
Math 396. Premanifolds with corners and a theorem of Whitney

1. Topological preliminaries

Let W be an m-dimensional R-vector space, m ≥ 1. For 1 ≤ k ≤ m a k-sector in W is a
non-empty subset of the form

Σ = {w ∈W | `1(w) ≥ c1, . . . , `k(w) ≥ ck}
with c1, . . . , ck ∈ R and linearly independent `1, . . . , `k ∈ W∨. A 0-sector is Σ = W . A sector
Σ ⊆W is a k-sector for some 0 ≤ k ≤ m. If w ∈W is a point, then the translation w+ Σ is also a
k-sector: we use the same `i’s but replace ci with ci + `i(w).

Lemma 1.1. Let Σ be a k-sector as above, so Σ is a closed set in W . Let ∂WΣ and intW (Σ) =
Σ− ∂WΣ denote the topological boundary and interior of Σ in W .

There are exactly k translated hyperplanes H in W such that H ∩ ∂WΣ contains a non-empty
open set in H. These H’s are Hi = {`i = ci}. In particular, the subset Σ ⊆W uniquely determines
k and the pairs (`i, ci) up to positive scaling.

Proof. We may make an additive translation and choose linear coordinates on W so that Σ =
[0,∞)k × Rm−k in W = Rm. In this case, it is easy to check that ∂WΣ is the union of the k
sets Σ ∩ {xi = 0} for 1 ≤ i ≤ k, each of which contains a non-empty open in the hyperplane
Hi = {xi = 0} (namely, it contains the locus in {xi = 0} where xj > 0 for all 1 ≤ j ≤ k with j 6= i).
Suppose H ⊆ W is some other translated hyperplane such that H ∩ ∂WΣ contains a non-empty
open set in H. Since H 6= Hi, the intersection H ∩Hi is a proper (translated) subspace of H for all
i. Hence, H ∩ ∂WΣ is contained in the union of the H ∩Hi’s, so to rule out H it suffices to show
that no finite union of proper (translated) subspaces of H can contain a non-empty open set in H.
This is a simple exercise left to the reader. Since the subset {`i = ci} in W determines the pair
(`i, ci) up to a nonzero scaling factor (why?), it remains to prove that if we switch the order of any
of the initial defining inequalities then the sector changes. But using linear coordinates extending
the `i’s makes this obvious. �

By the lemma, the only description of Σ by a system of finitely many linear inequalities of the
form λi ≥ bi with bi ∈ R and linearly independent λi ∈ W∨ are precisely ones obtained from the
system of k inequalities `i ≥ ci by positive scaling of these conditions. Thus, the subset Σ ⊆ W
uniquely determines the translated subspaces Hi = `−1

i (ci) and in terms of the subset Σ ⊆ V it is
well-posed to say that a point x ∈ Σ has index r if `i(x) = ci for exactly r indices i (with 0 ≤ r ≤ k).
We define Σr to be the set of points x ∈ Σ with index r, or equivalently x ∈ Hj for exactly r values
of j.

The following result summarizes some nice topological relations (easily visualized by picturing
the non-negative orthant Σ = [0,∞)3 ⊆ R3 = W and the 2-sector [0,∞)2 ×R in R3):

Theorem 1.2. Let Σ be a k-sector in W , 1 ≤ k ≤ m = dimW . Let Σr be the set of points x ∈ Σ
with index r, and let H1, . . . ,Hk be the k translated hyperplanes uniquely determined by the subset
Σ ⊆W .

• The topological interior intW (Σ) of Σ relative to W is Σ0, and Σ is the topological closure
of Σ0 relative to W . In particular, Σ0 is dense in Σ.
• For 1 ≤ r ≤ k, Σr 6= ∅ and the connected components of Σr are open in Σr and are given

by the intersections of Σr with Hi1 ∩ · · · ∩ Hir for each 1 ≤ i1 < · · · < ir ≤ k, with this
intersection also open in Hi1 ∩ · · · ∩Hir . (This is also true for r = 0 by silly logic reasons:
an intersection indexed by the empty set is the entire space.)
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• For 0 ≤ r ≤ k, the closure of Σr in Σ (or in V ) is the union of the Σr′’s for r′ ≥ r.
• For r ≥ 1, Σr is the set of x ∈ Σ that lie in the closure (in Σ, or equivalently in V ) of

exactly r connected components of Σ1. (This is also true for r = 0.)

Remark 1.3. In particular, using just Σ and Σ1 we can locally topologically encode the property of
having index r ≥ 0: x ∈ Σ has index r if and only if x admits arbitrarily small open neighborhoods U
in Σ that meet the closures of exactly r connected components of U1 = U∩Σ1. This is tremendously
important for globalization to manifolds with corners.

Proof. All assertions are unaffected by additive translation and linear isomorphism of vector spaces,
so by using a translation and a choice of linear coordinates adapted to the `i’s (i.e., a basis of W∨

extending the collection of `i’s) we may suppose W = Rm and

Σ = {x1, . . . , xk ≥ 0} = [0,∞)k ×Rm−k.

Thus, Σ0 = (0,∞)k ×Rm−k, and this is clearly the interior of Σ in W with closure in W equal to
Σ. For 1 ≤ r ≤ k, the locus Σr is exactly the disjoint union∐

1≤i1<···<ir≤k
((0,∞)k−r ×Rm−k) ∩ {xi1 = · · · = xir = 0}),

and these overlaps are exactly the Σ∩ (Hi1 ∩· · ·∩Hir)’s in the statement of the theorem (up to our
initial translation and choice of linear coordinates). Thus, for the second part of the theorem we
must show that each such overlap is a connected open subset of Σr that is also open in Hi1∩· · ·∩Hir .
Relabelling the coordinates, we have to prove that

{0}r × (0,∞)k−r ×Rm−k

is a connected open subset in Σr and in

H1 ∩ · · · ∩Hr = {0}r × [0,∞)k−r ×Rm−k.

Openness in the latter is obvious since (0,∞) is open in [0,∞), and for openness in Σr we note
that it is the intersection of Σr with the open conditions xr+1 > 0, . . . , xk > 0 in Rm.

Next, we have to prove that the closure of Σr is equal to the union of the sets Σj for j ≥ r.
This union is the locus of points with index ≥ r, so its complement is the locus of points with
index < r. Let us first prove that this union is closed. To say x ∈ Σ has index < r is to say that
at most r − 1 of the inequalities `j(x) ≥ cj are equalities, or in other words at least k − r + 1 of
the strict inequalities `j(x) > cj hold. Hence, if we consider all 1 ≤ j1 < · · · < jk−r+1 ≤ k then
the open simultaneous conditions `j1 > cj1 , . . . , `jk−r+1

> cjk−r+1
on Rm gives a collection of open

subsets whose open union meets Σ in the complement of ∪j≥rΣj . Hence, this latter union is closed
in Σ and it certainly contains Σr. To prove that it is the closure of Σr, we just have to prove that
each Σj is in the closure of Σr for all j ≥ r. We may suppose j > r, and by induction on j − r
(along with the fact that the closure of a closure is itself) it suffices to consider the case j = r + 1
for all 0 ≤ r < k. That is, we want Σr+1 to be in the closure of Σr. It suffices to treat each of
the connected components of Σr+1 separately, so by choosing suitable linear coordinates (and a
translation) we can focus attention on

{0}r+1 × [0,∞)k−r−1 ×Rm−k.

Any point in here is a limit of points of the form

(0, . . . , 0, 1/n, 0, . . . , 0) ∈ Σr

with 1/n in the (r + 1)th slot. This settles the analysis of closures.
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Finally, we have to check that the points of Σr are exactly those points x ∈ Σ such that x
is in the closure of exactly r connected components of Σ1. Picking coordinates as above so that
Σ = [0,∞)k ×Rm−k, the connected components of Σ1 are the loci

I1 × · · · × Ik ×Rm−k

with Ij = {0} for exactly one j and Ij = (0,∞) otherwise. Thus closure of each is given by replacing
(0,∞) with [0,∞) in the factors, so a point lies in the closure of exactly r of these precisely when
exactly r of its first k coordinates is zero. Such points are precisely those of index r. �

2. Calculus on sectors

Let V and V ′ be two finite-dimensional vector spaces over R, and let Σ ⊆ V and Σ′ ⊆ V ′ be two
sectors. Fix 1 ≤ p ≤ ∞. Suppose we are given non-empty open sets U ⊆ Σ and U ′ ⊆ Σ. In class
we defined the notion of a Cp-morphism f : U → U ′. For such f , since p ≥ 1 we see that at each
point x ∈ U there is a derivative Df(x) that is a linear map V → V ′, so by the Chain Rule if f is
a Cp isomorphism then Df(x) is a linear isomorphism and hence dimV = dimV ′. In general, if f
is a Cp map then it is impossible to say anything about the index of f(x) ∈ U ′ ⊆ Σ′ in terms of
the index of x ∈ U ⊆ Σ. (For example, the index could go up or down; consider putting [0, 1) into
R or along the edge of a square in the plane.) However, to get the theory of Cp-premanifolds with
corners off of the ground we just need to build a consistent theory of local Cp-charts, and so rather
than studying general Cp maps what we need to study are Cp-isomorphisms. That is, we need to
prove:

Theorem 2.1. If f : U → U ′ is a Cp-isomorphism then f(x) has the same index in Σ′ as x has
in Σ for all x ∈ U . That is, f(U ∩ Σr) = U ′ ∩ Σ′r.

To prove this theorem, let g : U ′ → U be the Cp-inverse of f . Since U and U ′ are non-empty,
the Chain Rule ensures dimV = dimV ′; let n be this common dimension. Let Ur = U ∩ Σr

and U ′r = U ′ ∩ Σ′r. We first show that f must carry U0 into U ′0 and g must carry U ′0 into U0, so
U ′0 = f(U0). By symmetry, we consider f . Since U0 = U ∩ Σ0 = U ∩ intV (Σ) is an open set in the

set intV (Σ) (as U is open in Σ) which in turn is open in V , U0 is open in V . The map f̃ : U0 → V ′

defined by restriction of f is therefore a Cp mapping in the usual sense, with Df̃(u0) = Df(u0) as
linear maps from V to V ′. Since Df(u0) is a linear isomorphism (by the Chain Rule for f and g),

the mapping f̃ : U0 → V ′ between open sets in vector spaces satisfies the hypotheses for the usual
inverse function theorem at u0 (i.e., its total derivative map at u0 is a linear isomorphism). Thus,

by the usual inverse function theorem f̃ gives a Cp isomorphism between small opens around u0

and f(u0) in U0 and V ′ respectively. In particular, f(U0) ⊆ U ′ ⊆ V ′ contains an open set around
f(u0) in V ′. Hence, f(u0) ∈ U ′ ∩ intV ′(Σ

′) = U ′ ∩ Σ′0 = U ′0, as desired.
By using Remark 1.3 Ur for r > 1 is topologically determined in U by U1 and U0. More precisely,

Ur is the set of points x ∈ U − U0 admitting arbitrarily small open neighborhoods meeting the
closures of exactly r connected components of U1. The same holds for U ′r in terms of U ′0 and U ′1, so
since f and g are inverse homeomorphisms and we have already proved that they identify U0 and
U ′0 we are reduced to the case of index 1. If x ∈ U1 then f(x) 6∈ f(U0) = U ′0, so f(x) has index at
least 1 in U ′ ⊆ Σ′. The problem is to prove that f(x) has index exactly 1. Once this is settled,
it makes sense to define the notion of a Cp-premanifold with corners as in class (in the sense of
being a structured R-space locally isomorphic to an open in a sector in a vector space equipped
with its natural R-space structure given by Cp-functions on its open subsets), but we will need to
show more, namely that the locally closed set of points with a given index has a natural structure
of Cp-premanifold. We take up these issues and more in what follows.
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3. Points of index 1

Using the notation as in the preceding discussion, we have x ∈ U1 and we seek a contradiction
if f(x) ∈ U ′r with r ≥ 2, which is to say (after relabelling) that we seek a contradiction if f(x) ∈
H ′1 ∩ H ′2 for two of the translated hyperplanes that give “faces” of Σ′. (This possibility can only
occur if n ≥ 2, so we now assume this to be the case.) By translation, we may and do assume
(for simplicity of language) that x and f(x) are the origin in their respective vector spaces. In
particular, any translated hyperplane through these points is a genuine hyperplane.

We claim that in fact if f(x) ∈ H ′ for a hyperplane H ′ that gives a “face” of Σ′ then the map
Df(x) : V → V ′ carries H into H ′, where H is the unique hyperplane in V that is a “face” of Σ
and contains x (here we use that x has index 1, so x ∈ Σ1). Granting this, it follows that Df(x)
sends H into H ′1 ∩ H ′2, but this is impossible for dimension reasons because Df(x) : V → V ′ is
an isomorphism and H ′1 ∩H ′2 has codimension 2 in V ′. This contradiction settles the problem for
points with index 1, granting the above claim that must now be proved.

By suitable choice of linear coordinates on V and V ′, we can assume V = Rn, {tn = 0} is the
unique hyperplane H in V through the origin x giving a face of Σ , and that associated to this
hyperplane the inequality “tn ≥ 0” (rather than “−tn ≥ 0”) arises in the definition of the sector
Σ. We can likewise suppose V ′ = Rn with H ′ = {t′n = 0}, and that “t′n ≥ 0” is the corresponding
inequality that arises in the definition of Σ′. Since x is a point of index 1, near x an open set in
Σ is open in the half-space {tn ≥ 0}. Thus, since our problems are local near x, we may replace Σ
with H = {tn ≥ 0} and Σ′ with H′ = {t′n ≥ 0} to reduce to the setup in the following result:

Theorem 3.1. Let V and V ′ be finite-dimensional nonzero vector spaces over R, and let H =
{` ≥ 0} and H′ = {`′ ≥ 0} be closed half-spaces defined by nonzero linear functionals ` ∈ V ∨ and
`′ ∈ V ′∨. Let U ⊆ H be an open subset around a point x ∈ ∂H = {` = 0} and let f : U → H′ be
a C1-map such that f(x) ∈ ∂H′ = {`′ = 0}. The map Df(x) : V → V ′ sends the hyperplane ∂H
into the hyperplane ∂H′.

Note that this theorem allows dimV 6= dimV ′, and in particular there is no local Cp-isomorphism
assumption on f near x (nor a linear isomorphism hypothesis on Df(x)). Before giving the proof,
we describe what the theorem says in concrete terms. Say we fix linear coordinates t1, . . . , tn on
V and t′1, . . . , t

′
n′ on V ′ so that H = {tn ≥ 0} and H′ = {t′n′ ≥ 0}. The theorem says that Df(x)

sends the first n− 1 basis vectors of V into the span of the first n′ − 1 basis vectors of V ′.

Proof. Choose linear coordinates t1, . . . , tn on V and t′1, . . . , t
′
n′ on V ′ such that H = {tn ≥ 0} and

H′ = {t′n′ ≥ 0}. Thus, we get V = ∂H×R and V ′ = ∂H′ ×R. We write

f : U → H′ ⊆ V ′ = ∂H′ ×R

as f = (ψ, fn′) where ψ : U → ∂H′ and fn′ : U → R are C1-maps. Since f lands inside of
H′ = {t′n ≥ 0}, if we write x = (a1, . . . , an−1, 0) then fn(t1, . . . , tn−1, 0) ≥ 0 for (t1, . . . , tn−1) near

(a1, . . . , an−1) in the open set ∂U
def
= U ∩ ∂H in the hyperplane ∂H, and hence fn′ |∂U has a local

minimum at (a1, . . . , an−1). This is a local minimum for a C1-function fn′ |∂U on an open domain
∂U in a vector space ∂H (of dimension n− 1), so for 1 ≤ j ≤ n− 1 we deduce the vanishing of

∂(fn′ |∂U )

∂tj
(a1, . . . , an−1).

But this partial derivative is the same as (∂fn′/∂tj)(a1, . . . , an−1, 0), due to how differentiation
for functions on sectors in vector spaces (such as fn′ on H′) is defined. Thus, we conclude that
(∂fn′/∂tj)(x) = 0 for all j ≤ n− 1.
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For any 1 ≤ j ≤ n we have

Df(x)(ej) =
n′∑
i=1

∂fi
∂tj

(x)e′i

where x′ = f(x), the functions fi = t′i ◦ f are the component functions of f around x in U , and
{ej} and {e′i} are the chosen bases of V and V ′ (and ∂fi/∂tn on U ⊆ H = {tn ≥ 0} is computed
as a limit with h → 0+). The calculation of the preceding paragraph shows that when j < n
the coefficient of e′n′ in Df(x)(ej) vanishes. In other words, under the map Df(x) each of the
vectors ej ∈ V for j < n gets sent into the span of the vectors e′i ∈ V ′ for i < n′. But the linear
coordinates were rigged so that the ej ’s for j < n span ∂H and the vectors e′i for i < n′ span ∂H′.
Thus, Df(x) : V → V ′ carries spanning vectors for the hyperplane ∂H ⊆ V over into the subspace
∂H′ ⊆ V ′. This proves the desired result. �

This completes the proof of Theorem 2.1, and we get a refinement on each stratum:

Theorem 3.2. Let f and g be as in Theorem 2.1. Considering the connected components of U ∩Σr

and U ′ ∩ Σ′r as open sets in translated codimension-r subspaces of V and V ′, if C is a connected
component of U ∩ Σr and it is carried to the connected component C ′ in U ′ ∩ Σ′r then by viewing
C and C ′ as opens in vector spaces (translated codimension-r linear subspaces of V and V ′) the
induced homeomorphism between C and C ′ is a Cp isomorphism in the traditional sense.

The content of the theorem is that the restricted inverse maps C → C ′ and C ′ → C are
Cp mappings in the traditional sense (when C and C ′ are viewed as opens in vector spaces, as
explained in the statement of the theorem; note that they are open because of the fact that the
connected components of Σr and Σ′r are open subsets of Σr and Σ′r respectively). We may choose

linear coordinates and a translation so that Σ = [0,∞)k × Rn−k and Σ′ = [0,∞)k
′ × Rn′−k′ in

V = Rn and V ′ = Rn′ , and C and C ′ are respectively open in {0}r × (0,∞)k−r × Rn−k and

{0}r × (0,∞)k
′−r ×Rn′−k′ . Let W = {x1 = · · · = xr} and W ′ = {x′1 = · · · = x′r} in Rn and Rn′

respectively, so C and C ′ are identified with open sets in W and W ′ respectively. We want the
restriction f : C → C ′ to be Cp in the traditional sense, so since C ′ is open in W ′ is is equivalent to
say f : C →W ′ is Cp in the traditional sense. Since C is open in W and V ′ contains W ′ as a linear
subspace, it is equivalent (via the classical “component function” criterion to be Cp) that the map
f : C → V ′ is a Cp map in the traditional sense. The inclusion i of C into U is trivially Cp, as is
the inclusion j of U ′ into V ′, and the map f : C → V ′ is really j ◦ f ◦ i where f : U → U ′ is our
initial Cp mapping. Thus, by stability of the Cp property under composition (for maps between
opens in sectors in vector spaces), we are done.

4. Cp-structure on singular strata

We begin with a definition that has been discussed in class:

Definition 4.1. For 0 ≤ p ≤ ∞, a Cp premanifold with corners is a structured R-space (X,O)
that is locally isomorphic (in the sense of structured R-spaces) to an open subset of a sector in a
finite-dimensional vector space (equipped with its natural R-space structure given by Cp-functions
on open subsets of itself). If the underlying topological space is Hausdorff and second-countable
then we call it a Cp-manifold with corners. We usually write X rather than (X,O).

For 1 ≤ p ≤ ∞, let X be a Cp premanifold with corners. In view of the local results on sectors,
we may use any local Cp-chart to determine the property of x ∈ X having index r ≥ 0, and the
subset Xr ⊆ X of points with index r is locally closed in X. The subsets X≥r = ∪i≥rXi are closed
in X, and X≥1 is called the boundary of X and is denoted ∂X; this intrinsic notion (that makes no
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reference to an ambient topological space containing X) must not be confused with the (extrinsic)
notion of topological boundary for a subset of a topological space.

We wish to give Xr a natural structure of Cp-premanifold. The idea is quite simple. Let (φ,U)
be a Cp-chart on X, with

φ : U → φ(U) ⊆ Σ ⊆ V

a Cp-isomorphism onto an open domain in a sector in a finite-dimensional vector space V , say with
n = dimV ≥ 1 (as the case n = 0 offers nothing to be done). The set Ur of points with index r
goes over to the open set φ(U) ∩ Σr in Σr. Since Σr is a disjoint union of open subsets (of itself)
that are each open in a unique translated codimension-r subspace of V , by topologically viewing
Ur as a corresponding union of disjoint open subsets of itself we obtain (via translation in V ) a
homeomorphism of open sets in Ur onto open subsets of (n − r)-dimensional vector spaces, and
these opens cover Xr as we vary (φ,U). But as we vary (φ,U) we may have overlaps among the
open connected components of the varying Ur’s and so to assert that we have built a Cp-atlas on
Xr we have to verify that the transition maps for the overlaps are Cp isomorphisms.

The problem is to check that on non-empty overlaps of these charts on opens in Xr, the resulting
transition maps between opens in Euclidean spaces are Cp-isomorphisms in the usual sense. Once
this is done, we will have a Cp-atlas on Xr, and this defines the desired Cp-premanifold structure.
Recall that we began with Cp-charts (φ,U) for the “Cp premanifold with corners” structure on
X, for which the transition maps on overlaps are Cp in the sense of Cp-maps between opens in
sectors in vector spaces. Hence, our problem is a local one: prove that a Cp-isomorphism f between
non-empty open sets U and U ′ in sectors Σ and Σ′ in finite-dimensional vector spaces V and V ′

induces a local Cp-isomorphism (in the traditional sense) between the connected components of
the index-r loci Ur and U ′r considered as open sets in translated linear subspaces of V and V ′. The
work in the preceding sections above, coupled with the discussion in class, provides the crucial fact
that f does restrict to a bijection (even homeomorphism) between the index-r loci of U and U ′.
Provided that in general f is proved to be a Cp-map (in the traditional sense) between these loci,
we may apply the same conclusions to the inverse map to get the desired local Cp-isomorphism
property (in the traditional sense) for f as a map between Ur and U ′r.

Working locally on Ur, we may assume that it is open in a translated codimension-r subspace in
V . The inclusion of this translated subspace into V is Cp, so by the stability of the Cp-property
under composition we may replace V with this subspace to get to the case when Σ = V , U is
open in V , and f(U) lies in a translated codimension-r subspace of V ′. In particular, by the very
definition of Cp-maps in the local theory with sectors, the map f : U → V ′ is Cp in the usual
sense. Composing with a translation, we may assume that f(U) lies in a codimension-r linear
subspace W ′ ⊆ V ′. Hence, f : U → V ′ is a Cp-map in the ordinary sense such that f(U) ⊆ W ′,
and the problem is to show that the map f : U → W ′ is Cp in the usual sense. We may choose
linear coordinates on V ′ extending a system of linear coordinates on W ′, and the Cp-property
of f : U → V ′ implies that all component functions of f are Cp-functions on U . Restricting to
the collection of such component functions corresponding to the basis vectors in W ′ verifies the
component-function criterion for f : U →W ′ to be a Cp-map in the usual sense.

Definition 4.2. If X is a Cp-premanifold with corners for 1 ≤ p ≤ ∞ then we say it is a Cp-
premanifold with boundary if X2 = ∅ (i.e., all points have index ≤ 1). In this case, the closed subset
X1 is called the boundaary. If X is Hausdorff and second-countable then it is called a Cp-manifold
with boundary. In case ∂X = ∅ we say X is a Cp-premanifold (resp. Cp-manifold) if it is also
Hausdorff and second-countable.
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Note that a Cp-premanifold with boundary is locally isomorphic to an open in a half-space in a
finite-dimensional vector space (equipped with its usual Cp-structure).

Example 4.3. Suppose that X is a Cp-premanifold with boundary, 1 ≤ p ≤ ∞. For x ∈ X1 = ∂X,
how does the pair (X1, X) look near x in local Cp-coordinates? A typical chart (φ,U) carries
a neighborhood of x in X to an open set φ(U) near the origin in some closed half-space H =
{(t1, . . . , tn) ∈ Rn | tn ≥ 0}, with X1 ∩ U going over to the open set φ(U) ∩ {tn = 0} in Rn−1 and
(X −X1) ∩ U going over to the open set φ(U) ∩ {tn > 0} in Rn−1 ×R>0.

Example 4.4. For a Cp premanifold with corners and any r ≥ 0, the inclusion map i : Xr → X is
Cp. Indeed, upon working locally this is the assertion that if Σ is a sector in a finite-dimensional
vector space V then the inclusion Σr → Σ is Cp. By definition of a Cp map, this is the same as
saying that the map Σr → V is Cp with respect to the Cp premanifold structures on Σr and on
V . The components of Σr are given a Cp-premanifold structure via how they sit as open sets in
translated codimension-r linear subspaces wi + Wi of V , and so by the problem is to check that
for any open Ui ⊆ wi + Wi the inclusion map Ui → V between open domains in vector spaces
(identifying Ui with −wi + Ui ⊆ Wi) is Cp. This is a restriction of a linear map, so it is obviously
Cp.

Remark 4.5. Let X be a Cp-premanifold with corners. For any r, let X≥r be the closed subset
of points with index ≥ r. In general this does not have a natural structure of Cp-manifold with
corners (unless Xr+1 is empty, in which case X≥r = Xr and so X≥r even has a natural structure
of Cp-premanifold). The problem is best illustrated with an example. Let X = [0,∞)2 ⊆ R2 and
p = ∞. In this case, X≥1 is the union of the non-negative coordinate axes in the plane, and so
at the origin the geometry (from the differentiable viewpoint) does not look like the local model
space [0, ε) for a 1-dimensional premanifold with corners. (To be rigorous, one should prove that
it is impossible to give X≥1 a structure of C∞ premanifold with corners such that X≥1 → X
is an immersion and that the C∞-structure induced on the open set X1 ⊆ X≥1 is its usual C∞

manifold structure as constructed on the locus Xr for any Cp premanifold with corners.) Naturally
this suggests that any attempt to seriously investigate the geometry of manifolds with corners will
require the introduction of a more general class of singular spaces to allow for crossing lines and so
forth. The theory of Cp-premanifolds with corners provides a category of geometric objects that
contains Cp-premanifolds with boundary and admits products. This suffices for our purposes, and
so we will not investigate the further development of the theory of singular spaces in differential
geometry (except to say that the more general theory of “manifolds with Lipschtiz boundary” gives
a satisfactory framework for geometric investigation of singularities).

The next theorem provides a mapping property for the Cp-premanifold structure on the strata
Xr.

Theorem 4.6. Let f : X → X ′ be a Cp-map between Cp premanifolds with corners. Assume
f(X) ⊆ X ′r′ set-theoretically for some r′ ≥ 0. The induced map of sets f : X → X ′r′ is Cp with
respect to the Cp-premanifold structure put on X ′r′ above.

For example, if f : X → X ′ is a Cp-map between Cp-premanifolds with boundary and f(∂X) ⊆
∂X ′, then since the inclusion i : ∂X → X is Cp (by Example 4.4 with r = 1) it follows that f ◦ i
is Cp. Thus, by the theorem, the set-theoretic map ∂f : ∂X → ∂X ′ induced by f ◦ i (or f) is
therefore a Cp-map between Cp premanifolds.

Proof. The locus X ′≤r of points in X ′ with index ≤ r′ is an open subset of X ′, so it has a natural

structure of Cp-premanifold with corners (using Cp-charts on X ′ that are supported in this open
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subset), and it contains the image of f . By its openness, the restricted map f : X → X ′≤r′ is

certainly Cp. Hence, we can rename X ′≤r′ as X ′ to get to the case when X ′r′+1 is empty, so X ′r′ is
a closed subset of X.

Our problem is local on X and X ′, so we may assume that X is an open set U in a sector Σ in
some finite-dimensional vector space V and (since X ′r′+1 = ∅) that

X ′ = [0, ε)r
′ × (−ε, ε)n′−r′ ⊆ Rn′ .

Thus, by definition of the notion of Cp map between Cp premanifolds with corners (a condition
that may be checked using any local Cp-charts), the composite map

f = (f1, . . . , fn′) : U → X ′ ⊆ Rn′

is a Cp map in the usual sense (so all fi : U → R are Cp functions in the usual sense on the
open domain U in the sector Σ ⊆ V ) and by hypothesis the image of f lies in the locus X ′r′ that

is identified with {(0, . . . , 0)} × (−ε, ε)n′−r′ ⊆ Rn′ . That is, f1 = · · · = fr′ = 0 and the map
f : X → X ′r′ is identified with the map

(fr′+1, . . . , fn′) : U → (−ε, ε)n′−r′ ⊆ Rn′−r′

that is visibly Cp since its component functions are Cp. �

5. Inverse and implicit function theorems on sectors

Having cleared up the remaining issues in the definition of Cp-premanifolds with corners, we
want to provide some other essential tools in the local theory (if only to convince the reader that it
is possible to work with such spaces): we want to prove the inverse and implicit function theorems
“with corners”. The proofs of these theorems rest on Whitney’s extension theorem, which we prove
in §6 in a special case that suffices for our needs. This special case of Whitney’s theorem says that
if U ⊆ Σ is an open set in a sector in a finite-dimensional vector space over R, and if f : U → W
is a Cp map to another finite-dimensional R-vector space (where the Cp property here is taken in
the sense defined in class, internal to the sector), then for each x ∈ U there is an open set U ′x ⊆ V
around x and a Cp mapping fx : U ′x → W (in the traditional sense) such that fx|U ′x∩U = f |U ′x∩U .
In other words, Cp maps on U locally extend to Cp maps on open domains in the vector space V .
As the reader will see, we only require this result in the C1 case. Most introductory books take the
existence of such local Cp extensions as the definition of a Cp mapping on an open set in a sector;
such an ad hoc definition is entirely adequate to get the theory of Cp premanifolds with corners
off of the ground, but it seems much more natural to use our “intrinsic” definition of Cp maps on
open sets in sectors (not requiring any reference to functions on domains outside of the sector) and
to deduce a posteriori via Whitney’s theorem that our definition is equivalent to the apparently
stronger-looking traditional definition.

The inverse and implicit function theorems in the presence of corners require extra hypotheses
that are not detected (or rather, are vacuous) in their traditional form on open domains in finite-
dimensional vector spaces. For example, the inclusion i of [0, 1) into [−1, 1) shows that a mere
isomorphism condition on a derivative is insufficient for a map to be a local Cp-isomorphism (as
Di(0) : R→ R is an isomorphism, even the identity, yet i is not a local isomorphism at the index-1
point 0 ∈ [0, 1)). At the very least, if f : U → U ′ is a Cp-map between open sets in sectors Σ ⊆ V
and Σ′ ⊆ V ′, and x ∈ U is a point of positive index in Σ, then for an inverse function theorem
we see that in addition to requiring Df(x) : V → V ′ to be an isomorphism we have to impose the
(necessary) assumption that f(x) has positive index (in Σ′). But even this is not enough.
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For example, if V = V ′ = R2 and Σ = Σ′ are the sectors given by the upper half-plane, then
for U = U ′ = Σ′ the map f(u, v) = (u, v + u2) is a C∞-map preserving the origin but sending all
other index-1 points (u, 0) to index-0 points in Σ′. There is a local C∞-inverse at the origin when
working with open sets in R2, but not when working with open sets in the closed upper half-spaces
Σ and Σ′. The derivative map Df(0, 0) is an isomorphism that even preserves the tangent line
along the loci of index-1 points, so a derivative condition at a point cannot ensure that the map
locally respects the loci of positive-index points.

The topological boundaries ∂Σ and ∂Σ′ in V and V ′ are also the loci of positive-index points, so

we shall use the suggestive notation ∂U
def
= U ∩ ∂Σ and ∂U ′

def
= U ′ ∩ ∂Σ to denote the sets U − U0

and U ′ − U ′0 of points with positive index; these are generally not the topological boundaries of
U or U ′ (in either the sectors or the ambient vector spaces)! We can summarize the preceding
paragraph by saying that the topological condition f(∂U) ⊆ ∂U ′ should be assumed if we wish to
state an inverse function theorem at arbitrary points of U ; of course, if U is open in V then ∂U (in
the sense just defined!) is empty and so there is no topological condition being imposed.

Theorem 5.1 (Inverse function theorem with corners). Let f : U → U ′ be a Cp map between open
domains U ⊆ Σ and U ′ ⊆ Σ′ in sectors in nonzero finite-dimensional vector spaces V and V ′, with
1 ≤ p ≤ ∞. Let ∂U and ∂U ′ denote the sets U − U0 = U ∩ ∂Σ and U ′ − U ′0 = U ′ ∩ ∂Σ′ of points
with positive index. Assume f(∂U) ⊆ ∂U ′.

For any x0 ∈ U , if Df(x0) : V → V ′ is an isomorphism then f induces a Cp-isomorphism
between open neighborhoods of x0 in U and f(x0) in U ′. In particular, for x near x0 in U the index
of x is the same as that of f(x).

Proof. Since Df(x0) is an isomorphism, V and V ′ have the same dimension, say n. If x0 has index
0 then we can shrink U to be open in V and hence f : U → V ′ satisfies the hypotheses of the usual
inverse function theorem at x0. In particular, f(U) is a neighborhood of f(x0) in V ′, yet f(U) ⊆ Σ′

and hence Σ′ is a neighborhood of f(x0) in V ′. This forces f(x0) to be a point of index 0 in Σ′,
and the conclusion of the usual inverse function theorem implies that f is a local Cp-isomorphism
between small opens around x0 and f(x0) in V and V ′ that we may suppose are contained in Σ
and Σ′. This settles the case when x0 6∈ ∂U , so we now turn to the more interesting case when
x0 ∈ ∂U . Let r > 0 be the index of x0 (so n > 0). Since our problem is local near x0 we can enlarge
Σ to be an r-sector with

Σ = {(t1, . . . , tn) ∈ Rn | t1 ≥ 0, . . . , tr ≥ 0}

in V = Rn using suitable linear coordinates to also make x0 = 0 (after a suitable translation).
Step 1. We first treat the case when x0 has index 1. We choose coordinates so that V = Rn

and x0 = 0, with Σ the upper half-space {t1 ≥ 0}. Since our problem is local near x0 and f(x0),
it is harmless to drop any of the defining inequalities for the sector Σ′ for which f(x0) is not in
the corresponding hyperplane. By hypothesis f(x0) ∈ ∂Σ′ since x0 ∈ ∂Σ, so the index r′ of f(x0)
is positive and we can suppose (by composing with a translation on V ′ and using suitable linear
coordinates) that V ′ = Rn with f(x0) = 0 and Σ′ defined by inequalities t′1 ≥ 0, . . . , t′r′ ≥ 0. Let us
check that necessarily r′ = 1. For each 1 ≤ i ≤ r′, composing f with the C∞ inclusion of U ′ ⊆ Σ′

into the closed half-space H′i = {t′i ≥ 0} ⊆ Rn gives a Cp-map fi : U → H′i such that f(x0) ∈ ∂H′i
with x0 ∈ ∂Σ. Clearly Dfi(u) : V → V ′ is equal to Df(u) for all u ∈ U , so by Theorem 3.1 (taking
H = Σ), the map Df(x0) must carry the hyperplane ∂Σ = {t1 = 0} ⊆ V into the hyperplane
∂H′i = {t′i = 0}. Hence, if r′ ≥ 2 (so n ≥ 2) then the linear isomorphism Df(x0) : V ' V ′ carries
the hyperplane ∂Σ into an intersection of distinct hyperplanes, an impossibility for dimension
reasons. This proves that r′ = 1. Thus, Σ′ = {t′1 ≥ 0} ⊆ Rn = V ′.
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By Whitney’s extension theorem (see §6) we can shrink U around x0 so that f extends to a

C1-map f̃ : Ũ → V ′ for an open set Ũ ⊆ V containing U . Clearly Df̃(0) : V → V ′ must coincide
with Df(0) (as a basis of V is given by tangent vectors to line segments lying in the sector Σ

on which f̃ recovers f), and so Df̃(0) is an isomorphism. Hence, we can apply the usual inverse

function theorem to deduce that f̃ is a local C1-isomorphism between open neighborhoods of the
origins in V and V ′. How does the local C1-inverse behave with respect to the closed half-spaces Σ
and Σ′? More specifically, we have to show that near f(x0), all points of Σ′ are hit by points of Σ

under f̃ (and so f̃−1 near f(x0) does restrict to a map between open neighborhoods of f(x0) and
x0 in the original sectors Σ and Σ′, and not merely between opens in the ambient vector spaces).

By Theorem 3.1, f(U ∩ ∂Σ) ⊆ ∂Σ′. Hence, the restriction f0 : U ∩ ∂Σ → ∂Σ′ of f makes sense
and is a Cp map from an open domain in ∂Σ into a vector space ∂Σ′ of the same dimension, and
Df0(x0) : ∂Σ→ ∂Σ′ is easily seen to be the restriction of the linear isomorphism Df(x0) : V ' V ′.
Thus, Df0(x0) is injective and hence an isomorphism for dimension reasons. By the usual inverse
function theorem applied to the Cp map f0, it follows that f0 near x0 is a local Cp-isomorphism

and so by shrinking U and Ũ around x0 we may arrange that

• f̃(Ũ) ⊆ V ′ is open with f̃ : Ũ → f̃(Ũ) a C1-isomorphism,
• f0(U ∩ ∂Σ) ⊆ ∂Σ′ is open with f0 : U ∩ ∂Σ→ f0(U ∩ ∂Σ) a Cp-isomorphism,

• U = Ũ ∩ Σ and Ũ U ∩ ∂Σ = Ũ ∩ ∂Σ.

In particular,

f̃(Ũ ∩ ∂Σ) = f(U ∩ ∂Σ) = f0(U ∩ ∂Σ) = f0(U) ∩ ∂Σ′ = f(U) ∩ ∂Σ′

is open in f̃(Ũ)∩∂Σ′, so by shrinking Ũ (and hence U = Ũ∩Σ) we can ensure f̃(Ũ∩∂Σ) = f̃(Ũ)∩∂Σ′.

We may also assume Ũ is an open ball centered at the origin x0. In paricular, Ũ0 def
= Ũ ∩{tn 6= 0}

has exactly two connected components and f̃ carries this over to the part of f̃(Ũ) not in ∂Σ′. Hence,

the part of f̃(Ũ) not in ∂Σ′ has exactly two connected components. Since f(U) ⊆ Σ′ = {t′1 > 0},
f̃ must therefore carry Ũ ∩ {t1 > 0} to f̃(Ũ) ∩ {t′1 > 0} and f̃−1 must do likewise in the other

direction. This shows that f(U) = f̃(U) is equal to f̃(Ũ)∩Σ′, so f(U) is open in Σ′ and the C1-map

f̃−1 carries f(U) back to U .
To summarize, we have constructed a local C1-inverse to f as maps between open neighborhoods

of x0 and f(x0) in the respective sectors Σ and Σ′. Since f is actually a Cp-map (with 1 ≤ p ≤ ∞),
we need to show that its local C1-inverse is also Cp. This is proved by induction on p exactly as in
the proof of the usual inverse function theorem (using the Chain Rule to express the derivative of
the local C1-inverse of f in terms of the derivative of f and the inversion operation on matrices).
This concludes the case when x0 has index 1.

Step 2. Now assume x0 has index r ≥ 2 in Σ. We shall first show that f(x0) has index at least
r, and then we will reduce to the case when its index is exactly r. By working locally near x0 we
may ignore the components of Σ1 whose closures do not contain x0, and likewise for Σ′ near f(x0),
so if we let r′ ≥ 1 denote the index of f(x0) then after suitable translation and choice of linear
coordinates on V we may assume x0 = f(x0) = 0, V = V ′ = Rn,

Σ = {(t1, . . . , tn) ∈ Rn | t1 ≥ 0, . . . , tr ≥ 0}, Σ′ = {(t′1, . . . , t′n) ∈ Rn | t′1 ≥ 0, . . . , t′r′ ≥ 0},

U = {(t1, . . . , tn) ∈ Rn | 0 ≤ t1 < ε, . . . , 0 ≤ tr < ε, |tr+1| < ε, . . . , |tn| < ε}, U ′ = Σ′.

Since u 7→ detDf(u) is continuous and it is non-vanishing at x0, we can assume detDf(u) is
nonzero for all u ∈ U by shrinking the open U ⊆ Σ around x0. For every index-1 point u ∈ U1 we
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may therefore use Step 1 at u to conclude that f(u) ∈ Σ′1. Thus, f carries the locus U1 = U ∩ Σ1

of index-1 points into the locus U ′1 of index-1 points of Σ′. The connected components of U1 are

U1,i = {(t1, . . . , tn) ∈ U | ti = 0}

for 1 ≤ i ≤ r, and the connected components Σ′1,i′ of Σ′1 correspond to the hyperplane “faces”

Σ′ ∩ {t′i′ = 0} for 1 ≤ i′ ≤ r′, so by continuity the map f : U1 → Σ′1 must carry each U1,i into some
Σ′1,φ(i) for a unique 1 ≤ φ(i) ≤ r′.

Our next task is to get to the geometrically pleasing setup with φ(i) = i for all 1 ≤ i ≤ r (so in
particular r′ ≥ r). It is equivalent to check that φ is injective, as then r′ ≥ r and a renumbering of
the first r′ linear coordinates chosen on V ′ will bring us to the case φ(i) = i for 1 ≤ i ≤ r. Since
r ≥ 2, we have n ≥ 2. Let Hi = {ti = 0} ⊆ V and H ′i′ = {t′i = 0} ⊆ V ′ be the unique hyperplanes
containing U1,i and Σ′1,i′ respectively for 1 ≤ i ≤ r and 1 ≤ i′ ≤ r′. These hyperplanes are nonzero

since n ≥ 2. It is easy to see that there are line segments in U1,i ⊆ Σ through 0 whose velocity
vectors at 0 give a basis of Hi. Hence, the linear isomorphism Df(0) : V → V ′ must carry Hi into
H ′φ(i), and so for dimension reasons Df(0) carries Hi isomorphically onto H ′φ(i). Since Df(0) is an

isomorphism and Hi1 6= Hi2 in V for i1 6= i2, this forces φ(i1) 6= φ(i2) for i1 6= i2, as desired. This
gives the desired injectivity of φ (and in particular shows r′ ≥ r).

Step 3. Now we have (after the relabelling of coordinates as indicated above) f(U1,i) ⊆ U ′1,i for

1 ≤ i ≤ r, so f carries the closure of U1,i in U over into the closure of U ′1,i in Σ′ (or equivalently,

in V ′). Let Σ′≤r be the r-sector {t′1 ≥ 0, . . . , t′r ≥ 0} in Rn that contains Σ′, so we may view f as a

Cp-map f≤r : U → Σ′≤r without losing the hypotheses on f . Suppose that can settle the problem

for f≤r. This forces f(U) = f≤r(U) to be a neighborhood of 0 in Σ′≤r, yet it is contained in the

r′-sector Σ′ and so the subset Σ′ ⊆ Σ′≤r would have to be a neighborhood of 0 in Σ′≤r. This is

obviously impossible if r′ > r, and so would force r′ = r, Σ′ = Σ′≤r, and f = f≤r, thereby giving

the desired result for f . We may therefore replace Σ′ and f with Σ′≤r and f≤r to get to the case

when the index r′ of f(x0) is also equal to r.
By Whitney’s extension theorem (see §6), we can shrink U so that f extends to a V ′-valued

C1-map f̃ on an open neighborhood of 0 ∈ V . Clearly Df̃(0) : V → V ′ must coincide with Df(0)
(since a basis of V is given by tangent vectors to line segments lying in the sector Σ on which

f̃ recovers f), and so Df̃(0) is an isomorphism. Hence, we can apply the usual inverse function

theorem to deduce that f̃ is a local C1-isomorphism between open neighborhoods of the origins
in V and V ′. How does this local C1-inverse behave with respect to the r-sectors Σ and Σ′? In
Step 1 we encountered the same sort of problem, and there it was solved (for index-1 points) by
connectivity considerations.

We have arranged above that φ(i) = i for 1 ≤ i ≤ r. An open box centered at 0 meets
V − (H1∪· · ·∪Hr) in an open set whose connected components are given by the evident 2r systems
of strict inequalities (ti < 0 or ti > 0 for each 1 ≤ i ≤ r), so it follows from topological considerations

with connectivity that the local inverse to f̃ must carry Σ′ near 0 back into Σ near 0 (make sure
you understand this step; draw pictures for r = 2 and n = 3, and generalize the connectivity trick
used in the case of index-1 points). Hence, we get a local C1-inverse to f as maps between open
neighborhoods of the respective origins in the sectors Σ and Σ′. Exactly as in the case of index-1
points, it follows formally that the C1-inverse must be a Cp map. �

Corollary 5.2 (Implicit function theorem with corners). Let V , V ′, and V ′′ be finite-dimensional
vector spaces and let Σ ⊆ V , Σ′ ⊆ V ′, and Σ′′ ⊆ V ′′ be sectors, so Σ×Σ′ ⊆ V ×V ′ is a sector. Let
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U ⊆ Σ and U ′ ⊆ Σ′ be open subsets and let f : U ×U ′ → Σ′′ be a Cp map with 1 ≤ p ≤ ∞. Assume
that f(U × ∂U ′) ⊆ ∂Σ′′, where ∂U ′ and ∂Σ′′ denote the singular loci of points with positive index.

Let (a, a′) ∈ U ×U ′ be a point and let a′′ = f(a, a′). If the map Df(a, a′) : V ×V ′ → V ′′ induces
an isomorphism from V ′ onto V ′′, then for sufficiently small connected open sets U0 ⊆ U around
a there exists a unique continuous map g : U0 → U ′ such that g(a) = a′ and f(x, g(x)) = a′′, and
moreover g is Cp.

Proof. Since the inverse function theorem has been proved in the Cp case with corners, the proof
of the implicit function theorem (via the inverse function theorem) as in Math 296 carries over
verbatim by simply replacing the role of the old inverse function theorem with its refinement that
allows for corners. The main point is to check that the boundary condition in the inverse function
theorem with corners is satisfied in the context where it is applied to prove the implicit function
theorem. The method of the proof is to build an auxiliary map Φ : U × U ′ → U × Σ′′ over the
identity map on U , and it has to be checked that Φ carries ∂(U × U ′) into ∂(U × Σ′′). Since

∂(Σ× Σ′) = (∂Σ× Σ′) ∪ (Σ× ∂Σ′)

inside of V × V ′, we have ∂(U × U ′) = (∂U × U ′) ∪ (U × ∂U ′). Likewise,

∂(U × Σ′′) = (∂U × Σ′′) ∪ (U × ∂Σ′′).

Since Φ lies over the identity map on U , it certainly carries ∂U × U ′ into ∂U × Σ′′. Hence, the
only non-trivial boundary condition is that Φ carries U × ∂U ′ into U × ∂Σ′′, and this really says
that the map U × U ′ → Σ′′ induced by the composite of Φ with the projection p2 : U × Σ′′ → Σ′′

carries U × ∂U ′ into ∂Σ′′. But the definition of Φ is rigged so that p2 ◦ Φ = f , so our assumption
f(U × ∂U ′) ⊆ ∂Σ′′ is exactly what we need to verify this hypothesis for the application of the
inverse function theorem with corners. �

6. Whitney’s extension theorem

This long section is devoted to giving an “elementary” proof of the following special case of a
general theorem of Whitney:

Theorem 6.1 (Whitney). Let V and V ′ be finite-dimensional nonzero vector spaces over R and
let Σ ⊆ V be a sector. Let U ⊆ Σ be an open subset and x0 ∈ U a point. Fix 0 ≤ p ≤ ∞.

Any Cp map f : U → V ′ locally extends to a Cp map on an open neighborhood of x0 in V . That

is, there exists an open set Ũ ⊆ V around x0 and a Cp-map f̃ : Ũ → V ′ such that f̃ |
U∩Ũ = f .

Whitney focused on the case 1 ≤ p ≤ ∞ (as the case p = 0 is really a topological problem that
was solved in vast generality by Urysohn), and he proved a lot more: he allowed U to be a rather
more general kind of locally closed set in Rn; for us, the restriction to open sets in sectors eliminates
the serious geometric complications in the general case. Whitney also proved a global result that

avoided having to shrink U (in our notation, this corresponds to finding Ũ containing U as a closed
subset), but this global result can be deduced from the local one by a “standard” argument using
partitions of unity. For applications in the proofs of the inverse and implicit function theorems
with corners, the local C1 case for open sets in sectors will suffice.

We refer the reader to Appendix A in the book “Transversal mappings and flows” for an expo-
sition of the general case. This appendix gives a proof that is a bit more efficient than the one
in Whitney’s pioneering original paper, but unfortunately it has some annoying typos. It assumes
fluency with Taylor’s theorem in terms of multilinear higher derivative maps, and is written in the
language of calculus on Banach spaces (but such extra generality can be ignored without impacting
the argument). Strictly speaking, Whitney’s theorem as it is traditionally stated (e.g., in the book
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“Transversal mappings and flows”) is for a class of maps that looks different from the class of Cp

maps, but the uniformity of the error estimate in the higher-dimensional Taylor formula ensures
that (for p ≥ 1) Cp maps on sectors in our sense do satisfy the hypotheses of Whitney’s theorem
in its traditional formulation. Whitney’s 1934 proof is concrete and explicit, but looks like very
tough reading.

Proof. We will have to use two entirely different methods: one method (based on the technique of
averaged reflections) will apply to the Cp case for finite p and a second (entirely different) method
will have to be used in the C∞ case; neither method is applicable in the other case.

Let r be the index of x0 in Σ. Since the problem is local near x0, upon (harmlessly) making an
additive translation to put x0 at the origin and shrinking U around x0, we may choose suitable
linear coordinates so that we can suppose V = Rn, x0 = 0, Σ = [0,∞)r × Rn−r, and U =
[0, 1)r × (−1, 1)n−r. Our problem is local at the origin, so by multiplying f by the restriction to
Σ of a C∞ function on Rn that equals 1 on [−1/2, 1/2]n and is compactly supported inside of
(−1, 1)n, we may assume that f extends to all of Σ. Hence, we can assume U = Σ.

We first treat the Cp case for 0 ≤ p <∞. (Keep in mind that the C1 case is all that is required
for the Cs versions of the inverse and implicit function theorems with corners for any 1 ≤ s ≤ ∞.)
In this case we will extend f to a Cp mapping from Rn to V ′. The case r = 0 is trivial, so we
assume 1 ≤ r ≤ n. We let x1, . . . , xn be the standard coordinate functions on Rn. Pick any number
p′ ≥ p, and let c0, . . . , cp′ ∈ R be numbers satisfying

∑
cj = 1, to be chosen more precisely later;

we allow the generality p′ ≥ p (rather than p′ = p) so as to not upset a later inductive step. Let

b0, . . . , bp′ > 0 be pairwise distinct positive numbers (such as bj = j + 1). Consider the function f̃
on Σ′ = R× [0,∞)r−1 ×Rn−r defined by

f̃(x1, . . . , xn) =

{
f(x1, . . . , xn), x1 ≥ 0∑p′

j=0 cjf(−bjx1, x2, . . . , xn), x1 < 0.

Roughly speaking, f̃ is defined at any point ξ = (a1, . . . , an) on the side of the hyperplane x1 = 0
opposite Σ by “averaging” (with weighted coefficients cj adding to 1) the values of f at the points
(−bja1, a2, . . . , an) that lie on the other side of the wall and on the unique line passing through ξ

and perpendicular to the wall. For example, if p′ = p = 0 then f̃ literally is the reflection of f
through the wall x1 = 0. Note also that because

∑
cj = 1, at points ξ ∈ Σ′ ∩ {x1 = 0} the formula

in the second case of the definition of f̃ returns the value f(ξ) when it is evaluated at ξ. Hence, we

may also take this second case as defining f̃ on the region Σ′∩{x1 ≤ 0}. We seek conditions on the

cj ’s so that f̃ is a Cp map on the sector Σ′ = R× [0, 1)r−1×Rn−r that has only r−1 “faces”. (This
well-chosen averaging of values at reflected points is called the method of Lions reflections, named
after the famous French mathematician J-L. Lions, father of 1994 Fields Medalist P-L. Lions, but

probably it is due to earlier mathematicians.) If we arrange for f̃ to be Cp for suitable cj ’s, then
induction on r will complete the argument.

Step 1. Away from Σ′ ∩ {x1 = 0} we claim that without any conditions on the cj ’s the map f̃

is Cp, and with just the condition
∑
cj = 1 we claim that f̃ is continuous on Σ′. Clearly f̃ = f

on the set Σ′ ∩ {x1 > 0} = intΣ′(Σ), so it is Cp there since f is Cp on Σ, and on the open subset

Σ′ ∩ {x1 < 0} in Σ′ the map f̃ is a finite sum of Cp maps to V ′. More precisely, the maps in the
sum are each a composite of three steps: the C∞ reflection (x1, . . . , xn) 7→ (−x1, x2, . . . , xn) that
carries Σ′ ∩ {x1 < 0} over into the set Σ′ ∩ {x1 > 0} that lies on the interior of Σ relative to Σ′,
a positive scaling (some bj) on the first coordinate, and the Cp map f on Σ. Hence, to verify the
Cp property we may focus our attention at points in Σ′ ∩ {x1 = 0} (but we need to keep track of
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what is happening on opens in Σ′ around these points in order to check existence and continuity
for various partial derivatives).

Fix a point ξ = (0, a2, . . . , an) ∈ Σ′ ∩ {x1 = 0}. We first show that f̃ is continuous at ξ precisely
because of the condition

∑
cj = 1. To see this, consider the sequential criterion for continuity. Let

{ξm} be a sequence in Σ′ converging to ξ, so we need f̃(ξm) → f(ξ). The part of the sequence

in Σ = Σ′ ∩ {x1 ≥ 0} offers no difficulties, as f̃ |Σ = f and we assumed f to be continuous on Σ.
Hence, by breaking up the sequence into two subsequences, the points in Σ and the points not in
Σ, we may restrict our attention to the second case and so we can assume x1(ξm) < 0 for all m. In

this case, the definition of f̃ via reflection through {x1 = 0} lets us restate the continuity problem
as follows: we have a sequence of points ξm = (a1,m, . . . , an,m) (m ≥ 1) in the original sector Σ
converging to a point ξ = (0, a2, . . . , an), and we want

p′∑
j=0

cjf(bja1,m, a2,m, . . . , an,m)→ f(0, a2, . . . , an) = f(ξ)

in V ′ as m→∞. But this convergence is happening inside of the sector Σ on which f is continuous,
and since ξ has vanishing first coordinate it follows that for all 0 ≤ j ≤ p′ we have

(bja1,m, a2,m, . . . , an,m)→ (0, a2, . . . , an) = ξ

as m→∞. Thus, f(bja1,m, a2,m, . . . , an,m)→ f(ξ), and hence the finite sums in question converge

to
∑p′

j=0 cjf(ξ) = f(ξ) since
∑p′

j=0 cj = 1. This establishes the continuity of f̃ on all of Σ′.

Step 2. So far we have not had to impose any conditions on the cj ’s beyond
∑
cj = 1, but we

claim that the system of p+ 1 inhomogeneous linear equations in the cj ’s,

(6.1)

p′∑
j=0

(−bj)icj = 1

for 0 ≤ i ≤ p, is sufficient to ensure that f̃ is Cp (and it fact it is also necessary if we consider
varying f , but we don’t care about necessity here). Note that the case i = 0 is the condition∑
cj = 1, and that such a system of linear equations in the cj ’s can always be solved because its

(p + 1) × p′ matrix of coefficients has independent rows (and thus column rank p + 1) due to the
fact that it is a submatrix of the van der Monde matrix ((−bj)i)0≤i,j≤p′ that is invertible (the −bj ’s
are pairwise distinct).

These linear conditions on the cj ’s are “universal” in the sense that they have nothing at all to do
with the map f : Σ→ V ; this will be crucial for our proof that the conditions in (6.1) are sufficient

to imply that f̃ is a Cp map. To prove the sufficiency of these linear conditions on the cj ’s, we shall
induct on p ≤ p′ with p′ and b0, . . . , bp′ considered to be fixed and f allowed to vary over all Cp

mappings from Σ to V ′. (Put another way, we could have fixed p′ ≥ 0 at the beginning of the proof
and have aimed to prove the theorem for all p ≤ p′ by induction on p using fixed distinct positive
b0, . . . , bp′ and averaging at p′ + 1 reflected points.) The case p = 0 has already been settled for all
f , so we may now assume p > 0 (so p′ ≥ 1), and we may assume that sufficiency is already known
for all Cp−1 maps from Σ to V ′. (Note that p− 1 ≤ p′.)

For 2 ≤ i ≤ n, the formation of ∂xi commutes with linear operations in x1 (and in particular its

computation is done with x1 held fixed), so it is clear that ∂xi f̃ : Σ′ → V ′ exists and is related to
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∂xif exactly as f̃ is related to f , namely

∂xi f̃(x1, . . . , xn) =

{
∂xif(x1, . . . , xn), x1 ≥ 0∑p′

j=0 cj∂xif(−bjx1, x2, . . . , xn), x1 < 0.

Since the maps ∂xif : Σ → V ′ are of class Cp−1, by the inductive hypothesis it follows that for

2 ≤ i ≤ n each ∂xi f̃ : Σ′ → V ′ is a mapping of class Cp−1. To complete the argument, we have to

analyze the existence of ∂x1 f̃ : Σ′ → V ′ and whether or not it is a mapping of class Cp−1. (Once

this is verified then we will have proved that all first-order partials of f̃ : Σ′ → V ′ exist and are of

class Cp−1, so therefore f̃ is of class Cp, as desired.)

We shall prove that ∂x1 f̃ does exist at all points of Σ′ and that it is related to the Cp−1 mapping

∂x1f : Σ→ V ′ as f̃ is related to the Cp mapping f , with the same (pairwise distinct and positive)
bj ’s but with the modification that p is replaced with p − 1 and cj is replaced with −bjcj (where∑

j −(bjcj) = 1 by (6.1)). That is, we claim that at all points (a1, . . . , an) ∈ Σ′,

∂x1 f̃(a1, . . . , an) =

{
∂x1f(a1, . . . , an), a1 ≥ 0∑p′

j=0(−bjcj)∂x1f(−bja1, a2, . . . , an), a1 < 0.

Since (−b0c0, . . . ,−bp′cp′) does satisfy the system of p inhomogeneous linear conditions

p−1∑
j=0

(−bj)iXj = 1

in p unknowns for 0 ≤ i ≤ p − 1, the inductive hypothesis (now applied with the Cp−1 mapping

∂x1f !) would thereby ensure that ∂x1 f̃ is also a map of class Cp−1, as desired. The proposed formula

for ∂x1 f̃ (including its existence) is obvious on the open subsets Σ′ ∩ {x1 > 0} and Σ′ ∩ {x1 < 0}
in Σ′. Thus, once again the only real problem is the case a1 = 0. Since the definition of ∂x1 for a
V ′-valued mapping on Σ′ = R× [0,∞)r−1 ×Rn−r only depends on the restriction of the function
to lines where x2, . . . , xn are held fixed, and the existence assertion and the proposed formula for

∂x1 f̃ likewise only depend on the restriction of f̃ to such lines. Our problem is now reduced to one
for the Cp maps from [0,∞) to V ′ given by x 7→ f(x, a2, . . . , an).

Step 3. For p ≥ 1 consider a Cp mapping f : [0,∞)→ V ′ and define f̃ : R→ V ′ by

f̃(x) =

{
f(x), x ≥ 0∑p′

j=0 cjf(−bjx), x < 0,

with p′ ≥ 1. Assume
∑p′

j=0 cj(−bj)i = 1 for 0 ≤ i ≤ p. We claim that f̃ is differentiable on R and

f̃ ′(x) =

{
f ′(x), x ≥ 0∑p′

j=0(−bjcj)f ′(−bjx), x < 0.

This will certainly complete our analysis of ∂x1 f̃ in the multivariable setup on Σ′ above. By choosing

a basis for V ′, we get component functions (f1, . . . , fN ) for f and (f̃1, . . . , f̃N ) for f̃ , and each f̃j is

related to fj exactly as f̃ is related to f (except that f̃j and fj take values in R rather than in V ′).
The problem of differentiability and computing its value at a point are componentwise problems,

and the proposed formula for the derivative of f̃ in terms of f ′ is also well-behaved with respect to
passage to component functions. Hence, we may now suppose V ′ = R, thereby putting ourselves
in the usual setting of one-variable calculus.
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The situation at x 6= 0 is clear, and so we just have to show that f̃ ′(0) exists and is given by
f ′(0). In one-variable calculus, we learned that if an R-valued function on an open interval is
differentiable away from one point and its derivatives away from that point have a limiting value
L at the point, then the function is necessarily differentiable at the point with derivative equal to
L (see Theorem 7 in Chapter 11 of Spivak’s Calculus). Thus, our problem is to prove that the

established formulas for f̃ ′(x) for x > 0 and x < 0 have a common limiting value f ′(0) as x → 0.
That is, we want the limits

lim
x→0+

f ′(x), lim
x→0−

p′∑
j=0

(−bjcj)f ′(−bjx)

to exist and equal f ′(0). Since f is a C1 function on [0,∞), the first limit exists and equals f ′(0).
Thus, the problem is to prove that as x→ 0+, we have

p′∑
j=0

(−bjcj)f ′(bjx)→ f ′(0).

Since
∑p′

j=0−bjcj = 1, it suffices to show f ′(bjx)→ f ′(0) for each 0 ≤ j ≤ p′. But this latter limit

again follows from the fact that f ′ is continuous on [0,∞). This completes the induction on p ≤ p′
(for an arbitrary but fixed p′), and so settles the case of Cp mappings for 0 ≤ p ≤ ∞.

Step 4. Now we turn to the C∞ case. The above method does not work here, as the system of
conditions on the bj ’s and cj ’s would be an infinite system of infinite series identities, and difficult
convergence problems arise (e.g., the signs of the cj ’s cannot be controlled). However, the C∞

case offers a tool not available in the Cp case for finite p: we can try to use the higher partials
of f in the construction. This is forbidden in the Cp case for finite p because in such cases the
higher derivatives of f generally have lower order of differentiability that f and thus the use of such
derivatives ruins any chance of making extended maps that have the same order of differentiability
as f . Our method will be a “parametric” generalization of the classical 1-variable theorem of E.
Borel that constructed h ∈ C∞(R) with any pre-specified Taylor coefficients at the origin. (The
“parametric” aspect for us is the intervention of x2, . . . , xn.)

We have Σ = [0,∞)r×Rn−r and a C∞ mapping f : Σ→ V ′ with 0 ≤ r ≤ n. We want to extend
f to a C∞ mapping B → V ′ with B an open set around the origin in Rn. By multiplying f against
(the restriction to Σ of) a C∞ function on Rn that is supported near the origin and equal to 1
near the origin, we may assume f is compactly supported. In this case, we shall make a compactly
supported C∞ extension of f to all of Rn. The case r = 0 is trivial, so we may assume 1 ≤ r ≤ n.

Let Σ′ = R× [0,∞)r−1×Rn−r. We will extend f to a compactly supported C∞ map f̃ : Σ′ → V ′.
Thus, an induction on r would then complete the proof. Our problem is now of the same shape as
in the Cp case for finite p, except that we must make sure our output has compact support (as the
construction on Σ′ will use the compactness of the support of f on Σ, so the induction on r won’t
work unless this property is preserved at each step).

Let ϕ ∈ C∞(R) satisfy ϕ(t) = 1 for |t| ≤ 1/2 and ϕ(t) = 0 for |t| ≥ 1, so the higher derivatives

ϕ(j) vanish on [−1/2, 1/2] for all j > 0. For j ≥ 0, define cj : Σ′∩{x1 = 0} = [0,∞)r−1×Rn−r → V ′

by

cj(ξ) =
(∂jx1f)(ξ)

j!
,

so cj is a compactly-supported C∞ mapping since f is compactly supported and C∞ on Σ =

[0,∞)r × Rn−r; we shall write cj as a function of x2, . . . , xn. Define f̃j : Σ′ → V ′ as follows:
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f̃0(x1, . . . , xn) = c0(x2, . . . , xn) = f(0, x2, . . . , xn) and for j > 0

(6.2) f̃j(x1, . . . , xn) = ϕ(Ajx1)xj1cj(x2, . . . , xn)

with constants Aj ≥ j to be determined. Note that f̃j is visibly compactly supported and C∞

on Σ′ for all j ≥ 0. More specifically, all f̃j ’s are supported in a common compact set, such as
[−1, 1] ×K with K equal to where Σ′ ∩ {x1 = 0} = Σ ∩ {x1 = 0} meets a large hypercube in Σ
whose interior in Σ contains the compact support of f .

Lemma 6.2. Fix a norm || · || on V ′. For j ≥ 1 there exists Aj ≥ j such that ||∂ix1
f̃j(σ

′)|| ≤ 1/2j

for all σ′ ∈ Σ′ and 0 ≤ i ≤ j − 1. Explicitly, it suffices to take

Aj ≥ max(j, θj(1 + sup
ξ∈Σ′∩{x1=0}

||∂jx1
f(ξ)||)),

with θj = 1 + max0≤k≤j−1 supR |ϕ(k)| a universal constant depending only on j and ϕ but not on f
(nor on n or r).

Proof. Fix j ≥ 1. For 0 ≤ i ≤ j − 1, the Leibnitz rule for higher derivatives of products gives

∂ix1
f̃j =

(
i∑

k=0

Cj,k,iA
k
jϕ

(k)(Ajx1)x
j−(i−k)
1

)
· cj(x2, . . . , xn)

with Cj,k,i =
(
i
k

)
·
∏i−k−1
α=0 (j − α) > 0 a universal constant arising from factorials (if i− k = 0 then

Cj,k,i = 1). Let

Cj = max
0≤k≤i≤j−1

Cj,k,i

(this is a universal constant depending only on j), and let Mj = Mj(f) ≥ 0 be the supremum of
the compactly supported and continuous function ξ 7→ ||cj(ξ)|| on Σ′ ∩ {x1 = 0}. Since the formula

for ∂ix1
f̃ has a sum of i+ 1 terms and i+ 1 ≤ j, it suffices to find Aj ≥ j such that

Akj |ϕ(k)(Ajx1)x
j−(i−k)
1 | ≤ 1

j(1 +Mj(f))Cj2j

for all x1 ∈ R and all 0 ≤ k ≤ i ≤ j− 1. Thus, it suffices to show more generally that for any ε > 0
there exists Aj = Aj(ε) ≥ j such that

Akj |ϕ(k)(Ajx1)x
j−(i−k)
1 | ≤ ε

for all x1 ∈ R and all 0 ≤ k ≤ i ≤ j − 1; taking ε = 1/(jCj2
j(1 + Mj(f))) then gives the desired

result.
Regardless of what Aj ≥ j ≥ 1 we consider, x1 7→ ϕ(k)(Ajx1) is a continuous function on R that

vanishes outside of [−1/Aj , 1/Aj ], and so we just need verify the desired inequality on [−1/Aj , 1/Aj ].

Let Bj be a positive upper bound on the compactly supported functions x1 7→ |ϕ(k)(x1)| on R for

0 ≤ k ≤ j−1, so it suffices to have AkjBj |x1|j−(i−k) ≤ ε for all |x1| ≤ 1/Aj and all 0 ≤ k ≤ i ≤ j−1.

The maximum values are attained at x1 = ±1/Aj , so the condition is Ai−jj ≤ ε/Bj for 0 ≤ i ≤ j−1.

Provided Aj ≥ j, it suffices to have 1/Aj ≤ ε/Bj . Hence, we take Aj = max(j, Bj/ε). �

We now define A0 = 0, so (6.2) is valid for j = 0, and for j ≥ 1 we choose

Aj = max(j, θj(1 + sup
ξ∈Σ′∩{x1=0}
i2+···+in≤j

||∂jx1
∂i2x2

. . . ∂inxnf(ξ)||)) ≥ max(j, θj · sup
ξ∈Σ′∩{x1=0}

||∂jx1
f(ξ)||).
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By Lemma 6.2 with i = 0, for j ≥ 1 we have ||f̃j(σ′)|| ≤ 1/2j for all σ′ ∈ Σ′. Thus, f̃ =
∑

j≥0 f̃j

is a uniformly convergent sum of continuous mappings from Σ′ to V ′, and hence f̃ is a continuous
mapping from Σ′ to V ′. Since Aj →∞, near any particular point in Σ′∩{x1 6= 0} the sum defining

f̃ is a finite sum, so f̃ is certainly C∞ near there and its iterated partials may be computed as

the sum of the corresponding partials of the f̃j ’s. Since the f̃j ’s share a common compact support,

clearly f̃ has compact support.

Step 5. We claim that f̃ is a C∞ map on Σ′ and that at each point of Σ′∩{x1 = 0} = Σ∩{x1 = 0}
its iterated partials coincide with those of f : Σ→ V ′. Granting this, the C∞ mappings

f̃ : Σ′ ∩ {x1 ≤ 0} → V ′, f : Σ′ ∩ {x1 ≥ 0} → V ′

on “adjacent” r-sectors in Rn have identical iterated partials at all points of Σ′ ∩ {x1 = 0}. Thus,

the map Σ′ → V ′ defined by f for x1 ≥ 0 and f̃ for x1 ≤ 0 is C∞, and so it would thereby solve
our problem, due to:

Lemma 6.3. Let V be a finite-dimensional R-vector space and let `1, . . . , `s be linearly independent
in V ∨ with s ≥ 1. Pick c1, . . . , cs ∈ R and let

Σ+ = {`1 ≥ c1, `2 ≥ c2, . . . , `s ≥ cs}, Σ−{`1 ≤ c1, `2 ≥ c2, . . . , `s ≥ cs}
be s-sectors in V . Let f± : Σ± → V ′ be Cm mappings to a finite-dimensional vector space, with
0 ≤ m ≤ ∞. If f+ and f− agree on the “common face” Σ0 = Σ+ ∩ Σ− and Djf+(x) = Djf−(x)
as multilinear mappings from V j to V ′ for all 1 ≤ j ≤ m (meaning 1 ≤ j <∞ if m =∞) then on
the (s− 1)-sector Σ = Σ+ ∪ Σ− = {`2 ≥ c2, . . . , `s ≥ cs} the map f : Σ→ V ′ defined by f± on Σ±
is a Cm mapping.

In terms of a linear coordinate system on V including the `j ’s, the equality of total derivative
mappings of orders ≤ m is the same as the condition of all equaity for iterated partials of orders
≤ m. We have essentially already proved this lemma in our proof of Whitney’s theorem for Cp

mappings with finite p, but we give the details for the convenience of the reader.

Proof. By making a linear translation and choosing a linear coordinate system on V including the
`j ’s, we reduce ourselves to the following problem on V = Rn with 1 ≤ s ≤ n. Let

Σ = {x2 ≥ 0, . . . , xs ≥ 0}
(so Σ = Rn if s = 1), and let Σ± = Σ ∩ {±x1 ≥ 0}. We are given Cm mappings f± : Σ± → V ′

whose partials up to order m coincide on Σ ∩ {x1 = 0}. (In particular, in order 0 this says f+ and
f− coincide on Σ ∩ {x1 = 0}.) We want to prove that the mapping f : Σ → V ′ defined by f± on
Σ± is Cm. It certainly suffices to treat the case 0 ≤ m < ∞, and so we may induct on m. The
only difficulty is at points on Σ∩ {x1 = 0}, as all other points on Σ are in the interior of either Σ+

or Σ− with respect to Σ. The case m = 0 is obvious via the sequential criterion for continuity, and
so we can assume m > 0 and that the result is known in the case of Cm−1 mappings.

It suffices to prove that the first-order partials of f exist at all points of Σ and are of class Cm−1

(as this certainly implies f is of class Cm). For each 1 ≤ i ≤ n the partial derivative ∂xif± on Σ± is
of class Cm−1, and by hypothesis ∂xif+ and ∂xif− agree on Σ∩{x1 = 0}. Hence, by induction these
“glue” to define a Cm−1 mapping fi : Σ→ V ′. We just have to prove that ∂xif exists on Σ and is
equal to fi. At points not in Σ ∩ {x1 = 0} this is clear, so choose ξ ∈ Σ ∩ {x1 = 0}. For 2 ≤ i ≤ n,
the existence and evaluation of ∂xif(ξ) only depends on the restriction of f to the hyperplane slice
Σ∩{x1 = 0} (in the sense that it may be computed in terms of this restriction alone) because such
a partial is computed with all variables except for the ith one fixed. This restriction of f agrees
with the restriction of the mapping f± that is Cm on Σ±, and so this restriction of f is certainly
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also Cm on Σ ∩ {x1 = 0} (with m ≥ 1). Hence, for 2 ≤ i ≤ n the partial ∂xif(ξ) indeed exists and
is equal to ∂xif±(ξ) = fi(ξ), as desired.

Finally, we consider the situation for ∂x1f(ξ). Being a problem with an x1-partial at a point
ξ = (0, a2, . . . , an), we may restrict ourselves to the line with xi = ai for 2 ≤ i ≤ n. Thus, we are
faced with a “one variable” problem:

f± : {t ∈ R | ± t ≥ 0} → V ′

is a pair of Cm mappings whose derivatives up to order m ≥ 1 agree at the origin, and we want the
“glued” function f : R→ V ′ to be differentiable at the origin with f ′(0) equal to the common value
f ′±(0) ∈ V ′. Choosing a basis of V ′ and passing to component functions brings us to a problem in
1-variable calculus: we have a function f : R → R whose restrictions to {t ≤ 0} and {t ≥ 0} are
Cm with m ≥ 1 and the restrictions

f− : (−∞, 0]→ R, f+ : [0,∞)→ R

have a common (one-sided) derivative L at the origin. We want f to be differentiable at 0 with
f ′(0) = L. Since f± is C1 on its domain, f ′±(t) → f ′±(0) = L as t → 0±. Thus, we may again
use the result from Spivak’s Calculus concerning the existence of (and value for) a derivative at
a point when a function is differentiable on a punctured open neighborhood in R with derivative
that admits a two-sided limiting value at the point. �

Step 6. Returning to our main program, it remains to analyze the evaluation and differentiability

properties of the continuous f̃ on Σ′; our problem (as explained before the preceding lemma) is to

prove that f̃ is C∞ on Σ′ and that its iterated partials at points of Σ′ ∩ {x1 = 0} = Σ ∩ {x1 = 0}
agree with those of f : Σ→ V ′. As we have seen, all of the problems are at points on Σ′∩{x1 = 0}:
to see the C∞ property at these points (considered as points in Σ′) and to check that the iterated

partials of f̃ at these points agree with those of f . Near all other points, f̃ has already been seen to

be C∞ with the series
∑

j≥0 f̃j defining f̃ locally finite and therefore amenable to iterated partial
differentiation termwise.

For any point ξ ∈ Σ′ ∩ {x1 = 0} we have

f̃(ξ) =
∑
j≥0

f̃j(ξ) = f̃0(ξ) = f(ξ)

since f̃j(0, x2, . . . , xn) = 0 for j > 0. We need to study how each of the operators ∂x1 , . . . , ∂xn
interact with the formation of f̃ from the f̃j ’s. We first study ∂x1 . By Lemma 6.2, for any i ≥ 1 the

sum
∑

j≥0 ∂
i
x1
f̃j is uniformly convergent, and so the theorem on uniform convergence of termwise

derivatives implies that the uniformly convergent sum f̃ =
∑

j≥0 f̃j is infinitely differentiable with

respect to x1, and that ∂ix1
f̃ is continuous and equal to the uniformly convergent sum

∑
j≥0 ∂

i
x1
f̃j

for all i ≥ 0. By the definition of f̃j we see that at points on Σ′ ∩ {x1 = 0} the partial ∂ix1
f̃j

vanishes for j 6= i (keep in mind that ϕ = 1 on [−1/2, 1/2], so the higher derivatives of ϕ vanish on
[−1/2, 1/2]) and it has value ∂ix1

f for j = i. Hence,

(6.3) (∂ix1
f̃)|Σ′∩{x1=0} = (∂ix1

f)|Σ∩{x1=0}

on the common domain Σ′ ∩ {x1 = 0} = Σ ∩ {x1 = 0} for all i ≥ 0.
Observe that up to now we have not required Aj to be as large as we have made it; we have only

used that it is as large as required by Lemma 6.2 (for f). The inclusion of partials of f with respect
to x2, . . . , xn in the definition of Aj will now come into play. Consider the problem of existence
and continuity for iterated partials of f with respect to x2, . . . , xn. By the theorem on termwise
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differentiability under a uniform convergence hypothesis on the sum of derivatives, in order that

∂xi f̃ exist for a fixed 1 ≤ i ≤ n it suffices for the sum
∑

j≥0 ∂xi f̃j to be uniformly convergent. For

2 ≤ i ≤ n, an inspection of the definitions of cj and f̃j shows that ∂xi f̃j is related to ∂xif exactly

as f̃j is related to f , except that we have to determine if the constants Aj are “big enough” to

ensure uniform convergence for
∑
∂xi f̃j . Provided j ≥ 1, the definition of Aj includes ∂jx1∂xif on

Σ′ ∩ {x1 = 0}. Thus, our Aj as defined above is “big enough” in the sense of Lemma 6.2 for ∂xif

in the role of f . We conclude that ∂xi f̃ exists for 2 ≤ i ≤ n and it may be computed by termwise

differentiation: it is equal to
∑

j≥0 ∂xi f̃j , with this latter sum uniformly convergent (and hence is

continuous on Σ′).
More generally, for any sequence {i1, . . . , iN} in {2, . . . , n} consider the problem of existence of

∂xiN . . . ∂xi1 f̃ and whether it can be computed by termwise on
∑
f̃j . For j ≥ N , the definition of

Aj includes

∂jx1
∂xiN . . . ∂xi1f

on Σ′∩{x1 = 0}, so by inducting on N and using Lemma 6.2 for ∂xiN . . . ∂xi1f and j ≥ N it follows

that ∂xiN . . . ∂xi1 f̃ exists and is given by termwise differentiation:

∂xiN . . . ∂xi1 f̃ =
∑
j≥0

∂xiN . . . ∂xi1 f̃j ,

with this sum uniformly convergent (strictly speaking, Lemma 6.2 applied here just gives uniform
convergence for the summation over j ≥ N , but adding in finitely many more times does not affect

uniform convergence). Thus, f̃ admits iterated partials of all orders with respect to x2, . . . , xn and

all such partials may be computed by termwise differentiation of
∑
f̃j with the resulting sums again

uniformly convergent (and hence continuous on Σ′).
More specifically, if ∂ is a composite of finitely many partial derivative operators with respect

to x2, . . . , xn, then we have proved ∂f̃ =
∑

(̃∂f)j with this sum uniformly convergent, and with

the definition of (̃∂f)j using the constants Aj that are “big enough” for ∂f in Lemma 6.2 (at least

for j ≥ 1 as large as the order N of the differential operator ∂). The upshot is that after applying

such an operator ∂, we may use our earlier study of ∂ix1
f̃ , but with ∂f replacing f , to conclude

that ∂ix1
∂f̃ exists for all i ≥ 0 and it may be computed termwise:

(6.4) ∂ix1
∂f̃ =

∑
j≥0

∂ix1
∂f̃j

with this summation uniformly convergent and hence continuous on Σ′. Beware that we have not

yet proved that f̃ admits continuous iterated partials when the x1-partials are not all clumped
“at the end”. But the terms in the sum (6.4) are insensitive to switching the order of partial
differentiation! Thus, in view of the uniformity of the convergence in (6.4), by inducting on the

order of differential operators we may now run the process in reverse to conclude that f̃ does admit
all iterated partials of all orders and that these may be computed termwise as uniformly convergent

(and hence continuous) sums. Thus, f̃ =
∑

j≥0 f̃j is indeed a C∞ mapping and its partials may be
computed termwise as uniformly convergence sums.

The ability to compute partials of f̃ =
∑
f̃j termwise now lets us work out the Taylor coefficients

of f̃ at points on Σ′∩{x1 = 0}. Since we may compute the partials in any order we please, we shall

compute ∂i1x1
. . . ∂inxn f̃ for i1, . . . , in ≥ 0. The application of ∂ = ∂i2x2

. . . ∂inxn amounts to replacing f
with ∂f in the construction (and noting that the constants Aj we have chosen are “big enough” for
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Lemma 6.2 applied to ∂f , at least if j ≥ i1 + · · ·+ in). Thus, up to renaming ∂f as f and noting

that the general computation of ∂ix1
f̃ by termwise operations on the f̃j ’s only requires constants

Aj as large as in Lemma 6.2 (at least for j sufficiently large), we can reduce our problem to that of

comparing ∂ix1
f̃ and ∂ix1

f at points ξ ∈ Σ′ ∩ {x1 = 0}. This comparison of x1-partials was verified
in general in (6.3), so we are done. �


