
Math 396. Direct sums of vector bundles

1. Overview

Let E1, . . . , En be Cp vector bundles over a Cp premanifold with corners X, 0 ≤ p ≤ ∞. We
want to define the direct sum vector bundle E1 ⊕ · · · ⊕ En to be “the vector bundle whose x-fiber
is E1(x)⊕ · · · ⊕En(x) for all x ∈ X.” To make this precise, we first give a slightly esoteric-looking
definition and then we will see it has the desired fibers. To really certify the correctness of our
construction, we will then check that it enjoys mapping properties analogous to those satisfied by
direct sums of vector spaces.

Consider the O-module direct sum ⊕Ej = E1 ⊕ · · · ⊕En whose “value” on an open set U is the
O(U)-module direct sum of the O(U)-modules Ej(U) = Ej(U) over all j. The direct sum vector
bundle E = ⊕Ej is V⊕Ej . This makes sense because ⊕Ej is locally free of finite rank. Indeed,
for each x ∈ X there exists an open Uj around x on which Ej admits a trivializing frame (i.e.,
elements s1,j , . . . , srj ,j ∈ Ej(Uj) defining a bundle isomorphism Ej |Uj ' Uj × Rrj ), and so for
the open Ux = ∩Uj around x we see that if U ′ ⊆ Ux is an open subset then the O(U ′)-module
⊕Ej(U ′) = ⊕Ej(U ′) is a free module on the basis of sij |U ′ ’s (using the O(U ′)-linear inclusion of
Ej(U ′) into E1(U ′)⊕ · · · ⊕ En(U ′) via inclusion onto the jth factor). That is, the elements

sij |U ′ ∈ Ej(U ′) ⊆ E1(U ′)⊕ · · · ⊕ En(U ′) = (E1 ⊕ · · · ⊕ En)(U ′)

for opens U ′ ⊆ Ux are an O(U ′)-module basis; since the Ux’s are an open cover of X as x varies,
this says exactly that the O-module ⊕Ej is locally free of finite rank.

Does this fancy-looking definition have the desired fibers? On fibers over x ∈ X we have VM (x) =
M (x) as R-vector spaces for any locally free O-module M with finite rank (essentially by how the
vector bundle VM → X was constructed). Thus, for all x ∈ X we have

(⊕Ej)(x) = (⊕Ej)(x) = ⊕(Ej(x)) = ⊕Ej(x),

with the second isomorphism arising from the general fact that formation of fibers of an O-module
commutes with formation of direct sums:
Lemma 1.1. Let M1, . . . ,Mn be O-modules. There is a natural isomorphism

(M1 ⊕ · · · ⊕Mn)(x) 'M1(x)⊕ · · · ⊕Mn(x)

as R-vector spaces.

Proof. For notational ease, we treat the case n = 2; the general case goes via the same procedure.
Thus, we work with two O-modules M and M ′. The key is to produce an Ox-linear isomorphism
φx : (M ⊕M ′)x 'Mx ⊕M ′

x. To make such an isomorphism, observe that for opens U around x
we have

(M ⊕M ′)(U) = M (U)⊕M ′(U)
by definition of M ⊕M ′, and so a typical germ µ ∈ (M ⊕M ′)x is represented by a pair (U ; s, s′)
with U ⊆ X an open around x and elements s ∈M (U) and s′ ∈M ′(U). These represent elements
in Mx and M ′

x respectively, and replacing (U ; s, s′) with another representative for µ gives the
same pair of elements in Mx and M ′

x. Hence, this defines a map of sets

φx : (M ⊕M ′)x →Mx ⊕M ′
x

that one checks is Ox-linear.
To see that φx is surjective, note that any element of Mx ⊕M ′

x has the form (m,m′) with m
represented by some pair (U, s) and m′ represented by some pair (U ′, s′) with opens U,U ′ around
x and elements s ∈ M (U) and s′ ∈ M ′(U). Working up to equivalence around x allows us to
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replace U and U ′ here with their open overlap U ∩ U ′, so for representatives of m and m′ we may
take them to be on the same open set around x. But in the case U = U ′ we have the element
(U ; s, s′) ∈ (M ⊕M ′)(U) whose associated germ in (M ⊕M ′)x is sent under φx to (m,m′). Hence,
φx is surjective. Injectivity is similar: if φx(µ1) = φx(µ2) then for representatives (U1; s1, s

′
1) and

(U2; s2, s
′
2) of µ1 and µ2 we have that [(U1, s1)]x = [(U2, s2)]x in Mx and [(U1, s

′
1)]x = [(U2, s

′
2)]x in

M ′
x, so s1|W = s2|W in M (W ) for some open W ⊆ U1 ∩U2 around x and s′1|W ′ = s′2|W ′ in M ′(W )

for some open W ′ ⊆ U1 ∩ U2 around x. Hence, for the open U = W ∩W ′ ⊆ U1 ∩ U2 around x we
have (s1, s

′
1)|U = (s2, s

′
2)|U in (M ⊕M ′)(U), whence the associated germs µ1 and µ2 in (M ⊕M ′)x

are equal as desired. This completes the construction of the Ox-linear isomorphism φx.
Since φx is an Ox-linear isomorphism, it carries the submodule mx · (M ⊕M ′)x in (M ⊕M ′)x

over to the submodule mx · (Mx ⊕M ′
x) = mxMx ⊕ mxM ′

x (explain the equality!) in Mx ⊕M ′
x.

Thus, it induces an isomorphism of quotients

(M ⊕M ′)(x) ' (Mx ⊕M ′
x)/(mxMx ⊕mxM

′
x) 'M (x)⊕M ′(x)

as modules over Ox/mx = R (i.e., as vector spaces over R). �

Intuitively speaking, the vector bundle ⊕Ej → X is a “gluing” of the fiberwise direct sums
⊕Ej(x) over all x ∈ X. Our aim in this handout is to show that that E behaves like a direct sum of
vector spaces. To make this precise, we first record the general properties of direct sums of vector
spaces as they are used in linear algebra:

Theorem 1.2. Let V1, . . . , Vn be finitely many vector spaces over a field F . Let V = ⊕Vj be the
direct sum, viewed as an F -vector space in the usual manner.

If Tj : Vj → V ′ are F -linear maps to an F -vector space V ′, there is a unique linear map T : V →
V ′ whose composite with the standard inclusion Vj → V is Tj; explicitly, T (v1, . . . , vn) =

∑
Tj(vj).

If Tj : V ′ → Vj are F -linear maps from an F -vector space V ′, there is a unique linear map
T ′ : V ′ → V whose composite with the standard projection V → Vj is Tj; explicitly, T ′(v′) =
(T1(v′), . . . , Tn(v′)) for all v′ ∈ V ′.

Proof. For the first claim, the map set-theoretically given by the indicated formula is the only one
that can possibly work (in view of how the inclusions ij : Vj → V are defined, and the fact that
(v1, . . . , vn) =

∑
j ij(vj)). We just have check that this map is F -linear. This follows from the

linearity of the Tj ’s and the definition of the F -vector space structure on V = ⊕Vj . For the second
claim, the definition of T ′ is again the only one that can possibly work, and we just have to check
that it is F -linear. This linearity is immediate from the assumed linearity of the Tj ’s and the
definition of the F -vector space structure on V = ⊕Vj . �

Our goal is to show that the direct sum ⊕Ej considered in the category of Cp vector bundles
over X enjoys similar mapping properties with respect to Cp vector bundles morphisms from the
Ej ’s to a Cp vector bundle, as well as from a Cp vector bundle to each of the Ej ’s.

The basic idea, which will recur over and over again in later applications of “linear algebra
operations” to vector bundles, is this: we consider vector bundles whose fibers admit a concrete
description (much as ⊕Ej has fibers identified with direct sums of fibers Ej(x)), and we show
that certain maps induce fiber maps that behave “as expected” in terms of the concrete fibral
descriptions. There are other ways to approach the problem of giving an intrinsic characterization
of operations on vector bundles, but to follow such alternative routes would necessitate a very long
digression into sheaf theory and would not be helpful for us here.
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2. Mapping properties

We treat bundle analogues of the two properties of direct sums for vector spaces as stated above.
We first need a lemma.
Lemma 2.1. Let Ej → X be Cp vector bundles over X, and let E = ⊕Ej. Choose j0. There are
unique maps Ej0 → E and E → Ej0 that, on fibers over each x ∈ X, are the usual inclusions and
projections

Ej0(x)→ E(x) = ⊕Ej(x), ⊕Ej(x) = E(x)→ Ej0(x).

Proof. We are specifying the linear maps on fibers, so the only problem is to prove that such set-
theoretic maps over X are Cp. We may work locally over X (why?), and so we can assume the
Ej ’s are all trivial. Let rj be the rank of Ej , and s1,j , . . . , srj ,j ∈ Ej(X) be sections defining a Cp

isomorphism X×Rn ' Ej as Cp vector bundles over X. We likewise view the collection of all sij ’s
as a global frame for E.

Define maps
Ej0 ' X ×Rrj0 → X × (Rr1 × · · · ×Rrn) ' E

using the matrix for the standard inclusion of Rrj0 into the j0th factor of Rr1 × · · · ×Rrn . One
checks that the resulting bundle morphism Ej0 → E has the desired effect on x-fibers for any
x ∈ X. The case of the “projection” maps E → Ej0 goes similarly. �

Let Tj : Ej → E′ be bundle morphisms over X to a Cp vector bundle π′ : E′ → X.
Theorem 2.2. There is a unique bundle morphism E → E′ over X such that on fibers over x ∈ X
it is the map ⊕Ej(x)→ E′(x) given by (v1, . . . , vn) 7→

∑
Tj(x)(vj).

In words, to map ⊕Ej to a vector bundle E′ over X, we just have to say how each Ej maps
to E′. Indeed, by Lemma 2.1 the theorem says that any bundle morphism ⊕Ej → E′ is uniquely
determined by its composite with the “bundle inclusions” Ej0 → ⊕jEj for all j0, and that conversely
any collection of bundle maps Tj0 : Ej0 → E′ for varying j0 arise in this way.

Proof. The map is specified on fibers, so the only problem is to verify that it is a Cp mapping. This
problem is local over X, so we may assume that the Ej ’s are all trivial and that E′ is trivial. Choose
trivializations for all of these, and consider E = ⊕Ej as trivialized via the combined collection of
trivializing sections for all of the Ej ’s (viewed as X-sections of E via Ej → E). Hence, Tj is
described by a matrix whose entries are Cp functions on X. Stacking these matrices next to each
other gives a big “direct sum” matrix that defines the desired map (with Cp matrix-entry functions,
so it is a Cp mapping). �

Let Tj : E′ → Ej be bundle morphisms over X from a Cp vector bundle π′ : E′ → X.
Theorem 2.3. With notation as above, there is a unique bundle morphism E′ → E over X such
that on fibers over x ∈ X it is the map

v′ 7→ (T1(x)(v′), . . . , Tm(x)(v′)) ∈ ⊕Ej(x).

In words, to map a vector bundle E′ to ⊕Ej over X is “the same” as to say how to map E′ to
each Ej . That is, a bundle morphism E′ → ⊕Ej is uniquely determined by its composite with the
“projections” ⊕Ej → Ej0 for all j0, and any collection of bundle morphisms T ′j0 : ⊕Ej → Ej0 for
varying j0 arise in this way.

Proof. As in the preceding proof, we may work locally over X so that the Ej ’s and E′ are all trivial.
The same matrix methods carries over (now stacking them on top of each other). �
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Example 2.4. Let fj : Ej → E′j be maps of Cp vector bundles over X. We want to define the direct
sum mapping

⊕fj : ⊕Ej → ⊕E′j
by the condition that on x-fibers it is the usual direct sum mapping

E1(x)⊕ · · · ⊕ En(x)→ E′1(x)⊕ · · · ⊕ E′n(x)

given by
(v1, . . . , vn) 7→ (f1|x(v1), . . . , fn|x(vn))

for all x ∈ X (with fj |x : Ej(x) → E′j(x) the map induced on x-fibers by fj). Set-theoretically
there is no problem: we have just specified the mapping on fibers. But is it a Cp mapping?

Let E = ⊕Ej and E′ = ⊕E′j , so there are natural bundle mappings

Ej0
fj→ E′j0 → E′

for all j0, and by Theorem 2.2 these “arise” from a unique bundle mapping

E = ⊕Ej → E′,

and passing to fibers the statement of Theorem 2.2 ensures that the map is exactly the direct sum
of the fiber maps fj |x : Ej(x)→ E′j(x).


