 ∈ E(U), and smooth vector fields ~v ∈ VecM (U), the
Leibnitz-style identity

(3.1) ~v(〈s1, s2〉) = 〈∇~v(s1), s2〉+ 〈s1,∇~v(s2)〉
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holds as smooth functions on U ,
(3) for all open U ⊆ M and sections s1, s2 ∈ E(U),

(3.2) d(〈s1, s2〉) = 〈∇(s1), s2〉+ 〈s1,∇(s2)〉

in Ω1
M (U), where the C∞(U)-valued pairings on the right between E(U) and (T ∗M⊗E)(U)

are defined in the evident manner by carrying the 1-form on the outside.

When these conditions hold, the connection ∇ is compatible with the metric. Condition (1)
has the most geometric meaning, though condition (2) is very useful for calculations, especially in
the context of covariant differentiation. Condition (3) is largely including for technical purposes
(though it is algebraically very appealing for its own sake): it arises as a handy intermediate step
for proving the equivalence of (1) and (2).

Remark 3.2. The reader will observe that non-degeneracy of the metric tensor is used nowhere in
the proof; it could be any symmetric bilinear form. In particular, it is reasonable to consider the
pullback of (E,∇, 〈·, ·〉) with respect to any smooth map f : M ′ → M (the point is that f∗(〈·, ·〉)
may not be non-degenerate, even if 〈·, ·〉 is Riemannian), and the proof of Lemma 3.1 shows that
conditions (1)–(3) are inherited by such pullback.

Proof. (of Lemma 3.1). We first prove that (1) implies (2). Since (2) is a local statement, we
can assume M = U admits global coordinates {x1, . . . , xn} and that E has a trivializing frame
{e1, . . . , er}. Both sides of the identity (3.1) are C∞(M)-linear in ~v, so it suffices to treat the case
~v = ∂xi for some i. By the Leibnitz Rule for connections, it is easy to check that both sides have
the same behavior with respect to C∞(M)-linear combinations in s1 for fixed s2 and in s2 for fixed
s1. Thus, it is enough to treat the case when s1 and s2 are members of the arbitrary initial choice
of global frame {ej} for E.

For m0 ∈ M let γ : I = (−ε, ε) → M be the parametric xi-axis through m0, so γ(0) = m0 and
γ′(t) = ∂xi |γ(t); in particular, γ′(0) = ∂xi |m0 . By Lemma 2.4,

∇∂xi
(s)(m0) = (γ∗(∇))∂t(γ

∗(s))(0)

in E(m0) = (γ∗(E))(0) for any s ∈ E(M). Since (1) ensures that parallel transport for sections
of γ∗(E) over I with respect to γ∗(∇) is an isometry with respect to the pullback metric tensor
γ∗(〈·, ·〉), the identity (3.1) can be formulated in terms of the pullback situation and this situation
does satisfy (1) for the identity parameterization of the interval I. Hence, passing to the γ-pullback
bundle equipped with its γ-pullback pseudo-Riemannian metric tensor and γ-pullback connection
reduces us to proving (3.1) for global sections of a pseudo-Riemannian vector bundle with connection
E over an interval I in the case that parallel transport along I is an isometry.

Arguing exactly as in the preceding reduction steps reduces us to the special case when ~v = ∂t

and s1 and s2 are members of a single choice of global frame over I (if one exists). Pick a frame
of flat sections (as we always may over an interval)! In this case the right side of (3.1) is zero
(since ∇(s1) and ∇(s2) vanish), so we just want ∂t(〈s1, s2〉) = 0. That is, we want the pairing
〈s1(t), s2(t)〉t to be a constant function of t. The flat sections s1 and s2 are generated by parallel
transport along I, and by hypothesis such parallel transport is an isometry. This gives the desired
constancy.

Now we prove that (2) is equivalent to (3). Again, the problem is local, so we may assume that
there are global coordinates {x1, . . . , xn}. In particular, the tangent bundle and cotangent bundle
are trivialized by the ∂xi ’s and dxi’s repsectively. Hence, (3.2) holds if and only if it holds after
pairing both sides against each of the ∂xi ’s. But the output of such pairings are (3.1) for ~v equal
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to any of the ∂xi ’s, and by linearity in ~v over C∞(U) such special cases of (2) imply (2) in general.
Thus, (2) and (3) are in fact equivalent.

Finally, we prove that (3) implies (1). Note that (1) is a local assertion along the interval I.
I claim that property (3) is inherited under pullback. Indeed, to check (3) it is enough to work
locally to get to the case when there is a trivializing frame, and by linearity arguments with the
Leibnitz Rule it suffices to check for s1 and s2 members of a global frame. Thus, to prove that (3) is
preserved under pullback we just have to check the pullback situation for the pullbacks of a global
frame. Since d commutes with pullback, by using the characterization of the pullback connection
and the fiberwise formula for the pullback metric tensor we see that pulling back the identity in
(3) for a pair of sections s1 and s2 of E gives the analogous identity for the pullback sections of the
pullback bundle (endowed with pullback connection and pullback metric). �

We can restate the compatibility of the connection and the pseudo-Riemannian metric tensor in
more classical terms via the language of covariant differentiation: it is necessary and sufficient that
for every smooth path γ : I → M and sections s1 and s2 of E along γ,

(3.3)
d
dt
〈s1, s2〉γ = 〈Ds1

dt
, s2〉γ + 〈s1,

Ds2

dt
〉γ

as smooth functions on I, where 〈·, ·〉γ denotes the pullback metric tensor on γ∗(E). Here is the
simple proof. The condition (3.3) implies the criterion in Lemma 3.1(1) by taking s1 and s2 to
be generated by parallel transport along γ. Conversely, compatibility with the metric is preserved
under pullback (Remark 3.2), so by Remark 2.3 it follows that using pullback by γ identifies (3.3)
as an instance of Lemma 3.1(2) with global sections of the γ-pullback and the vector field ~v = ∂t

on the parameter interval.

Example 3.3. Suppose M is open in a finite-dimensional vector space V and E = TM is endowed
with the “constant” metric tensor ds2

q coming from a non-degenerate quadratic form q on V via
the canonical trivialization TM ' M × V . For the connection ∇ as in Example 1.4 it is trivial to
check Lemma 3.1(1) in this case, so ∇ is compatible with the metric tensor ds2

q .

Example 3.4. Suppose ∇ is a metric-compatible connection on TM for a pseudo-Riemannian mani-
fold (M,ds2). Let ~v ∈ VecM (U) be a smooth vector field over an open set U ⊆ M . For each m ∈ U
we get a unique integral curve γ : I → U for ~v through m at time 0: γ(0) = m and γ′(t) = ~v(γ(t))
for all t ∈ I (and I maximal as such). Recall also that γ is non-constant if and only if ~v(m) 6= 0,
in which case γ′(t) 6= 0 for all t. Can we encode in terms of ~v the condition that the non-constant
integral curves for ~v are geodesics for the Levi-Civita connection? To simplify the discussion, let us
remove from U the closed subset where ~v vanishes, so we suppose that ~v(m) 6= 0 for all m ∈ U or
equivalently that all integral curves are non-constant. Hence, the problem is to encode the property
that Dγ′

dt = 0 for all such γ (this covariant derivative being computed along γ; i.e., this D
dt operation

depends on γ!). I claim that this is equivalent to the condition ∇~v(~v) = 0. Indeed, if γ : I → U

is an integral curve for ~v then for any t0 ∈ I we have ∇~v(~v)(γ(t0)) = Dγ∗(~v)
dt (t0) by Lemma 2.4,

and the “integral curve” condition with respect to ~v says exactly γ∗(~v) = γ′ in (γ∗(TM))(I). This
concludes the proof (since every point in U lies on the image of a unique integral curve for ~v).

Example 3.5. Let ∇ be a connection on TM for a pseudo-Riemannian manifold with corners M , and
assume that ∇ is compatible with the metric. If γ : I → M is a path along which two vector fields
~v1, ~v2 ∈ (γ∗(TM))(I) are flat, which is to say D~v1

dt = 0 = D~v2
dt , then 〈~v1(t), ~v2(t)〉γ(t) is independent

of t. (In particular, in the case of a Riemannian metric and ~v1 = ~v2 = γ′ with Dγ′

dt = 0, the speed
||γ′(t)||γ(t) is constant.) To see this, we just use (3.3), which gives d

dt〈~v1(t), ~v2(t)〉γ(t) = 0.
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For example, if γ is a geodesic in M in the equivalent senses of Examples 1.6 and 2.6, then
〈γ′(t), γ′(t)〉γ(t) is a constant cγ ∈ R that is independent of t (but may depend on γ). In the
Riemannian case this constant must be nonzero, for otherwise γ′ is identically zero and so γ is
constant. In general, let γ : I → M be a path for which 〈γ′(t), γ′(t)〉γ(t) is a nonzero constant
cγ . (This includes particles in spacetime with nonzero rest mass, in the sense of Example 1.6.)
If ϕ is a reparameterization of the path (i.e., a smooth isomorphism between the interval I and
a second interval in R), under what conditions does γ ◦ ϕ retain this constancy property? Since
(γ ◦ ϕ)′(t) = ϕ′(t) · γ′(ϕ(t)), the pointwise calculation of the inner products changes by a scaling
factor that depends on t:

〈(γ ◦ ϕ)′(t), (γ ◦ ϕ)′(t)〉(γ◦ϕ)(t) = ϕ′(t)2〈γ′(ϕ(t)), γ′(ϕ(t))〉γ(ϕ(t)) = ϕ′(t)2cγ .

Since cγ 6= 0, in order that γ ◦ ϕ retain the constancy condition it is necessary and sufficient that
the non-vanishing |ϕ′| be constant, or equivalently (by connectivity of the parameter interval I)
that ϕ′ be a nonzero constant.

Thus, when considering geodesics, the only t-reparameterizations that can possibly preserve the
geodesicity are linear reparameterizations ϕ(t) = at + b with a 6= 0, in which case cγ◦ϕ = a2cγ . For
such ϕ it is easy to check that γ ◦ ϕ is in fact again a geodesic when ϕ is. In the case of a particle
γ with positive rest mass m > 0, a time reparameterization that preserves the rest mass must
have the form ϕ(t) = at + b with a = ±1. But if a = −1 then since the energy-momentum vector
γ′(ϕ(t)) in the time cone at γ(ϕ(t)) lies in the future half-cone (by definition of γ being a particle
in spacetime), the energy-momentum vector (γ ◦ ϕ)′(t) = −γ′(ϕ(t)) lies in the past half-cone at
γ(ϕ(t)). Thus, if γ ◦ ϕ is to be a particle with the same rest mass as γ then it is necessary and
sufficient that ϕ(t) = t + b for some b ∈ R. We say that two particles γ1 : I1 → U and γ2 : I2 → U
are physically indistinguishable if their rest masses m1 and m2 coincide and there exists a C∞

isomorphism ϕ : I1 ' I2 such that γ1 = γ2 ◦ ϕ. We physically interpret the preceding argument
as saying that physically indistinguishable particles have the same sense of “proper time” up to
additive translation. That a particle determines its own sense of time (not in any absolute universal
sense that is coordinated with anything else) is very non-Newtonian!

Example 3.6. Let γ : I → U be a particle with rest mass m ≥ 0 in the sense of Example 1.6,
so 〈γ′, γ′〉γ is a constant. By (3.3), the vector field Dγ′

dt is therefore orthogonal to the energy-
momentum vector field γ′ along the entire interval I. Hence, Dγ′

dt at time t lies in the hyperplane
in Tγ(t)(U) orthogonal to the line R · γ′(t). The 3-dimensional hyperplane (R · γ′(t))⊥ is called
the local rest space of the particle at “proper time t” and the vector Dγ′

dt in this local rest space is
interpreted as the acceleration felt by γ at time t due to non-gravitational effects. The local rest
space is the 3-dimensional vector space of velocities that can be perceived by the particle at time
t. (This is not a subset of spacetime, but rather is a subspace of the tangent space to spacetime
at γ(t).) Note that γ′(t) is not in the local rest space, except of course if the particle is massless
(m = 0). Since the Lorentz metric has signature (3, 1), if γ has positive rest mass then the Lorentz
metric has negative-definite restriction to R · γ′(t) and so we have an orthogonal decomposition
Tγ(t)(U) = R ·γ′(t)⊕ (R ·γ′(t))⊥ with the Lorentz metric having positive-definite restriction to the
local rest space. Moreover, since U is oriented and R · γ′(t) is oriented (by declaring the velocity
vector γ′(t) to be in the positive half-line), it follows that for particles with positive mass the local
rest space is also canonically oriented.

Let us now explain how to make relative observations of 3-dimensional velocity from the viewpoint
of another particle at the same point of spacetime (ignore Heisenberg’s uncertainty principle!). Let
γ1 : I1 → U and γ2 : I2 → U with respective rest masses m1 ≥ 0 and m2 > 0 be two particles that
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lie at u0 ∈ U at some times t1 ∈ I1 and t2 ∈ I2. Typically the lines R · γ′1(t1),R · γ′2(t2) ⊆ Tu0(U)
are not the same, so the local rest spaces of the particles at these times are likewise generally rather
different hyperplanes in Tu0(U). Let

~w12 = γ′1(t1)− 〈γ′1(t1),
γ′2(t2)
m2

〉u0 ·
γ′2(t2)
m2

be the projection of the energy-momentum vector γ′1(t1) into the local rest space (R · γ′2(t2))⊥ of
γ2 at its time t2 (recall m2 > 0 by hypothesis), and define

(3.4) ~p12 =
m2 ~w12

−〈γ′1(t1), γ′2(t2)〉u0

to be the relative momentum of γ1 (at its time t1) from the viewpoint of γ2 at its time t2. The
denominator in (3.4) is nonzero because otherwise the nonzero vector γ′1(t1) with non-positive self
inner product would lie in the local rest space (R · γ′2(t2))⊥ that is Riemannian for the Lorentz
metric (as m2 > 0). Of course, the local rest spaces for these two particles at their respective times
t1 and t2 agree in Tu0(U) if and only if ~w12 = 0, or equivalently ~p12 = 0. In general, since m2 > 0,
we can uniquely write the orthogonal decomposition of γ′1(t1) in Tu0(U) = R ·γ′2(t2)⊕ (R ·γ′2(t2))⊥
as

γ′1(t1) =
E12

m2
· γ′2(t2) + ~w12

for some E12 ∈ R. We have E12 6= 0 since γ′1(t1) does not lie in the local rest space of γ2 at its
time t2, and since γ′1(t1) and γ′2(t2) lie in the closure of the same connected component of the time
cone (namely, the closure of the future half-cone selected by the time orientation) we must also
have E12 ≥ 0 (use Lemma 5.1 in the handout on orientations on manifolds). Thus, E12 > 0; this
is called the relative energy of γ1 (at its time t1) from the viewpoint of γ2 at its time t2. Since the
local rest spaces of γ2 are Riemannian (as m2 > 0), we have

0 ≤ 〈~w12, ~w12〉u0 = E2
12 −m2

1

and 〈γ′1(t1), γ′2(t2)〉u0 = −E12m2. (In particular, m1 ≤ E12 with equality if and only if the local
rest spaces of γ1 at t1 and γ2 at t2 coincide.) Thus, ~p12 = ~w12/E12 and if we define ~v12 = ~p12/E12

to be the relative velocity of γ1 from the viewpoint of γ2 (at the usual local times) we compute the
corresponding relative speed to be√

〈~v12, ~v12〉u0 =
√

1− (m1/E12)2 ≤ 1

with equality if and only if m1 = 0. The physical interpretation is that from the viewpoint of a
particle with positive rest mass all observed motion is at most the speed of light (which is 1 in our
dimensionless system of measuring speed), and a particle is observed travelling at light speed if and
only if it is massless. Moreover, in case m1 > 0 we have

~p12 = E12~v12 =
m1~v12√

1− ||~v12||u0

.

If m1 > 0 then the classical definition of momentum in Newtonian mechanics suggests that we
should interpret the relative energy E12 = m1/

√
1− ||~v12||u0 ≥ m1 as the relative mass of γ1 (at

its time t1) from the viewpoint of γ2 (at its time t2), thereby equating relative energy and relative
mass (i.e., E = mc2 with c = 1). Of course, one has to work out low-speed examples to “justify”
these definitions of relative energy, relative momentum, and relative velocity.
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Let us now return to our general development by introducing a new property of connections in
the special case E = TM . Suppose ∇ is a connection on TM , so for a pair of smooth vector fields
~v and ~w over an open U ⊆ M we get several new vector fields: ∇~v(~w), ∇~w(~v), and [~v, ~w].

Lemma 3.7. With notation as above, the vector field

(3.5) (∇~v(~w)−∇~w(~v))− [~v, ~w]

depends in an alternating bilinear manner on ~v and ~w over the ring C∞(U).

Proof. The additivity and skew-symmetry aspects are trivial, so the only real issue is to replace ~v
with f~v for f ∈ C∞(U) and to compute what happens (the same will then go for ~w by swapping
the roles of the vector fields and negating). The first term depends linearly on ~v over C∞(U), so
we just have to prove that

∇~w(f~v) + [f~v, ~w] ?= f · (∇~w(~v) + [~v, ~w]).

Using the Leibnitz Rule for ∇~w and the trivial identity [f · ~v, ~w] = f [~v, ~w] − ~w(f)~v, the nuisance
term ~w(f)~v cancels out and so the desired result is obtained. �

Since the formation of (3.5) in this lemma is compatible with shrinking U , by the dictionary
between O-modules and vector bundles we conclude that (3.5) defines an alternating bilinear pairing
of vector bundles TM × TM → TM , or equivalently a linear map of bundles

∧2(TM) → TM.

This map may be identified with a global section T∇ of the vector bundle ∧2(T ∗(M)) ⊗ TM (or
the O-module Ω2

M ⊗ VecM ), called the torsion tensor of the connection ∇ on E = TM . Over an
open U ⊆ M admitting smooth coordinates {x1, . . . , xn} the torsion tensor has a unique expression
as a C∞(U)-linear combination

∑
k

∑
i<j hijk(dxi ∧ dxj) ⊗ ∂xk

. What are the hijk’s? Using ∂xi ’s
as the local frame for the bundle TM , consider the associated Christoffel symbols defined by

∇(∂xj ) =
∑
i,k

Γk
ijdxi ⊗ ∂xk

,

or equivalently ∇∂xi
(∂xj ) =

∑
k Γk

ij∂xk
. Since the commutators among the ∂xi ’s are all zero, we

thereby easily compute the classical local formula for the torsion tensor in terms of the Christoffel
symbols:

T∇|U =
∑

k

∑
i<j

(Γk
ij − Γk

ji)(dxi ∧ dxj)⊗ ∂xk
.

In terms of the Christoffel symbols Γk
ij (for a choice of local coordinates {xi} and the associated

local frame {∂xk
} of E = TM), we see that T∇(m) = 0 for some m ∈ U if and only if

(3.6) Γk
ij(m) = Γk

ji(m)

for all i, j, k. (In particular, this latter condition is independent of the choice of local coordinates
since T∇ is an intrinsic global object.) This motivates the following terminology:

Definition 3.8. The connection ∇ on TM is symmetric if T∇ = 0.

Keep in mind that the simple-minded (but useful!) Christoffel-symbol symmetry criterion (3.6)
for the vanishing of T∇(m) only works for Christoffel symbols associated to the classical local
trivialization {∂xk

} of TM associated to the choice of local coordinate system around m. We also
emphasize that, unlike metric compatibility, symmetry is only meaningful for connections on TM
(not on more general vector bundles) and it has nothing to do with any metric data. In the case
dim M ≤ 1 symmetry is automatic since Ω2

M = 0. The interesting case is therefore dim M ≥ 2.
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Example 3.9. Consider M ⊆ V and ∇ on TM as in Example 1.4 and Example 3.3. Since Γk
ij = 0

when using (the restriction of) a linear coordinate system, ∇ is symmetric.

We now give another symmetry criterion in terms of parametric surfaces in M , the 2-dimensional
analogue of a path. We define a parametric surface in M to be a smooth map σ : A → M where
A ⊆ R2 is an open subset; as with the case of paths, we do not require σ to be a local immersion
or even to be injective. For such a “surface”, we define the notion of a (smooth) section of a
bundle on M along σ to simply be a (smooth) global section of the pullback bundle σ∗(TM)
over A. For each point p = (x0, y0) ∈ A, let Ax0 = A ∩ {x = x0} and Ay0 = A ∩ {y = y0}
be the horizontal and vertical “lines” through p in A. Near p these are open intervals, so σ|Ax0

and σ|Ay0
are two paths in M through p. They each have velocity vectors at p, which we denote

(∂xσ)(p), (∂yσ)(p) ∈ Tσ(p)(M) = (σ∗(TM))(p). A key point is:

Lemma 3.10. The two set-theoretic sections of σ∗(TM) → A defined by ∂xσ and ∂yσ are smooth.

Proof. This is a trivial calculation in local coordinates {u1, . . . , un} near σ(p): the local component
functions σi = ui ◦ σ are smooth and the usual velocity formula along the path gives

(∂xσ)(p) =
∑

i

(∂xσi)(p)∂ui |σ(p) =
∑

i

(∂xσi)(p)(σ∗(∂ui))(p),

so the local coefficient functions of ∂xσ with respect to the local frame of σ∗(∂|ui)’s are the functions
∂xσi that are smooth. Hence, ∂xσ is a smooth section. The case of ∂yσ goes the same way. �

The two sections ∂xσ and ∂yσ encode the horizontal and vertical velocities of the 2-dimensional
parameteric surface σ in M . Now the question arises: does horizontal covariant differentiation of
the vertical velocities equal vertical covariant differenation of the horizontal velocities (using the
pullback connection on σ∗(TM))? Here it is understood that we compute covariant derivatives with
respect to specific paths in M , namely the ones arise from restriction of σ to vertical and horizontal
“lines” in A ⊆ R2 endowed with their natural coordinate (i.e., structure of path in M via σ).
For notational purposes, the horizontal and vertical covariant derivative operators on sections of
σ∗(TM) along the horizontal and vertical lines in A are denoted D

∂x and D
∂y respectively.

Theorem 3.11. A connection ∇ on TM is symmetric if and only if for any smooth parametric
surface σ : A → M ,

D

∂x
(∂yσ) =

D

∂y
(∂xσ)

as sections of TM along σ.

Proof. Since the entire problem is of local nature, we can work locally on M and A to reduce to
the case that M admits global coordinates {u1, . . . , un}. Let Γk

ij be the Christoffel symbols of ∇
with respect to the coordinates {u1, . . . , un} on M and the associated frame {∂u1 , . . . , ∂un} of TM .
Let σk = uk ◦ σ be the smooth coefficient functions of σ and let ek = σ∗(∂uk

) be the associated
trivializing frame of the vector bundle E = σ∗(TM) over A that is equipped with the connection
σ∗(∇). Since

∂xσ =
∑

k

∂σk

∂x
ek,
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the final formula for covariant differentiation in Theorem 2.5 (applied to the restriction to σ to
vertical lines in A) gives

D

∂y
(∂xσ) =

∑
k

 ∂2σk

∂y∂x
+

∑
i,j

∂σj

∂x
· ∂σk

∂y
· (Γk

ij ◦ σ)

 ek

pointwise on A. (This is really to be viewed as an equality in fibers of the pullback of TM to
vertical lines in A.)

Doing the same calculation with the roles of x and y reversed and comparing answers in the fiber
at a point of A, the general equality of sums involving the second-order partials is automatic from
equality of mixed partials. Now if the connection is symmetric, then Γk

ij = Γk
ji so the equality of the

sums of the remaining terms drops out. Conversely, suppose such equalities always hold. We wish
to infer that ∇ is symmetric. As has already been noted, symmetry is automatic if n = dim M ≤ 1.
Thus, we may assume n ≥ 2. Take the case when σ is the parametric uiuj-coordinate plane
through a point m ∈ M with i < j. In this case the equality D

∂y (∂xσ) = D
∂x(∂yσ) is the identity∑

k(Γ
k
ij ◦σ)ek =

∑
k(Γ

k
ji ◦σ)ek, or in other words Γk

ij ◦σ = Γk
ji ◦σ for all k. Evaluating at the point

of this planar slice corresponding to m gives Γk
ij(m) = Γk

ji(m) for all k. Since m ∈ M and i < j

were arbitrary we get Γk
ij = Γk

ji on M for all i, j, k. This is the criterion (3.6) for vanishing of the
torsion tensor of the connection. �

Finally, we come to a third interpretation of symmetry for connections ∇ on TM that is perhaps
the most geometric of all (the criterion in Theorem 3.11 looks vaguely geometric, but it is hard
to really say what is geometric about it). We wish to consider the concept of “flatness” for a
connection on TM . This is a notion to be studied later for connections ∇ on any smooth vector
bundle E → M by means of the concept of a curvature tensor R∇ ∈ (∧2(T ∗M)⊗E)(M), but in the
special case that E = TM where (M,ds2) is a pseudo-Riemannian manifold with corners and ∇ is
the Levi-Civita connection (see §4), it will be a consequence of the Frobenius integrability theorem
that the following three conditions are equivalent: R∇ = 0, locally there exist coordinates with
respect to which the metric tensor has constant coefficients (classical “flat” geometry), and locally
there exist coordinates with respect to which the Christoffel symbols (associated to the coordinate
system and the associated classical trivialization of E = TM) all vanish. In fact, further work
(theorem of Cartan–Ambrose–Singer) shows that these are all also equivalent to the condition that
all parallel transport isomorphisms Pm′,m,γ : Tm(M) ' Tm′(M) are unaffected by “continuous
deformation” of the path γ. (In more precise topological terminology, we have to allow γ to be
piecewise smooth and not merely smooth, and the invariance under continuous deformation means
that the Pm′,m,γ ’s only depend on the homotopy class of γ. The key case is that of parallel transport
around all small piecewise smooth loops that begin and end at an arbitrary point m′ = m.) Under
these equivalent conditions, the geometry of the pseudo-Riemannian manifold (M,ds2) is said to
be flat. (None of the equivalences just mentioned will be used here, except briefly for motivational
purposes.)

One can ask if there is a reasonable pointwise version of flatness. That is, what should it mean
to say that (M,ds2) is “flat at m ∈ M”? One possible definition is that the value of the (as yet
undefined) curvature tensor R∇ at m vanishes: R∇(m) ∈ ∧2(Tm(M)∨)⊗ Tm(M) is equal to 0. A
more vivid (but not equivalent) definition is inspired by the Christoffel symbol criterion: can we
find a coordinate system {xi} around m such that for the Christoffel symbols Γk

ij associated to {xi}
and the local frame {∂xk

} of TM around m the values Γk
ij(m) all vanish? That is, we ask that

∇∂xi
(∂xj )(m) = 0 in Tm(M) for all i and j. This is a good notion of flatness at m in the sense
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that the global notion of flatness for ∇ on TM over all of M as discussed above is equivalent to the
local existence of coordinate systems {xi} such that the Γk

ij ’s all vanish on the entire coordinate
domain. The vanishing property at m is not coordinate-independent, but the existence of some
such coordinate system is equivalent to symmetry:

Theorem 3.12. Let ∇ be a connection on TM , and let m ∈ M be a point. Let T∇ be the torsion
tensor of this connection. There exists a local coordinate system {xi} around m such that all
∇∂xi

(∂xj )(m) vanish (or equivalently, all Γk
ij(m) vanish, where the Γk

ij’s are associated to the local
coordinates {xi} and the associated trivialization {∂xk

} of TM) if and only if T∇(m) = 0.

Proof. Since in local coordinates T∇ =
∑

k

∑
i<j(Γ

k
ij−Γk

ji)(dxi∧dxj)⊗∂xk
, it is equivalent to prove

that there exists a coordinate system {yk} around m for which the associated Christoffel symbols
vanish at m if and only if there exists a coordinate system {xk} around m such that the associated
Christoffel symbols satisfy Γk

ij(m) = Γk
ji(m) for all i, j, k. The first condition obviously implies the

second (take xk = yk), and for the converse we suppose that we are given a coordinate system {xk}
near m such that Γk

ij(m) = Γk
ji(m) for all i, j, k. Letting yk = xk +

∑
ij ck

ij(xi − xi(m))(xj − xj(m))
for constants ck

ij to be determined, the yk’s consistute a coordinate system around m (why?). From
an earlier calculation in class, the Christoffel symbols for the connection in this new coordinate
system (using the trivialization ∂yk

for TM around m, of course) are given by Γk
ij − (ck

ij + ck
ji) if

i 6= j and Γk
ii − ck

ii otherwise. Thus, it suffices to find constants ck
ij such that Γk

ij(m) = ck
ij + ck

ji if
i 6= j and Γk

ii(m) = ck
ii for all i. (Note that this is impossible without the symmetry of Γk

ij(m) in i

and j!) We simply take ck
ij = Γk

ij(m)/2 if i 6= j and ck
ii = Γk

ii(m); the symmetry hypothesis on the
Γk

ij(m)’s ensures that these constants work. �

Here is a nice reformulation of the condition “flatness at m” in Theorem 3.12:

Corollary 3.13. Let ∇ be a connection on TM and let m ∈ M be a point. Then T∇(m) = 0 if
and only if there exists a local coordinate system {xi} around m such that for any path γ : I → M
through m = γ(t0) and any vector field ~v =

∑
vkγ

∗(∂xk
) ∈ (γ∗(TM))(I) along γ the covariant

derivative D~v
dt at time t0 is given by componentwise differentiation: D~v

dt (t0) =
∑

v′k(t0)∂xk
|m.

Proof. By Theorem 2.5, the final condition is equivalent to the condition that for each k the sum∑
i,j vj(t0)γ′i(t0)Γ

k
ij(m) vanishes for any γ, where γi = xi ◦ γ. Taking the coordinate vector fields

~v = ∂xj |γ for each j, it is equivalent that
∑

i γ
′
i(t0)Γ

k
ij(m) = 0 for all j, k. Taking γ to be a

coordinate axis through m, it is equivalent that Γk
ij(m) = 0 for all i, j, k, and by Theorem 3.12 this

is equivalent to T∇(m) = 0. �

4. Levi-Civita connection

The classical “fundamental theorem of Riemannian geometry” is a basic calculation due to Levi-
Civita:

Theorem 4.1. Let (M,ds2) be a pseudo-Riemannian manifold with corners. There exists a unique
symmetric connection ∇ on TM that is compatible with the metric tensor. Explicitly, if ds2 =∑

gijdxi ⊗ dxj in local coordinates and (gαβ) = (gij)−1 then ∇∂xi
(∂xj ) =

∑
k Γk

ij∂xk
where

(4.1) Γk
ij =

1
2
·
∑

`

(∂xigj` + ∂xjgi` − ∂x`
gij)g`k.

This connection ∇ is called the Levi-Civita connection of (M,ds2).
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Remark 4.2. Note that (gαβ), and hence (4.1), makes sense because (gij) is pointwise invertible: ds2

is a pseudo-Riemannian metric tensor (i.e., pointwise a non-degenerate symmetric bilinear form).
This non-degeneracy will of course also be crucial in the proof of the existence and uniqueness
(which fortunately will not require any use of coordinates). Observe also that, due to (4.1), when
the metric tensor coefficients gij for the chosen coordinate system are locally constant then all Γk

ij

vanish. The converse is also true: if for some coordinate system all connection coefficients Γk
ij of

the Levi-Civita connection vanish then the gij for that coordinate system are locally constant (or
equivalently constant, if the coordinate domain is connected). Indeed, in such cases by Theorem 2.5
the parallelism equation D~v

dt = 0 for a vector field ~v =
∑

vkγ
∗(∂xk

) along a path γ in the coordinate
domain says v′k(t) = 0 for all k, which is to say that each vk(t) is constant. That is, the vector
fields along γ that have constant coefficients with respect to the {∂xk

}-frame along γ are the ones
generated by parallel transport along any γ. Thus, by Example 3.5, gij = 〈∂xi , ∂xj 〉 is constant
along all paths in the coordinate domain. By local path-connectivity of M (for which we may use
smooth paths), the gij ’s are therefore locally constant (i.e., constant on each connected component
of the coordinate domain).

Proof. We write 〈·, ·〉 to denote the symmetric bilinear metric tensor pairing on smooth vector fields.
If such ∇ exists then for any open U ⊆ M and smooth vector fields ~v1, ~v2, ~v3 ∈ VecM (U) we have

(4.2) ~v1(〈~v2, ~v3〉) = 〈∇~v1
(~v2), ~v3〉+ 〈~v2,∇~v1

(~v3)〉,

(4.3) ~v2(〈~v3, ~v1〉) = 〈∇~v2
(~v3), ~v1〉+ 〈~v3,∇~v2

(~v1)〉,

(4.4) ~v3(〈~v1, ~v2〉) = 〈∇~v3
(~v1), ~v2〉+ 〈~v1,∇~v3

(~v2)〉,

by metric compatibility of ∇. Thus, using that 〈·, ·〉 is symmetric bilinear we compute

~v1(〈~v2, ~v3〉) + ~v2(〈~v3, ~v1〉)− ~v3(〈~v1, ~v2〉) = 〈∇~v1
(~v2)−∇~v2

(~v1), ~v3〉+ 〈∇~v2
(~v3)−∇~v3

(~v2), ~v1〉
−〈∇~v3

(~v1)−∇~v1
(~v3), ~v2〉+ 2〈∇~v2

(~v1), ~v3〉,

and by symmetry of ∇ this is equal to

〈[~v1, ~v2], ~v3〉+ 〈[~v2, ~v3], ~v1〉 − 〈[~v3, ~v1], ~v2〉+ 2〈∇~v2
(~v1), ~v3〉.

Thus, necessarily we must have
(4.5)

〈∇~v2
(~v1), ~v3〉 =

1
2
·(~v1(〈~v2, ~v3〉)+~v2(〈~v3, ~v1〉)−~v3(〈~v1, ~v2〉)−〈[~v1, ~v2], ~v3〉−〈[~v2, ~v3], ~v1〉+〈[~v3, ~v1], ~v2〉).

Due to the non-degeneracy of 〈·, ·〉, this local formula uniquely determines ∇~v2
(~v1), and so it

uniquely determines ∇. Conversely, define set-theoretic maps ∇U : VecM (U) → (Ω1
M⊗VecM )(U) =

HomU (VecU ,VecU ) by the requirement that for any ~v1 ∈ VecM (U), open U ′ ⊆ U , and ~v2 ∈
VecM (U ′), the vector field evaluation ∇U,~v2

(~v1) of ∇U (~v1) against ~v2 satisfies (4.5). Such ∇U ’s are
uniquely determined in this way and are compatible with shrinking U (i.e., ∇U (~v)|U ′ = ∇U ′(~v)
for any open U ′ ⊆ U and ~v ∈ VecM (U)), and by uniqueness and the formula it is immediate that
the resulting collection of maps ∇ = {∇U}U is a symmetric connection on the vector bundle TM
associated to the O-module VecM . The criterion in Lemma 3.1(2) gives the metric compatibility.

Finally, we derive the explicit coordinate formula. Let {xi} be a local coordinate system on an
open U ⊆ M and let ~v1 = ∂xj , ~v2 = ∂xi , and ~v3 = ∂x`

, so

〈∇~v2
(~v1), ~v3〉 = 〈

∑
k

Γk
ij∂xk

, ∂x`
〉 =

∑
k,`

Γk
ijgk`.
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By (4.5), we conclude ∑
k,`

gk`Γk
ij =

1
2
· (∂xjgi` + ∂xigj` − ∂x`

gij)

since the commutators among ∂xi , ∂xj , and ∂xk
all vanish. For fixed i and j this is a system of linear

equations for the Γk
ij ’s with coefficients in the symmetric invertible matrix (gk`) (either pointwise in

U , or over the ring C∞(U)), so we can solve these equations using the (symmetric!) inverse matrix
(gαβ). This gives the asserted formula for the Christoffel symbols. �

Example 4.3. By Example 3.3 and Example 3.9, the connection ∇ in Example 1.4 is the Levi-Civita
connection with respect to the metric tensor ds2

q arising from any non-degenerate quadratic form
q on V via the canonical bundle isomorphism TM ' M × V . Hence, for any m0,m1 ∈ M we can
identify the canonical isomorphism Tm0(M) ' V ' Tm1(M) as parallel transport with respect to
the Levi-Civita connection arising from any “flat” metric tensor (i.e., one arising from q on V as
above). Beware that this process cannot be used to define these isomorphisms of tangent spaces
since the very definition of ds2

q uses the canonical isomorphisms Tm(M) ' V in the first place
to actually use q to put the metric structure on the tangent spaces at all points of M . Rather,
it simply puts these isomorphisms into a more general framework, as elementary examples of a
structure that we have on any pseudo-Riemannian manifold at all.

In classical Riemannian geometry, the basic objects of study were surfaces in R3 or smooth
hypersurfaces in a finite-dimensional inner product space (V, 〈·, ·〉), using the induced metric ten-
sor from the “flat” one on the manifold V induced by 〈·, ·〉 as in the preceding Example. That
is, classically the length of a tangent vector at a point on a submanifold i : M ↪→ V was com-
puted by using the given inner product on V : this is exactly the pullback metric tensor via the
inclusions Tm(M) ⊆ Ti(m)(V ) ' V (the final isomorphism being the canonical one as for any
finite-dimensional vector space). The general concept of connection was not known; rather, given a
section ~v of TM along a curve γ : I → M , the covariant derivative was defined by first computing
the old-fashioned derivative of the V -valued map

I
~v→ TM

di→ TV ' V × V
pr2→ V

(sending each t to ~v(t) ∈ Tγ(t)(M) ⊆ Ti(γ(t))(V ) = V ) and then projecting this orthogonally into the
subspace Tγ(t)(M). The resulting set-theoretic section I → γ∗(TM) was taken to be the “derivative
with respect to M for ~v along γ.” In fact this extrinsic operation is intrinsic to M equipped with its
(induced) metric tensor: it is the covariant derivative D~v

dt with respect to the Levi-Civita connection
on TM with its induced metric tensor from the “flat” one on TV . The reason is that by Theorem
2.5 (with all Γk

ij equal to 0) the classical calculus-style derivative of coeffcient functions with respect
to a frame of “constant” vector fields computes the covariant derivative of ~v ∈ (i ◦ γ)∗(TV ) along
i◦γ in V with respect to the “flat” metric structure on the manifold V , and so to justify the asserted
intrinsic nature of the classical procedure we need a compatibility condition between orthogonal
projection and covariant differentiation with respect to the Levi-Civita connection:

Theorem 4.4. Let i : M ↪→ M ′ be an isometric immersion between Riemannian manifolds, and
let ∇′ and ∇ be the associated Levi-Civita connections on TM ′ and TM . For any smooth map
γ : I → M and vector field ~v ∈ γ∗(TM)(I) along γ, the covariant derivative D~v

dt with respect to
∇ along γ is the orthogonal projection of the covariant derivative D(di◦~v)

dt with respect to ∇′ along
i ◦ γ. Here we use the orthogonal projection from i∗(TM ′) onto its subbundle TM via the metric
tensor.
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Rather than prove Theorem 4.4 directly, it is more elegant to recast it in a general setting
that is unrelated to tangent bundles because this makes the situation better-suited to arguments
resting on pullback to an interval. We first give a general procedure that relates the Levi-Civita
connection on TM with the pullback to i∗(TM ′) of the Levi-Civita connection on TM ′. Note that
TM is a subbundle of i∗(TM ′) with metric tensor given by restriction of the i-pullback of the one
on TM ′. This motivates us to consider rather generally a vector bundle with connection (E′,∇′)
over a smooth manifold with corners M , and let E ⊆ E′ be a subbundle admitting a choice of
complementary bundle E1 ⊆ E′ (so E ⊕ E1 = E′). For example, as in our case of interest, if E′

is endowed with a Riemannian metric then a canonical E1 is the orthogonal complement to E in
E′. We can define a connection ∇ on E induced by the data of ∇′ and the projection p : E′ → E
as follows. For open U ⊆ M and s ∈ E(U) ⊆ E′(U), we get the section ∇′(s) ∈ (Ω1

M ⊗ E′)(U).
Thus, ∇(s) := (1 ⊗ p)((∇′)(s)) ∈ (Ω1

M ⊗ E)(U) is a smooth section over U . This operation ∇ is
compatible with shrinking on U and is clearly additive in s. Also, for f ∈ C∞(U) it follows from
the definition that ∇(s) = df ⊗ s + f∇(s). Hence, ∇ is a connection on E determined by ∇′ and
p. Observe a very important property of this construction: it is compatible with pullback. That is:

Lemma 4.5. With notation as above, if f : N → M is a smooth map and we endow f∗(E′) =
f∗(E) ⊕ f∗(E1) and f∗(E) with the pullback connections f∗(∇′) and f∗(∇) then f∗(∇′) and the
projection f∗(p) : f∗(E′) → f∗(E) induce f∗(∇).

Proof. This is an exercise in the characterization of the pullback connection. The asserted identity
is of local nature on M (i.e., if {Ui} is an open cover of M then it suffices to prove the lemma
for the restricted situation f−1(Ui) → Ui for all i). Hence, we can assume E and E1 are trivial
bundles, say with trivializing frames {sj} and {ti} that together give a frame for E′. Then {f∗(sj)}
and {f∗(ti)} serve the analogous purpose for the pullback bundles on N . To justify the desired
equality of connections on f∗(E) it suffices (by locality and the Leibnitz rule) to compare values on
the f∗(sj)’s. More generally, if s is any section in E(M) we will check equality after evaluation on
f∗(s). By definition, the connection on f∗(E) induced by projection of f∗(∇′) has value on f∗(s)
equal to the f∗(E)-component of f∗(∇′)(f∗(s)). Thus, we just have to show that the projection
f∗(E′) → f∗(E) carries f∗(∇′)(f∗(s)) to f∗(∇)(f∗(s)). By definition of the pullback connection,
f∗(∇′)(f∗(s)) = f∗(∇′(s)) in (f∗(E′))(N) and f∗(∇)(f∗(s)) = f∗(∇(s)) in (f∗(E))(N). Hence,
we want (f∗(p))(f∗(∇′(s))) = f∗(∇(s)). Since ∇(s) = p(∇′(s)) by definition of ∇ in terms of ∇′,
we are reduced to checking that (f∗(p))(ξ) = f∗(p(ξ)) in (f∗(E))(N) for any ξ ∈ E′(M). This is
obvious by passing to fibers over points of N . �

Our interest in this projection construction with connections is due to:

Lemma 4.6. Let i : M → M ′ be an immersion of manifolds with corners, and endow M ′ with
a Riemannian metric. Consider the pullback metric tensor on E′ = i∗(TM ′), and the pullback
i∗(∇′) of the Levi-Civita connection. Combining this pullback with orthogonal projection onto the
subbundle TM defines a connection ∇ on TM in accordance with the above construction. This
connection on TM is the Levi-Civita connection for the induced metric tensor on M .

Note that it is essential for the metric tensor to be definite rather than perhaps indefinite, as
otherwise the restriction to TM may fail to have the non-degeneracy properties that are necessary
for the existence and uniqueness of a Levi-Civita connection.

Proof. By the uniqueness of the Levi-Civita connection, we just have to prove that ∇ is symmetric
and is compatible with the induced metric tensor on TM . For metric compatibility, we use the
criterion in Lemma 3.1(1): for a smooth path γ : I → M we want parallel transport in TM along
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γ to be a fiberwise isometry. This problem is intrinsic to γ∗(∇) on γ∗(TM) equipped with the
γ-pullback of the induced metric tensor on TM . But γ∗(TM) is a subbundle of (i ◦ γ)∗(TM ′) =
γ∗(i∗(TM)), so the metric compatibility becomes the following problem. We have a vector bundle
with connection (E′,∇′) over a manifold with corners (such as I) and a subbundle E as well as
a metric tensor 〈·, ·〉 on E′ with respect to which ∇′ is compatible. Using orthogonal projection
induces a connection ∇ on E and we want to prove that ∇ is compatible with the restriction of the
metric tensor. That is, by Lemma 3.1(3), if s1 and s2 are local sections of E over an open then we can
consider these as sections of E′ and we want the 1-form d(〈s1, s2〉) to equal 〈∇(s1), s2〉+〈s1,∇(s2)〉.
By definition, under the decomposition E′ = E ⊕ E⊥ we have ∇′(s) = ∇(s) +∇⊥(s) for any local
section s of E′, so we just need ∇⊥(s1) to be orthogonal to s2 and ∇⊥(s2) to be orthogonal to s1

as sections of E′. But s1 and s2 are sections of the subbundle E that is fiberwise orthogonal to the
subbundle E⊥, so the metric compatibility problem is settled.

Next we consider the symmetry problem. It seems unpleasant to attack this via Christoffel
symbols; Theorem 3.11 provides the right symmetry criterion. For a smooth parametric surface
σ : A → M with an open A ⊆ R2, we seek to prove D

∂x(∂yσ) = D
∂y (∂xσ) as A-sections of σ∗(TM),

where we compute covariant derivatives along the x and y-lines of A with respect to the connection
∇. By symmetry of ∇′, we have the equality of covariant derivatives

(4.6)
D′

∂x
(∂y(i ◦ σ)) =

D′

∂y
(∂x(i ◦ σ))

as A-sections of (i ◦ σ)∗(TM ′) = σ∗(i∗(TM ′)), where D′

∂x and D′

∂y denote covariant derivatives along
i ◦ γ with respect to ∇′. At p = (x0, y0) ∈ A, (4.6) is an equality in Ti(σ(p))(M ′) and so we likewise
get an equality of orthogonal projections in Tσ(p)(M) = (σ∗(TM))(p). Hence, it suffices to prove in
general that the orthogonal projection from σ∗(i∗(TM ′)) to σ∗(TM) at p carries D′

∂x (∂y(i◦σ))(p) to
D
∂x(∂yσ)(p) (and then the same holds with x and y swapped). Since ∂y(i ◦σ) = di ◦∂yσ, by Lemma
4.5 (applied to f = σ(·, y0)) and the relationship between covariant derivatives and connections
on vector bundles over an interval (as in Remark 2.3) we are reduced to the following problem.
Consider a bundle with connection (E′,∇′) over an interval I such that ∇′ is compatible with a
given Riemannian metric on E′. This induces a connection ∇ on a subbundle E ⊆ E′ via orthogonal
projection. For a section s ∈ E(I) ⊆ E′(I) we seek to show that ∇′

∂t
(s) ∈ E′(I) has orthogonal

projection ∇∂t(s) in E(I). By the definition of ∇ in terms of ∇′ this is a tautology. �

To prove Theorem 4.4, the preceding lemma allows us to leave the restrictive setting of Levi-Civita
connections on tangent bundles and to work more generally with connections on arbitrary vector
bundles. More specifically, Theorem 4.4 is now a special case of the following general “algebraic”
situation that is susceptible to pullback arguments (whereas tangent bundles are too special for
such tricks). We consider a bundle with connection (E′,∇′) over a manifold with corners M , and
we let E′ = E ⊕ E1 be a direct sum decomposition into subbundles. By projection E′ → E, ∇′

induces a connection ∇ on E. For any path γ : I → M and section s ∈ (γ∗(E))(I) ⊆ (γ∗(E′))(I),
we must show that the projection of D′s

dt ∈ (γ∗(E′))(I) (covariant derivative with respect to ∇′)
into (γ∗(E))(I) is equal to the covariant derivative Ds

dt with respect to ∇. If we rename γ∗(E′),
γ∗(E), γ∗(∇′), and γ∗(∇) as E′, E, ∇′, and ∇ then (thanks to Lemma 4.5 with f = γ) we retain
the basic relationship that ∇ is constructed from ∇′ via the projection. Hence, our problem is as at
the end of the proof of Lemma 4.6: does the projection E′(I) → E(I) carry ∇′

∂t
(s) to ∇∂t(s)? This

again is a tautology, due to the relationship between ∇′ and ∇ with respect to bundle projection
(now over I), and so completes the proof of Theorem 4.4.
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Here is a variant on Theorem 4.4 that describes flatness along a path in a submanifold (with
induced metric tensor) in terms of ambient covariant differentiation.

Corollary 4.7. Let i : M → M ′ be an isometric immersion between Riemannian manifolds with
corners. Let γ : I → M be a path, and ~v ∈ (γ∗(TM))(I) ⊆ ((i ◦ γ)∗(TM ′))(I) a vector field on M
along the path. This vector field is parallel for the Levi-Civita connection on M if and only if its
covariant derivative D′~v

dt along i ◦ γ with respect to ∇′ is fiberwise orthogonal to the tangent space
Tγ(t)(M) ⊆ Ti(γ(t))(M ′).

Proof. We have shown above that the covariant derivative D~v
dt along γ with respect to ∇ is the

orthogonal projection of D′~v
dt . Since the vanishing of D~v

dt is the parallelism condition, we conclude
that it is equivalent to the vanishing of the orthogonal projection of D′~v

dt into the tangent spaces of
M along γ. This is precisely the claim in the corollary. �

5. The Fermi–Walker construction

In this optional section (which the reader uninterested in physics can safely omit) we discuss the
problem of how to define a general time-invariant notion of rest frame of a particle with positive mass
in General Relativity, and how on any pseudo-Riemannian manifold M the same idea associates to
any (possibly non-geodesic!) path γ for which 〈γ′, γ′〉γ is a nonzero constant a metric-compatible
connection on γ∗(TM) with respect to which γ is geodesic! (In the case that γ is a geodesic for
the Levi-Civita connection on M , this construction will recover the γ-pullback of the Levi-Civita
connection.)

For motivational purposes, consider a spacetime manifold U (equipped with its Levi-Civita
connection ∇) and a particle γ : I → U in the sense of Example 1.6. We do not assume this
particle to be in free fall, which is to say that γ′ may not be a parallel vector field along γ with
respect to ∇. However, we do assume it has positive rest mass, so by Example 3.6 at each time
t ∈ I there is associated a canonical 3-dimensional subspace (R · γ′(t))⊥ ⊆ Tγ(t)(U), the so-called
local rest space at time t, and it is Riemannian and oriented because of the hypothesis of positive
rest mass. Since γ′ generates a (trivial) line subbundle L of the tangent bundle to spacetime along
γ, by forming the rank-3 orthogonal complement subbundle L⊥ ⊆ γ∗(TU) (whose t-fiber is the
local rest space at time t), we get a “smooth family” of local rest spaces along γ. Clearly L⊥ is an
oriented Riemannian rank-3 subbundle of γ∗(TU).

Our problem is to find a way to canonically identify the local rest spaces with each other (as
oriented inner product spaces!) at different times along the path so as to enable the particle to
have a sense of being in a fixed 3-dimensional oriented inner product space (rest frame!) as time
changes. I claim that it suffices to find a canonical metric-compatible connection ∇γ

F on the vector
bundle γ∗(TU) with respect to which the section γ′ is parallel. Suppose we have such a connection.
The resulting isometric parallel transport isomorphisms

Pt1,t0,γ : Tγ(t0)(U) = (γ∗(TU))(t0) ' (γ∗(TU))(t1) = Tγ(t1)(U)

are orientation-preserving, due to continuity/connectivity reasons and the fact that parallel trans-
port is the identity for t1 = t0. These isomorphisms also carry R · γ′(t0) to R · γ′(t1) respecting the
canonical orientations of these lines (as Pt1,t0,γ(γ′(t0)) = γ′(t1) by the parallelism hypothesis for γ′

with respect to ∇γ
F ). Thus, this parallel transport will have to carry the local rest space (R·γ′(t0))⊥

at time t0 to the local rest space (R · γ′(t1))⊥ at time t1 as oriented inner product spaces. In fact,
by the theory of connections on bundles over an interval, such parallel transports for varying t1 ∈ I
and fixed t0 ∈ I canonically identify the Riemannian oriented vector bundle L⊥ of local rest spaces
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over I with the constant bundle I × (R · γ′(t0))⊥ (equipped with its Riemannian structure and
orientation induced by the ones on (R · γ′(t0))⊥). For a fixed choice of orthonormal positive basis
of the local rest space at time t0 this oriented Riemannian bundle trivialization gives a “consistent”
selection of positive basis in the local rest space of the particle at all times. This is exactly what
physicists call a “lab frame”. We prefer to avoid bases and non-canonical choices of t0 ∈ I, so once
∇γ

F is constructed we define the rest frame of the particle to be the 3-dimensional vector space of
∇γ

F -flat sections of the bundle L⊥ of local rest spaces along γ. (It has a canonical orientation and
Riemannian structure, namely the common one induced by its specialization isomorphism onto the
local rest space of γ at any t ∈ I.)

This is all good and well, but where is the required metric-compatible connection ∇γ
F making

γ′ parallel along γ to come from? In the case of free fall we can of course use the γ-pullback
of the Levi-Civita connection over spacetime. In general, one applies the following interesting
construction. Let (M,ds2) be a pseudo-Riemannian manifold with corners, and let γ : I → M be a
path in M with velocity field γ′ such that 〈γ′(t), γ′(t)〉γ(t) is equal to a nonzero constant cγ . (This
corresponds to the positivity requirement on the rest mass of the particle above.) Let L ⊆ γ∗(TM)
be the trivial line subbundle spanned by γ′, and let L⊥ be its orthogonal complement; we have
γ∗(TM) = L ⊕ L⊥ since cγ 6= 0. Let p : γ∗(TM) → L and p⊥ : γ∗(TM) → L⊥ denote the two
orthogonal projections. The Fermi-Walker connection ∇γ

F on γ∗(TM) is the one whose associated

covariant derivative operator Dγ
F

dt over an open J ⊆ I is

~v 7→ p(
D(p(~v))

dt
) + p⊥(

D(p⊥(~v))
dt

) ∈ L(J)⊕ L⊥(J) = (γ∗(TM))(J).

In other words, ∇γ
F on γ∗(TM) = L ⊕ L⊥ is the direct sum of the connections induced on L and

L⊥ by ∇ and the projections p and p⊥ via the construction considered below Theorem 4.4. Here
is an alternative useful formula for the Fermi–Walker connection:

(5.1) ~v 7→ D~v

dt
− 〈γ′, ~v〉γ

cγ
· Dγ′

dt
+
〈Dγ′

dt , ~v〉γ
cγ

· γ′,

or equivalently we claim

∇γ
F (~v) = ∇(~v)− c−1

γ 〈γ′, ~v〉γ · ∇(γ′) + c−1
γ 〈Dγ′

dt
, ~v〉γ · dt⊗ γ′,

where the right side is visibly a connection (check!). It suffices to compare the connections on local
frames, due to the Leibnitz Rule. By working with the global frame {γ′} of L and local frames of
L⊥, it suffices to compare the two formulas on γ′ and on a vector field ~v (over an open in I) that
is orthogonal to γ′. The case of γ′ works because Dγ′

dt is orthogonal to γ′ (thanks to the constancy
hypothesis and (3.3)), and the case of ~v orthogonal to γ′ works because 〈Dγ′

dt , ~v〉γ = −〈γ′, D~v
dt 〉γ

(apply (3.3) with s1 = ~v and s2 = γ′).
The initial term in (5.1) is the Levi-Civita covariant derivative along γ, and the other terms can

be nonzero only over those time intervals when the Levi-Civita acceleration Dγ′

dt is not identically
zero, which is to say that γ is not a geodesic (so for positive-mass particles in General Relativity
this means it is not in free fall). Hence, the Fermi-Walker connection agrees with the Levi-Civita
connection over opens in I where γ is a geodesic. The converse holds too: since Dγ′

dt and γ′ are
orthogonal with γ′ nowhere zero (as cγ 6= 0), if the Fermi–Walker and Levi-Civita connections
agree over an open J ⊆ I then both extra terms in (5.1) must vanish identically for any ~v over an
open subset of J . Looking at the final term in (5.1), this forces Dγ′

dt over J to be orthogonal to
all sections of γ∗(TM) over opens in J , and so by non-degeneracy of the metric tensor we deduce
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the identity Dγ′

dt |J = 0 that is the geodesic equation for γ (over J) with respect to the Levi-Civita
connection. In the language of General Relativity, the rest frame of a particle with positive mass
is carried forward across a time interval by the Levi-Civita connection if and only if the particle is
in free fall during that time interval.

We now check the features of the Fermi–Walker connection that are crucial for its usefulness
in solving the initial problem of defining the rest frame of a particle with positive rest mass: it is
compatible with the pseudo-Riemannian metric tensor and ∇γ

F (γ′) = 0 (i.e., γ′ becomes parallel).
The parallelism condition is obvious from (5.1) and the orthogonality of γ′ and Dγ′

dt . As for metric
compatibility, by the criterion (3.3) we just need to prove

d
dt
〈~v, ~w〉γ = 〈

Dγ
F~v

dt
, ~w〉γ + 〈~w,

Dγ
F ~w

dt
〉γ

for all sections ~v, ~w of γ∗(TM) over opens in I. The formula (5.1) for Fermi–Walker covariant
differentiation and the fact that (3.3) gives

d
dt
〈~v, ~w〉γ = 〈D~v

dt
, ~w〉γ + 〈~v,

D~w

dt
〉γ

(since the Levi-Civita connection is metric compatible) reduces us to proving (after multiplying
through by cγ) that〈

〈γ′, ~v〉γ ·
Dγ′

dt
− 〈Dγ′

dt
, ~v〉γ · γ′, ~w

〉
γ

+
〈

~v, 〈γ′, ~w〉γ ·
Dγ′

dt
− 〈Dγ′

dt
, ~w〉γ · γ′

〉
γ

vanishes. This vanishing is obvious by inspection.

6. A computation of flat frames

Suppose H ⊆ Rn+1 is a smooth hypersurface and γ : I → H is a path. Let ~v be a vector
field on H along γ (that is, ~v ∈ (γ∗(TH))(I)). We give H the induced metric tensor from Rn+1.
Covariant differentiation on H may look painful, but on the flat space Rn+1 it is trivial: we just
do the classical differentiation of the smooth map ~v0 : I → Rn+1 that “is” ~v (viewing Rn+1 as
Tγ(t)(Rn+1) for all t). By Theorem 4.4, D~v

dt at a point γ(t0) ∈ H is the orthogonal projection of the
derivative vector ~v′0(t0) from Rn+1 = Tγ(t0)(Rn+1) into the hyperplane Tγ(t0)(H). In particular,
by locally computing the orthogonal bundle projection T (Rn+1)|H → TH we can write down the
differential equation D

dt = 0 that expresses parallelism for vector fields along paths in H. (Of course,
writing down an equation explicitly doesn’t always necessarily constitute genuine progress.)

We shall work out this formalism in the first non-trivial case, the sphere in 3-space. Pick
0 < r0 ≤ 1 and let S2 ⊆ R3 be the unit sphere with induced metric tensor. Let γ : R → S2 be the
path

γ(t) =
(

r0 cos(t), r0 sin(t),
√

1− r2
0

)
that parameterizes the circle S2∩{z =

√
1− r2

0} on S2 with radius r0 that is parallel to and above
(or in) the xy-plane. We wish to compute a flat frame for γ∗(TS2) with respect to (the pullback
of) the Levi-Civita connection ∇ on S2. Let {ρ, θ, φ} be the usual spherical “coordinates” on R3.

We will give two ways to write down the equation D~v
dt = 0 for ~v(t) = f(t)∂θ|γ(t) + g(t)∂φ|γ(t) ∈

Tγ(t)(S2): the “classical” extrinsic method indicated above for hypersurfaces (orthogonal projection
of a covariant derivative in the ambient flat space R3), and an intrinsic method by computing the
Christoffel symbols from the metric tensor in {θ, φ} “coordinates” on S2. (There is a third way
that is much more insightful and geometric, and requires virtually no calculation beyond high
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school trigonometry; this rests on studying the cone C tangent to the sphere along γ. The point
is that γ∗(TC) = γ∗(T (S2)) inside of γ∗(T (R3)) and the metric tensor of C induces a Levi-Civita
connection over the cone that is flat in the sense of the discussion following Theorem 3.11. Thus,
shifting covariant differentiation on γ∗(T (S2)) = γ∗(TC) from the viewpoint of the sphere to the
viewpoint of the cone via several applications of Theorem 4.4 makes parallel transport very easy to
visualize without any calculations. Of course, when γ is the equator this cone is really a cylinder,
or better is a cone in the real projective plane with vertex on the line at infinity.)

The basic problem is to compute D
dt(γ

∗(∂θ)) and D
dt(γ

∗(∂φ)). First we will use the extrinsic
method, so we have to shift to the standard flat frame {∂x, ∂y, ∂z} of T (R3). Recall that in
T (R3)|S2 we have (by easy calculation from the Chain Rule)

∂θ = − sin θ sinφ∂x + cos θ sinφ∂y, ∂φ = cos θ cos φ ∂x + sin θ cos φ ∂y − sinφ ∂z

∂ρ = cos θ sinφ ∂x + sin θ sinφ ∂y + cos φ ∂z.

Since γ(t) has {θ, φ}-coordinates θ(t) = t and φ(t) = sin−1(r0) ∈ (0, π/2] (as
√

1− r2
0 ≥ 0), this

gives the 1-parameter formulas

∂θ|γ(t) = −r0 sin t ∂x|γ(t) + r0 cos t ∂y|γ(t), ∂φ|γ(t) =
√

1− r2
0(cos t ∂x|γ(t) + sin t ∂y|γ(t) − r0 ∂z|γ(t)),

∂ρ|γ(t) = r0 cos t ∂x|γ(t) + r0 sin t ∂y|γ(t) +
√

1− r2
0 ∂z|γ(t).

Computing covariant derivatives along γ in γ∗(T (R3)) (we use the notation DR3/dt to distinguish
this from covariant differentation D/dt in γ∗(TS2)) amounts to just t-differentiation of the coeffi-
cients in these formulas since the standard frame {∂x, ∂y, ∂z} of T (R3) is flat with respect to the
Levi-Civita connection from R3. This gives

DR3

dt
(γ∗(∂θ)) = −r0 cos t ∂x|γ(t) − r0 sin t ∂y|γ(t),

DR3

dt
(γ∗(∂φ)) =

√
1− r2

0(− sin t ∂x|γ(t) + cos t ∂y|γ(t)).

For p ∈ S2, ∂ρ|p is a unit vector in the line Tp(S2)⊥ ⊆ Tp(R3), so orthogonal projection from
Tp(R3) onto Tp(S2) is ~v 7→ ~v − 〈~v, ∂ρ|p〉p∂ρ|p. We use this formula with p = γ(t) to compute the
orthogonal projection of the R3-covariant derivatives of ∂θ and ∂φ along γ into Tγ(t)(S2); these
projections are respectively equal to the covariant derivatives within S2 along γ. With a little
algebra, the answer is

(6.1)
D

dt
(γ∗(∂θ)) = −r0

√
1− r2

0 · γ
∗(∂φ),

D

dt
(γ∗(∂φ)) =

√
1− r2

0

r0
· γ∗(∂θ).

Let us now derive these same equations by working intrinsically with the induced metric tensor
on the sphere. Computing the inner product on Tp(S2) by working in Tp(R3) for p ∈ S2 gives that
the vector fields ∂θ, ∂φ on S2 (away from the north and south poles) are pairwise perpendicular and
∂φ is a unit vector field but ∂θ has length sinφ. That is, the metric tensor is sin2 φdθ⊗2 + dφ⊗2.
Hence, with local coordinates x1 = θ and x2 = φ away from the poles we have

(gij) =
(

sin2 φ 0
0 1

)
, (gαβ) = (gij)−1 =

(
sin−2 φ 0

0 1

)
.

In particular, ∂xk
gij = 0 except for perhaps the case i = j = 1 and k = 2: ∂φg11 = 2 sin φ cos φ

(this vanishes on the equator). The general formula for Christoffel symbols in terms of the metric
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tensor as in Theorem 4.1 therefore simplifies considerably:

∇∂θ
(∂θ) = Γ1

11∂θ + Γ2
11∂φ, ∇∂φ

(∂θ) = ∇∂θ
(∂φ) = Γ1

12∂θ + Γ2
12∂φ, ∇∂φ

(∂φ) = Γ1
22∂θ + Γ2

22∂φ,

and Γk
11 = (−1/2)(∂φg11)g2k, Γk

12 = (1/2)(∂φg11)g1k, and Γk
22 = 0. (Recall that the general equation

∇∂xi
(∂xj ) = ∇∂xj

(∂xj ) holds for any symmetric connection ∇, since [∂xi , ∂xj ] = 0.) Thus:

∇∂θ
(∂θ) = − sinφ cos φ∂φ, ∇∂φ

(∂θ) = cotφ∂θ, ∇∂φ
(∂φ) = 0.

This gives

∇(∂θ) = − sinφ cos φdθ ⊗ ∂φ + cot φdφ⊗ ∂θ, ∇(∂φ) = cotφdθ ⊗ ∂θ.

Pulling this back along the path γ given by t 7→ (t, sin−1(r0)) in {θ, φ}-coordinates, and noting
that cot φ0 =

√
1− r2

0/r0 when sin φ0 = r0 (with φ0 ∈ (0, π/2] forcing the non-negative square
root), we get

(γ∗(∇))(γ∗(∂θ)) = γ∗(∇(∂θ)) = −r0

√
1− r2

0 dt⊗ γ∗(∂φ),

(γ∗(∇))(γ∗(∂φ)) = γ∗(∇(∂φ)) =

√
1− r2

0

r0
dt⊗ γ∗(∂θ).

Dividing out the dt (i.e., using Ds
dt = ∇∂t(s) for a connection on a vector bundle over an interval;

cf. Remark 2.1), we obtain exactly (6.1) once again.
Let us now use (6.1) to write down and solve the system of linear ODE’s satisfied by the coefficient

functions for a flat vector field along γ in S2. Writing ~v(t) = f(t)∂θ|γ(t) + g(t)∂φ|γ(t), the above
covariant derivative calculation coupled with the Leibnitz rule for covariant differentiation gives
(after some algebra)

D~v

dt
= (f ′(t) + r−1

0

√
1− r2

0g(t))∂θ|γ(t) + (g′(t)− r0

√
1− r2

0f(t))∂φ|γ(t).

Hence, the flatness condition is the system of linear ODE’s f ′ = −(
√

1− r2
0/r0)g and g′ =

r0

√
1− r2

0f on the entire real line. In the special case r0 = 1, which is to say the equator γ0, these
just say f ′ = 0 and g′ = 0. Hence, along the equator γ0 a flat frame is given by {∂θ|γ0 , ∂φ|γ0} (or
any invertible constant linear combination of these). For 0 < r0 < 1, we have g = −(r0/

√
1− r2

0)f
′

and
−r0√
1− r2

0

f ′′ − r0

√
1− r2

0f = 0.

This latter equation is f ′′ + (1− r2
0)f = 0 with 1− r2

0 > 0, and a basis for its 2-dimensional space
of solutions is given by the functions sin(t

√
1− r2

0) and cos(t
√

1− r2
0) on R. Using each of these

as f and solving for g in each case, we get the flat frame

(6.2)
{

sin(t
√

1− r2
0) ∂θ|γ − r0 cos(t

√
1− r2

0) ∂φ|γ , cos(t
√

1− r2
0) ∂θ|γ + r0 sin(t

√
1− r2

0) ∂φ|γ
}

.

Note, as a safety check, that these two vector fields along γ do have constant speed (both r0, in
fact) and constant inner product against each other (namely, 1− r2

0), as we know must be the case
for parallel transport with respect to the Levi-Civita connection (Example 3.5). Observe also that
in the “limit” r0 → 1− (so γ “approaches” the equator γ0) the common speed r0 tends to a nonzero
limit and the frames (6.2) “coverge” to the pair {−∂φ|γ0 , ∂θ|γ0} that is a flat frame along the equator
γ0. That there is limiting behavior to a flat frame on the equator is of course not a coincidence, and
more precisely it can be theoretically predicted without explicit global calculations by computing
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on one fiber (say t = 0) and appealing to the theorem on smooth dependence of solutions to first-
order ODE’s under variation of parameters and initial conditions. Do you see what the argument
is?

Remark 6.1. The flat vector fields t 7→ ~v(t) on S2 along γ are constant linear combinations of
the flat frame in (6.2). Clearly γ(t1) = γ(t0) if and only if t1 − t0 ∈ 2πZ (by inspection of the
definition of γ), but when does it happen that there is a t0 and a nonzero n0 ∈ Z such that
~v(t0 + 2πn0) = ~v(t0) in Tγ(t0)(S2) = Tγ(t0+2πn0)(S2)? Of course, by parallel transport the same
identity must then hold with any t ∈ R in the role of t0 (using the same n0), so it is the same
to ask when parallel transport along γ is a periodic process. The problem is to determine when
every constant linear combination of the frame in (6.2) is invariant under t 7→ t + 2πn0 for some
nonzero n0 ∈ Z. (The best scenario is n0 = ±1, which means that parallel transport once around
the circle is the identity.) It is easy to check (do it!) that for B 6= 0 in R and A1, A2 ∈ R not
both zero, the function t 7→ A1 sin(Bt) + A2 cos(Bt) is invariant under t 7→ t + c if and only if
c ∈ (2π/B)Z. Thus, γ admits a nonzero periodic flat vector field on S2 if and only if the radius r0

satisfies the arithmetic condition
√

1− r2
0 ∈ Q, in which case every nonzero flat vector field on S2

along γ is periodic with minimal period equal to 2π times the denominator of the rational number√
1− r2

0 ∈ Q∩ [0, 1). In particular, the period is 2π only along the equator (r0 = 1). This analysis
of periodicity can actually be carried out by a much simpler and more geometric (and insightful)
method, requiring no calculus whatsoever, by staring at the cone tangent to S2 along γ.


