
Math 396. Linear algebra operations on vector bundles

1. Motivation

Let (X,O) be a Cp premanifold with corners, 0 ≤ p ≤ ∞. We have developed the notion of a Cp

vector bundle over X as a certain kind of Cp mapping π : E → X that is (roughly speaking) a Cp-
varying family of finite-dimensional R-vector spaces E(x) parameterized by the points x ∈ X. In
order to do interesting things with vector bundles, we wish to apply to them many of the operations
of linear algebra. For example, we want to form duals, tensor products, and extensior/symmetric
powers of vector bundles. On fibers these operations should recover the familiar ones from linear
algebra.

The case of direct sums was worked out in an earlier handout, and there we could carry out the
construction in terms of O-modules and pass back to vector bundles with the VM -construction.
Due to our wish to not make long digressions into advanced topics in abstract algebra, for more
general operations with vector bundles we need a more “direct” approach (not working exclusively
with O-modules) to make some constructions. The construction of the tensor product E1⊗· · ·⊗En

was given in class. The method use for this case is the template for what we shall do in general.

2. Tensorial operations

We want to review how the tensor product of several vector bundles is built, simultaneously
showing how the same technique applies to define good notions of symmetric and exterior powers
of a single vector bundle (such that on fibers we recover the usual tensorial constructions).

Let E1, . . . , En and E be Cp vector bundles over X. As sets, we define

E1⊗ · · · ⊗En =
∐
x∈X

(E1(x)⊗ · · · ⊗En(x)), Symn(E) =
∐
x∈X

Symn(E(x)), ∧n(E) =
∐
x∈X

∧n(E(x));

we map each set to X by sending the subset indexed by x ∈ X to the point x ∈ X. Thus, each of
these sets is equipped with a map π to X such that each fiber π−1(x) is the usual linear-algebra
tensorial operation applied to the fiber of the given bundles. The real work is to put reasonable
topologies and Cp-structures on these sets to make them Cp vector bundles over X.

Remark 2.1. One can and should ask for more: universal mapping properties analogous to what
we have in linear algebra. In §4 such properties will be given, and we note here that it is the
general viewpoint of O-modules and not vector bundles that will be most convenient to use for the
formulation and application of such universal properties.

Remark 2.2. The reader can check that the method used below applies equally well to reconstruct
the direct sum of vector bundles. In fact, it is essentially the same as the earlier construction
of the direct sum because the gluing technique used below is the same as that employed in the
VM -construction (which was applied in the earlier construction of direct sums).

We first address the topological aspect of the construction problem. We may cover X by open
subsets U over which the finitely many bundles under consideration become trivial (indeed, any x ∈
X admits an open neighborhood on which the finitely many given bundles have trivial restriction).
For a choice of such a U , fix trivializations of the given bundles. In the tensor-product case we fix
isomorphisms φi : Ei|U ' U×Vi as Cp vector bundles over U (with Vi a finite-dimensional R-vector
space), and in the other cases we fix an isomorphism φ : E|U ' U × V as Cp vector bundles over
U (with V a finite-dimensional R-vector space). Let τ = (U ;φ1, . . . , φn) in the tensor product case
and let τ = (U, φ) in the other cases; this is the “trivialization data” over U for the given bundle(s).
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For each u ∈ U , the data in τ provides linear isomorphisms of fibers φi(u) : Ei(u) ' Vi in the
tensor-product case, and linear isomorphisms φ(u) : E(u) ' V in the other cases. Hence, for the
case of tensor products we have bijections

ξU,τ : π−1(U) ' U × (V1 ⊗ · · · ⊗ Vn)

given on u-fibers by the linear tensor-product isomorphism

φ1(u)⊗ · · · ⊗ φn(u) : E1(u)⊗ · · · ⊗ En(u) ' V1 ⊗ · · · ⊗ Vn,

and in the symmetric and exterior power cases we have bijections

ξU,τ : π−1(U) → U × Symn(V ), ξU,τ : π−1(U) → U × ∧n(V )

given on u-fibers by the linear isomorphisms of symmetric and exterior powers

Symn(φ(u)) : Symn(E(u)) ' Symn(V ), ∧n(φ(u)) : ∧n(E(u)) ' ∧n(V ).

We “force” the bijection ξU,τ to be a homeomorphism in each case: let SU,τ denote the set π−1(U)
with the topology induced via ξU,τ from the topology on its target (using product topology: the
product of U and a finite-dimensional vector space). The first main problem is to show that these
topologies glue to define topologies on the sets E1 ⊗ · · · ⊗ En, Symn(E), and ∧n(E).

The method of gluing topologies reduces our task to checking two things: for any opens U,U ′ ⊆ X
and trivialization data τ, τ ′ over these respective opens (for which there are many choices once U
and U ′ have been chosen), we need

(1) the overlap SU,τ ∩SU ′,τ ′ is an open subset in each of the topological spaces SU,τ and SU ′,τ ′ ,
(2) the subspace topologies on this overlap via its inclusion into each of SU,τ and SU ′,τ ′ are the

same topology.
The overlap is the subset π−1(U)∩π−1(U ′) = π−1(U∩U ′), so the first item follows from the fact that
for any topological space Z (such as a finite-dimensional R-vector space) the subset (U ∩ U ′)× Z
in U × Z and in U ′ × Z is open in each. As for the second item, this amounts to proving that the
bijective “transition mapping”

ξU ′,τ ′ ◦ ξ−1
U,τ : ξU,τ (π−1(U ∩ U ′)) → ξU ′,τ ′(π−1(U ∩ U ′))

is a homeomorphism.
In the case of tensor products, the transition mapping is the self-map of (U ∩U ′)×(V1⊗· · ·⊗Vn)

given by
(u, t) 7→ (u, ((φ′1(u) ◦ φ1(u)−1)⊗ · · · ⊗ (φ′n(u) ◦ φn(u)−1))(t))

for u ∈ U ∩ U ′ and t ∈ V1 ⊗ · · · ⊗ Vn. In the case of symmetric powers, the transition mapping is
the self-map of (U ∩ U ′)× Symn(V ) given by

(u, t) 7→ (u, (Symn(φ′(u) ◦ φ(u)−1))(t))

for u ∈ U ∩ U ′ and t ∈ Symn(V ). In the case of exterior powers, the transition mapping is the
self-map of (U ∩ U ′)× ∧n(V ) given by

(u, t) 7→ (u, (∧n(φ′(u) ◦ φ(u)−1))(t))

for u ∈ U ∩ U ′ and t ∈ ∧n(V ).
These self-maps of a product of U ∩U ′ against a finite-dimensional vector space are better than

homeomorphisms: they are Cp isomorphisms! We can ignore the inverse map and just check the
Cp property because the argument may be applied to the inverse mapping by swapping the roles
of (U, τ) and (U ′, τ ′). Upon picking bases of the vector spaces Vi and V we get bases for the tensor
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products and symmetric/exterior powers in the usual manner, and so the problem is to prove that
the linear mappings

(φ′1(u) ◦ φ1(u)−1)⊗ · · · ⊗ (φ′n(u) ◦ φn(u)−1), Symn(φ′(u) ◦ φ(u)−1), ∧n(φ′(u) ◦ φ(u)−1)

depending on u are given (in these bases) by matrices whose matrix entries have Cp dependence
on u ∈ U ∩ U ′. The linear mappings φi(u), φ′(u), φ(u), φ′(u) are matrix-valued functions on U ∩
U ′ with matrix entries that are Cp functions on U ∩ U ′. Hence, by the “universal” algebraic
(polynomial) formulas for the inverse of a matrix and the matrix of the tensor product and of the
symmetric/exterior powers of linear mappings, we get the desired Cp property for the transition
mappings. In particular, the homeomorphism property is proved.

Having taken care of the definition of the global topology, note that the topology was rigged so
that the projection map π to X is continuous (since it is so over each U as above, with π−1(U) an
open set in the global topology we have constructed). Also, the topology was rigged to force the
set-theoretic trivialization ξU,τ over U (respecting linear structure on the fibers) to be a topological
trivialization. These U ’s cover X, so each of our constructions is a topological vector bundle over
X. Having put a topology on the total spaces, we now go through the construction a second time
and use the ξU,τ ’s to put a Cp-structure on each subset SU,τ (this is π−1(U)) using the Cp-structure
on the target of ξU,τ (this target is the product of U against a finite-dimensional vector space).

In order to “glue” these Cp structures to a global one, the only problem is to check consistency
on overlaps: is ξU ′,τ ′ ◦ ξ−1

U,τ a Cp isomorphism (over U ∩ U ′)? It was exactly this stronger property
that we verified in the considerations with the topological aspects of the problem. Not only does
this provide us with a global Cp structure, but it enhances each ξU,τ to a Cp isomorphism that
is linear on fibers, and so the local triviality criterion to be a Cp vector bundle is satisfied. This
completes the construction of Cp vector bundles

E1 ⊗ · · · ⊗ En, Symn(E), ∧n(E)

over X with the “desired” fibers (as vector spaces).

Example 2.3. Let us make the preceding constructions very concrete in the language of local frames.
First consider tensor products. Let U ⊆ X be an open over which each Ej |U admits a trivialization
via sections si,j ∈ Ej(U) (for 1 ≤ i ≤ rj). Let τ be the “trivialization data” arising from these
frames. The set-theoretic sections

si1,1 ⊗ . . . sin,n : u 7→ si1,1(u)⊗ . . . sin,n(u) ∈ E1(u)⊗ · · · ⊗ En(u) ' (E1 ⊗ · · · ⊗ En)(u)

are Cp and moreover give a trivializing frame for (E1⊗· · ·⊗En)|U . Indeed, this is the trivialization
ξU,τ in the definition of the Cp vector bundle structure on E1 ⊗ · · · ⊗ En.

Next, consider Symn(E) and ∧n(E). Let U ⊆ X be an open set such that E|U has a trivializing
frame {s1, . . . , sm}. (That is, sj ∈ E(U) and the sj(u)’s are a basis of E(u) for all u ∈ U .) We
have set-theoretic sections

si1 · · · sin : u 7→ si1(u) · · · sin(u) ∈ Symn(E(u)), si1 ∧· · ·∧sin : u 7→ si1(u)∧· · ·∧sin(u) ∈ ∧n(E(u))

for 1 ≤ i1 ≤ · · · ≤ in ≤ m in the first case and for 1 ≤ i1 < · · · < in ≤ m in the second case.
The same method as above shows that these are Cp sections that moreover give trivializations for
Symn(E) and ∧n(E) over U .

A very useful refinement of the preceding example is that we can drop the “local frame” condition:

Theorem 2.4. For any open U ⊆ X and arbitrary Cp sections v1 ∈ E1(U), . . . , vn ∈ En(U), the
set-theoretic section

v1 ⊗ · · · ⊗ vn : u 7→ v1(u)⊗ · · · ⊗ vn(u) ∈ E1(u)⊗ · · · ⊗ En(u) = (E1 ⊗ · · · ⊗ En)(u)
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of E1 ⊗ · · · ⊗ En over U is a Cp section.
Likewise, for Cp sections v1, . . . , vn ∈ E(U) the set-theoretic sections

v1 · · · vn : u 7→ v1(u) · · · vn(u) ∈ Symn(E(u)), v1 ∧ · · · ∧ vn : u 7→ v1(u) ∧ · · · ∧ vn(u) ∈ ∧n(E(u))

of Symn(E) and ∧n(E) over U are Cp sections.

Remark 2.5. In contrast with the case of tensor products of vector spaces, it is not a priori evident
whether or not every element of (E1⊗· · ·⊗En)(U) is a finite O(U)-linear combination of “elementary
tensors”

v1 ⊗ · · · ⊗ vn ∈ (E1 ⊗ · · · ⊗ En)(U)
for vj ∈ Ej(U). At least for p > 0 andX a manifold it can be proved that this is true (though we will
not use it). The proof requires some serious input (Whitney embedding theorem and Riemannian
metrics on bundles), and the complex-analytic analogue is false.

Proof. We first explain the case of tensor products. The problem is local over X, and so by
shrinking X we can assume that the Ej ’s are all trivial. Let {sij}1≤i≤rj be a trivializing frame for
Ej in Ej(X). Hence, vj =

∑
i aijsij in Ej(X) for some Cp functions aij on X (1 ≤ i ≤ rj) since

the vj ’s are Cp sections by hypothesis. By the multilinearity rules for tensor products,

v1(x)⊗ · · · ⊗ vn(x) =
∑

i1,...,in

(
n∏

m=1

aim,m(x))si1,1(x)⊗ · · · ⊗ sim,m(x)

in E1(x)⊗· · ·⊗En(x) for all x ∈ X. That is, when the set-theoretic section v1⊗· · ·⊗ vn is written
as a linear combination (with set-theoretic function coefficients) of the trivializing frame of Cp

sections si1,1 ⊗ · · · ⊗ sim,m of the tensor product bundle, the coefficient functions are the products∏n
m=1 aim,m (for 1 ≤ im ≤ rm), and these are all Cp functions on X since the aij ’s are Cp on X.

Hence, the set-theoretic section v1 ⊗ · · · ⊗ vn is a Cp section.
The case of symmetric and exterior powers goes exactly the same way, the only difference being

that the formulas for the coefficient functions will be sums of products with conditions on the im’s
and (for exterior powers) some signs, in accordance with the rules for expanding out symmetric
and wedge products. �

We can also use the above method of chasing “coefficient formulas” to prove:

Theorem 2.6. Let Tj : E′
j → Ej be Cp bundle maps over X. There is a unique Cp bundle map

(1) T1 ⊗ · · · ⊗ Tn : E′
1 ⊗ · · · ⊗ E′

n → E1 ⊗ · · · ⊗ En

over X such that on fibers over x ∈ X it is the tensor product mapping

T1|x ⊗ · · · ⊗ Tn|x : E′
1(x)⊗ · · · ⊗ E′

n(x) → E1(x)⊗ · · · ⊗ En(x).

Likewise, if T : E′ → E is a Cp bundle map over X then there are unique Cp bundle maps

Symn(T ) : Symn(E′) → Symn(E), ∧n(T ) : ∧n(E′) → ∧n(E)

given on fibers over x ∈ X by

Symn(T |x) : Symn(E′(x)) → Symn(E(x)), ∧n(T |x) : ∧n(E′(x)) → ∧n(E(x)).

Proof. We treat the case of tensor products, and the case of symmetric and exterior powers goes
in exactly the same manner (much like in the preceding proof). The problem is one of verifying
that a given set-theoretic mapping of bundles (linear on fibers, and respecting projections to X) is
a Cp mapping. This problem is local over X, so by working locally over X we may reduce to the
case when each Ej and E′

j is trivial. Choose trivializing frames for all Ej and E′
j , so the Cp bundle
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mappings Tj are described by matrices [Tj ] whose entries are Cp functions on X. Using the tensor
products of these trivializing frames to make trivializing frames of E1⊗· · ·⊗En and E′

1⊗· · ·⊗E′
n (as

in Example 2.3), the mapping under consideration between these two bundles is thereby described
in such frames via a matrix whose entries are built up by a “universal formula” as sums of products
of entries in the [Tj ]’s. (This is just the classical universal recipe for computing the matrix for a
tensor product of linear mappings between Euclidean spaces of specified dimensions.) Hence, these
entries are Cp functions on X, so the set-theoretic mapping of bundles (1) is indeed Cp. �

In the preceding development of tensor products and symmetric/exterior powers for bundles,
we have checked several aspects: the “right” fibers, the “right” local frames for the output of the
construction when given local frames for the input bundles (as in Example 2.3), and the “right”
behavior (say, on fibers) for maps between bundles (as in Theorem 2.6). There is one further
property we wish to consider: behavior with respect to bundle pullback. We first require a lemma:

Lemma 2.7. Let E,E′ ⇒ X be Cp vector bundles and assume that E′ is trivial with a trivializing
frame {s′1, . . . , s′n} for s′j ∈ E′(X). For any s1, . . . , sn ∈ E(X), there is a unique Cp bundle map
f : E′ → E such that on X-sections it carries s′j to sj for all j. If the sj’s are a trivializing frame
for E, then f is an isomorphism.

Proof. We seek to build a unique Cp vector bundle mapping f : E′ → E such that the induced
map E′(X) → E(X) carries s′j to sj . Once this is done, then in case the sj ’s are a trivializing
frame for E we conclude that f |x : E′(x) → E(x) is a linear isomorphism for all x ∈ X, so f is an
isomorphism.

To define f , recall from class that for a Cp vector bundle V → X, the set HomX(X ×Rn, V )
is in natural bijection with V (X)×n, by chasing images of the constant sections ej : x 7→ (x, ej)
of X × Rn → X (for {ej} the standard basis of Rn). Thus, there are unique Cp vector bundle
morphisms

X ×Rn α→ E′, X ×Rn β→ E

carrying ej to s′j and to sj respectively. The first of these two bundle mappings is an isomorphism
on fibers, and hence an isomorphism, so β ◦ α−1 is a Cp vector bundle map

E′ ' X ×Rn → E

that is as desired on fibers. �

Theorem 2.8. Let f : X ′ → X be a Cp mapping between Cp premanifolds with corners. Let
E1, . . . , En, E be Cp vector bundles on X. Using the linear fiber isomorphism (f∗(V ))(x′) '
V (f(x′)) for all x′ ∈ X ′ and Cp vector bundles V → X, there are unique isomorphisms

f∗(E1 ⊗ · · · ⊗ En) ' f∗(E1)⊗ · · · ⊗ f∗(En), f∗(SymnE) ' Symn(f∗E), f∗(∧nE) ' ∧n(f∗E)

as Cp vectors bundles over X ′ such that on fibers over x′ ∈ X ′ these give the usual isomorphisms

(2) (E1 ⊗ · · · ⊗ En)(f(x′)) ' E1(f(x′))⊗ · · · ⊗ En(f(x′))

and
(SymnE)(f(x′)) ' Symn(E(f(x′))), (∧nE)(f(x′)) ' ∧n(E(f(x′))).

Proof. We work out the case of tensor products and leave it to the reader to check that symmetric
and exterior powers carry over the same way. Since we are specifying the linear mapping on fibers,
the problem is one of checking that it is Cp. This is local over X (working over an open U ⊆ X
allows us to work with the open f−1(U) ⊆ X ′), so we can assume that the finitely many Ej ’s are
all trivial. Let {sij} be a trivializing frame for Ej (with 1 ≤ i ≤ rj), so Examples 3.1 and 3.2 in
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the handout on pullback bundles show that the pullback sections f∗(sij) ∈ (f∗Ej)(X ′) (with value
sij(f(x′)) in (f∗Ej)(x′) = Ej(f(x′)) for all x′ ∈ X ′) give a trivializing frame for f∗Ej . Hence,
by Example 2.3, a trivializing frame for f∗(E1) ⊗ · · · ⊗ f∗(En) is given by the “tensor products”
f∗(si1,1)⊗· · ·⊗ f∗(sin,n). Likewise, f∗(E1⊗· · ·⊗En) has a trivializing frame given by the sections

f∗(si1,1 ⊗ · · · ⊗ sin,n)

for 1 ≤ ij ≤ rj . By Lemma 2.7 we may define the Cp isomorphism

f∗(E1 ⊗ · · · ⊗ En) → f∗(E1)⊗ · · · ⊗ f∗(En)

in terms of such trivializing frames: we require that it satisfies

f∗(si1,1 ⊗ · · · ⊗ sin,n) 7→ f∗(si1,1)⊗ · · · ⊗ f∗(sin,n)

for all 1 ≤ ij ≤ rj . On fibers, this gives the desired mapping (2). �

Example 2.9. Recall that the Möbius strip of infinite height M∞ → S1 is a non-trivial line bundle.
We claim that its second tensor power M⊗2

∞ is a trivial line bundle over the circle. Briefly, the
reason is that (−1)2 = 1. The precise argument can be carried out in several ways. We will explain
it via group actions (recall that M∞ as a line bundle over the circle is the quotient of the trivial
bundle S1 ×R by the action (θ, t) 7→ (θ + π,−t) covering the 180-degree rotation on the circle).
First we explain in general how the tensorial operations interact with group actions on bundles.

Let E1, . . . , En be vector bundles over X and suppose that a group Γ has a right Cp action on
X and on the Ej ’s such that the hypotheses as in Exercise 3 of Homework 5 are satisfied for each
Ej . Let [γ]j,x : Ej(x) → Ej(x.γ) denote the fibral right action for x ∈ X. We get vector bundles
Ej = Ej/Γ → X/Γ for each j. There is also a unique right Cp action of Γ on E = E1 ⊗ · · · ⊗ En

over the action on X, given on fibers by the linear isomorphism

(3) E(x) ' E1(x)⊗ · · · ⊗ En(x) ' E1(x.γ)⊗ · · · ⊗ En(x.γ) ' E(x.γ)

with the middle isomorphism equal to [γ]1,x ⊗ · · · ⊗ [γ]n,x. To see that this really is a Cp action
on E (over the action on X), one can do an explicit calculation in local frames or argue globally
as follows. By the universal property of bundle pullback, the right action of γ ∈ Γ on Ej over the
action [γ] : x 7→ x.γ on X is “the same” as the data of a Cp bundle isomorphism φj,γ : Ej ' [γ]∗(Ej)
over (the identity on) X. Thus, by Theorem 2.6 and Theorem 2.8 we get Cp bundle isomorphisms

(4) φ1,γ ⊗ · · · ⊗ φn,γ : E1 ⊗ · · · ⊗ En ' [γ]∗(E1)⊗ · · · ⊗ [γ]∗(En) ' [γ]∗(E1 ⊗ · · · ⊗ En).

Let E = E1 ⊗ · · · ⊗ En. Using the universal property of bundle pullback, (4) gives a Cp bundle
mapping E → E over [γ] : X → X, and on fibers over x and [γ](x) = x.γ it is exactly the map
(3). The action of Γ on E is free and properly discontinuous because it covers the action of Γ on
X that is free and properly discontinuous.

Now that we have Γ acting freely and properly discontinuously on the right on the Ej ’s, as well as
on their tensor product E, covering the action on X, it is natural to inquire about the relationship
between the Cp vector bundle E/Γ over X/Γ and the tensor product bundle E1 ⊗ · · · ⊗ En over
X/Γ. Letting h : X → X/Γ be the projection to the quotient, Example 3.5 in the handout on
pullback bundles provides natural isomorphisms

E ' h∗(E/Γ), Ej ' h∗(Ej).

Hence, by Theorem 2.8 we get a map

E ' E1 ⊗ · · · ⊗ En ' h∗(E1)⊗ · · · ⊗ h∗(En) ' h∗(E1 ⊗ · · · ⊗ En)



7

of Cp vector bundles over X. By the universal property of bundle pullback, this composite map
corresponds to a Cp map of bundles

h̃ : E → E1 ⊗ · · · ⊗ En

over the projection h : X → X/Γ. By inspecting the construction of h̃, one sees that it is unaf-
fected by the Γ-action on E, and so by the universal property of quotients by free and properly
discontinuous actions the map h̃ uniquely factors through a Cp mapping

(5) E/Γ = (E1 ⊗ · · · ⊗ En)/Γ → E1 ⊗ · · · ⊗ En

over the identity on X/Γ and it is linear on fibers. The map in (5) is a Cp bundle morphism, and
in fact it is an isomorphism because for x ∈ X over x ∈ X/Γ the x-fiber map for (5) is identified
with the natural isomorphism

E(x) ' E1(x)⊗ · · · ⊗ En(x).
The isomorphism (5) expresses the precise sense in which the formation of Γ-quotients is compatible
with tensor products of bundles. (Analogues for symmetric and exterior powers are established
similarly.)

Now return to the Möbius strip with infinite height. The line bundle M∞ over the circle C is
the quotient of the trivial bundle L = S1×R → S1 by the involution (θ, t) 7→ (θ+π,−t) (covering
the involution θ 7→ θ + π on S1). This is a right action by the group Γ of order 2. Hence, by the
preceding discussion with X = S1, n = 2, and E1 = E2 = L, the bundle M⊗2

∞ → C is the quotient
of L⊗2 → S1 by the induced “tensor product” Γ-action on L⊗2 = S1 ×R⊗2. However, in R ⊗R
the elements a⊗ b and (−a)⊗ (−b) are equal ((−1)2 = 1). Thus, the Γ-action on L⊗2 = S1 ×R⊗2

is (θ, ξ) 7→ (θ+ π, ξ) for θ ∈ S1 and ξ ∈ R⊗2. The quotient M∞ is thereby identified with C ×R⊗2

as a line bundle over C, so M⊗2
∞ is trivial over C.

3. Dual and Hom bundles

We now wish to use similar methods to define a dual vector bundle E∨ and a Hom-bundle
Hom(E′, E) over X (Warning. The notation Hom(E′, E) for a certain vector bundle is not to be
confused with the set HomX(E′, E) of bundle mappings over X; in fact, this latter set will turn
out to be the set of X-sections of the bundle Hom(E′, E); see Example 3.1). Roughly speaking, E∨

should be “the” bundle over X whose x-fiber is E(x)∨ for every x ∈ X, and Hom(E′, E) should be
“the” bundle over X whose x-fiber is Hom(E′(x), E(x)) for every x ∈ X.

There is also more: just as we have various isomorphisms in linear algebra such as V ∨∨ ' V ,
V ⊗ V ′∨ ' Hom(V ′, V ), (∧nV )∨ ' ∧n(V ∨), and so on, we wish to have analogues for dual, Hom,
and tensorial operations of bundles (inducing the classical isomorphisms on fibers). As in the
discussion of tensor products and symmetric/exterior powers, the basic principle is four-fold: we
want the “right” fibers, the “right” local frames for the output of the construction when given
local frames for the input bundles (as in Example 2.3), the “right” behavior (say, on fibers) for
maps between bundles (as in Theorem 2.6), and good behavior with respect to pullback along Cp

mappings f : X ′ → X.
Let E and E′ be Cp vector bundles over X. As sets, define

Hom(E′, E) =
∐
x∈X

Hom(E′(x), E(x)).

Define the projection π : Hom(E′, E) → X carrying the subset indexed by x onto x. Consider
open subsets U ⊆ X over which E|U and E′|U are trivial. Let τ = (U, φ, φ′) with Cp bundle
isomorphisms φ : E|U ' U × V and φ′ : E′|U ' U × V ′ for finite-dimensional vector spaces V and
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V ′. For each u ∈ U , the data in τ provides linear isomorphisms of fibers φ(u) : E(u) ' V and
φ′(u) : E′(u) ' V ′. Hence, we have bijections

ξU,τ : π−1(U) ' U ×Hom(V ′, V )

given on u-fibers by the linear isomorphism

φ′(u) ◦ (·) ◦ φ(u)−1 : Hom(E′(u), E(u)) ' Hom(V ′, V )

that carries T ∈ Hom(E′(u), E(u)) to φ′(u) ◦ T ◦ φ(u)−1 ∈ Hom(V ′, V ). We “force” ξU,τ to be
a homeomorphism: let SU,τ denote the set π−1(U) with the topology induced via ξU,τ from the
topology on its target (using product topology: the product of U and a finite-dimensional vector
space).

The first main problem is to show that these topologies glue to define a topology on the set
Hom(E′, E) as defined “fiberwise” above. The method of gluing topologies reduces our task to
checking two things: for any opens U,U ′ ⊆ X and trivialization data τ = (U, φ, φ′), τ ′ = (U ′, ψ, ψ′)
over these respective opens (for which there are many choices once U and U ′ have been chosen),
we need

(1) the overlap SU,τ ∩SU ′,τ ′ is an open subset in each of the topological spaces SU,τ and SU ′,τ ′ ,
(2) the subspace topologies on this overlap via its inclusion into each of SU,τ and SU ′,τ ′ are the

same topology.
The overlap is the subset π−1(U)∩π−1(U ′) = π−1(U∩U ′), so the first item follows from the fact that
for any topological space Z (such as a finite-dimensional R-vector space) the subset (U ∩ U ′)× Z
in U × Z and in U ′ × Z is open in each. As for the second item, this amounts to proving that the
bijective “transition mapping”

ξU ′,τ ′ ◦ ξ−1
U,τ : ξU,τ (π−1(U ∩ U ′)) → ξU ′,τ ′(π−1(U ∩ U ′))

is a homeomorphism.
The transition mapping is the self-map of (U ∩ U ′)×Hom(V ′, V ) given by

(u, f) 7→ (u, (ψ(u) ◦ φ(u)) ◦ f ◦ (φ′(u)−1 ◦ ψ′(u)−1))

for u ∈ U∩U ′ and f ∈ Hom(V ′, V ). This self-map of a product of U∩U ′ against a finite-dimensional
vector space is better than a homeomorphism: it is a Cp isomorphism! It suffices to verify the Cp

property for the above map (ignoring its inverse), as the same argument can be applied to the
inverse mapping by swapping the roles of (U, τ) and (U ′, τ ′). Upon picking bases of the vector
spaces V and V ′ we identify Hom(V ′, V ) with a space of matrices in the usual manner, and so the
problem is to prove that the linear mappings

(ψ(u) ◦ φ(u)) ◦ (·) ◦ (ψ′(u) ◦ φ′(u))−1

depending on u are given (in these bases) by matrices whose matrix entries have Cp dependence on
u ∈ U ∩U ′. The linear mappings φ(u), φ′(u), ψ(u), ψ′(u) are matrix-valued functions on U ∩U ′ with
matrix entries that are Cp functions on U ∩ U ′. Hence, by the “universal” algebraic (polynomial)
formulas for matrix inverse and matrix multiplication in terms of the matrix entries, we get the
desired Cp property for the transition mappings. In particular, the homeomorphism property is
proved.

Having taken care of the definition of the global topology, note that the topology was rigged so
that the projection map π to X is continuous (since it is so over each U as above, with π−1(U) an
open set in the global topology we have constructed). Also, the topology was rigged to force the
set-theoretic trivialization ξU,τ over U (respecting linear structure on the fibers) to be a topological
trivialization. These U ’s cover X, so each of our constructions is a topological vector bundle over
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X. Having put a topology on the total space, we now go through the construction a second time
and use the ξU,τ ’s to put a Cp-structure on each subset SU,τ (this is π−1(U)) using the Cp-structure
on the target of ξU,τ (this target is the product of U against a finite-dimensional vector space).

In order to “glue” these Cp structures to a global one, the only problem is to check consistency
on overlaps: is ξU ′,τ ′ ◦ ξ−1

U,τ a Cp isomorphism (over U ∩ U ′)? It was exactly this stronger property
that we verified in the considerations with the topological aspects of the problem. Not only does
this provide us with a global Cp structure, but it enhances each ξU,τ to a Cp isomorphism that
is linear on fibers, and so the local triviality criterion to be a Cp vector bundle is satisfied. This
completes the construction of the Cp vector bundle Hom(E′, E) with the “desired” fibers (as vector
spaces). This is called a Hom-bundle.

Example 3.1. Let us make the preceding construction very concrete in the language of local frames.
Let U ⊆ X be an open over which E|U and E′|U admit trivializations via sections si ∈ E(U) and
s′j ∈ E′(U) (with 1 ≤ i ≤ n, 1 ≤ j ≤ n′), and let τ be the “trivialization data” arising from these
frames. The set-theoretic “elementary matrix” sections

(6) εij : u 7→ si(u)⊗ s′j(u)
∗ ∈ E(u)⊗ E′(u)∨ ' Hom(E′(u), E(u)) ' (Hom(E′, E))(u)

are Cp and moreover give exactly the trivializing frame for Hom(E′, E)|U corresponding to the Cp

trivialization ξU,τ in the definition of the Cp vector bundle structure on Hom(E′, E).
In particular, every set-theoretic section of Hom(E′, E) over U has the form

∑
aijεij for unique

functions aij : U → R, and this section of Hom(E′, E) is Cp if and only if the aij ’s are Cp functions
on U for all i, j.

Example 3.2. The dual bundle E∨ is Hom(E,X × R). This has fibers naturally identified with
Hom(E(x),R) = E(x)∨ for all x ∈ X. If U ⊆ X is an open subset and elements si ∈ E(U) give
a trivializing frame of E|U , then the preceding example provides Cp sections s∗i ∈ E∨(U) inducing
the dual basis functionals si(u)∗ ∈ E(u)∨ on u-fibers for all u ∈ U . In particular, these give a
trivializing frame for E∨|U ; it is called the dual frame to {si} for E|U .

The behavior of Hom(E′, E) with respect to bundle morphisms and pullback works out nicely:

Theorem 3.3. Let T : E1 → E2 and T ′ : E′
2 → E′

1 be Cp vector bundle mappings. There is a
unique map of Cp vector bundles

Hom(E′
1, E1) → Hom(E′

2, E2)

that on x-fibers is the map Hom(E′
1(x), E1(x)) → Hom(E′

2(x), E2(x)) defined by L 7→ T |x◦L◦T ′|−1
x .

Also, for any Cp mapping f : X ′ → X, there is a unique isomorphism of Cp vector bundles

f∗(Hom(E′, E)) ' Hom(f∗E′, f∗E)

that induces the natural isomorphism Hom(E′(f(x′)), E(f(x′))) ' Hom((f∗E′)(x′), (f∗E)(x)) on
x′-fibers for all x′ ∈ X.

Proof. The goes by the same method as in the analogous results for tensorial operations in Theorem
2.8: we work locally so that all bundles are trivial, and we chase local frames. �

Example 3.4. There is a pleasant description of the O(U)-module (Hom(E′, E))(U) for open sets
U ⊆ X: it is the O(U)-module HomU (E′|U , E|U ) of Cp bundle mappings E′|U → E|U over U
(endowed with its natural O(U)-module structure through the evident way of adding such maps
and multiplying them by elements of O(U); such fiberwise definitions over any open in X do
preserve the Cp-property, as is seen by computing with matrices for local frames of E′ and E).
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To establish the proposed description of the U -sections of the bundle Hom(E′, E), note that any
set-theoretic mapping f : E′|U → E|U respecting projections to U and linear on u-fibers for all
u ∈ U gives rise to an element f |u ∈ Hom(E′(u), E(u)) = (Hom(E′, E))(u) for all u ∈ U , and
hence gives a set-theoretic section [f ] of Hom(E′, E) over U . By definition of Hom(E′, E) as a set,
it is clear that f 7→ [f ] is a bijection from the set of set-theoretic mappings E′|U → E|U over U
inducing linear maps on fibers onto the set of set-theoretic sections of Hom(E′, E) over U . The
problem is to show that f is a Cp map if and only if [f ] is a Cp section (and the compatibility with
O(U)-module structures is seen by fiberwise calculation over U). Such Cp properties are local over
U , so we may work locally on U to reduce to the case in which E and E′ are trivial. Upon choosing
local Cp frames, f is described by a matrix-valued function on U whose matrix entries are Cp on
U if and only if f is a Cp mapping. By Example 3.1, it likewise follows that [f ] is a Cp section of
Hom(E′, E) if and only if this matrix has entries that are Cp functions on U . This completes the
verification.

The special case of dual bundles is sufficiently important that we restate the theorem in this
special case:

Theorem 3.5. Let T : E1 → E2 be a Cp vector bundle mapping. There is a unique map of Cp

vector bundles T∨ : E∨
2 → E∨

1 that on x-fibers is the dual map T |∨x : E2(x)∨ → E1(x)∨.
Also, for any Cp mapping f : X ′ → X, there is a unique isomorphism of Cp vector bundles

f∗(E∨) ' (f∗E)∨

that induces the natural isomorphism E∨(f(x′)) ' (f∗E′)(x′)∨ on x′-fibers for all x′ ∈ X ′.

The map T∨ is called the dual map, and by checking on fibers it is clear that if T ′ : E2 → E3

is a Cp vector bundle map then (T ′ ◦ T )∨ = T∨ ◦ T ′∨ as it should be. We expect to have natural
(uniquely determined) Cp vector bundle isomorphisms

Hom(E′, E) ' E ⊗ E′∨, E∨∨ ' E, (E1 ⊗ · · · ⊗ En)∨ ' E∨
1 ⊗ · · · ⊗ E∨

n ,

and so on such that on fibers we recover the habitual isomorphisms from linear algebra. Such
isomorphisms can be built using local considerations with trivializing frames. However, there is a
more elegeant method that is moreover necessary if we wish to gain a greater fluency in working
with tensors, Homs, and duals of bundles (especially for our later work with Riemannian manifolds
and connections). The main ingredients we need are universal properties to characterize these
constructions, so in the next section we take up the issue of universal properties and we use such
properties to make bundle analogues of many isomorphisms from linear algebra.

4. Universal properties

We wish to characterize tensorial operations on bundles and Hom and dual bundles in terms of
universal properties. To “know” a vector bundle is the same as to “know” its associated O-module,
and the language of O-modules turns out to be very well-suited for the formulation of universal
properties. (The discussion that follows could be recast in the language of vector bundles, or more
precisely fiber bundles, but for later purposes it is the O-module perspective that we shall need
and so we have opted to use it here.)

Definition 4.1. Let M1, . . .Mn,M be O-modules. A multilinear mapping from the Mj ’s to M ,
denoted

m : M1 × · · · ×Mn → M ,
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is a compatible family of O(U)-multilinear mappings

mU : M1(U)× · · · ×Mn(U) → M (U);

“compatible” means that for opens U ′ ⊆ U and elements sj ∈ Mj(U) we have

mU (s1, . . . , sn)|U ′ = mU ′(s1|U ′ , . . . , sn|U ′)

in M (U ′). For n = 2, we say bilinear.

For M1 = · · · = Mn = M ′, the notions of symmetric and alternating multilinear mappings
M ′×n → M are defined similarly.

Example 4.2. Let E and E′ be Cp vector bundles over X. There is a natural bilinear pairing

B : E′ ×Hom(E′, E) → E

that on U -sections is the O(U)-bilinear pairing

BU : E′(U)×HomU (E′|U , E|U ) → E(U)

sending (s′, f) to f ◦ s. (We have used Example 3.4 to describe the U -sections of the bundle
Hom(E′, E).) Each BU is readily checked to be O(U)-bilinear and compatible with shrinking U ,
so we indeed have a bilinear pairing B of O-modules. By working locally with trivializing frames
for E and E′, we see that for open U around x ∈ X the diagram

(7) E′(U)×HomU (E′|U , EU )
BU //

��

E(U)

��
E′(x)×Hom(E′(x), E(x)) // E(x)

commutes, where the bottom side is the natural R-bilinear pairing (v, T ) 7→ T (v). As a special
case, taking E = X ×R, there is a natural bilinear pairing

E′ × E′∨ → X ×R = O

that we call the evaluation pairing.

Example 4.3. For Cp vector bundles E1, . . . , En on X, there is a natural multilinear mapping

(8) E1 × · · · × En → E1 ⊗ · · · ⊗ En

that on U -sections is the mapping

E1(U)× · · · × En(U) → (E1 ⊗ · · · ⊗ En)(U)

provided by Theorem 2.4: given vj ∈ Ej(U) for all j, we send (v1, . . . , vn) to the Cp section
v1 ⊗ · · · ⊗ vn whose value in the u-fiber is

v1(u)⊗ · · · ⊗ vn(u) ∈ E1(u)⊗ · · · ⊗ En(u) = (E1 ⊗ · · · ⊗ En)(u).

By computing on fibers we see that this is indeed an O(U)-multilinear mapping, and that this
procedure is compatible with shrinking U to open subsets.

The same method (again using Theorem 2.4) works for symmetric and exterior powers, giving
symmetric and alternating multilinear mappings

E×n → Symn(E), E×n → ∧nE.
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Example 4.4. For Cp vector bundles E and E′ over X, there is a natural bilinear pairing

(9) E × E′∨ → Hom(E′, E)

defined on U -sections as follows: to s ∈ E(U) and `′ ∈ E′∨(U) = HomU (E′|U , U × R) we asso-
ciate the element in (Hom(E′, E))(U) = HomU (E′|U , E|U ) = HomO|U−mod(E′|U , E|U ) given by the
compatible collection of O(U ′)-linear maps s′ 7→ `′U ′(s′) · s|U ′ for open U ′ ⊆ U . This definition is
readily checked to indeed be a bilinear pairing (i.e., O(U)-bilinear in the pair (s, `′) and compatible
with shrinking U). By working locally with trivializing frames, we see that for open U containing
x ∈ X, the diagram

(10) E(U)× E′∨(U)

��

// HomU (E′|U , E|U )

��
E(x)× E′(x)∨ // Hom(E′(x), E(x))

commutes, where the bottom side is the natural R-bilinear map (v, `′) 7→ (v′ 7→ `′(v′)v).

Definition 4.5. A tensor product of O-modules M1, . . . ,Mn is a pair (M , t) consisting of an
O-module M and a multilinear mapping

t : M1 × · · · ×Mn → M

with the universal property that for any multilinear mapping

µ : M1 × · · · ×Mn → M ′

there is a unique O-linear mapping T : M → M ′ such that TU ◦ tU = µU for all opens U ⊆ X.
For an O-module M , its nth symmetric power and nth exterior power are defined similarly in

terms of universality for symmetric and alternating multilinear mappings on M×n for n ≥ 1.

It can be proved (with the help of some elementary sheaf theory) that such tensorial objects
always exist (without restrictions such as local freeness of finite rank), but this is too general for
us; we merely require:

Theorem 4.6. For Cp vector bundles E1, . . . , En over X, the multilinear mapping in (8) is uni-
versal: it identifies the O-module associated to E1 ⊗ · · · ⊗ En as the tensor product of the Ej’s.

Likewise, for any Cp vector bundle E over X the symmetric and alternating mappings

E×n → Symn(E), E×n → ∧nE

resting on Theorem 2.4 are universal: these identify the O-modules associated to Symn(E) and
∧nE as the nth symmetric and exterior powers of E.

The proof of this theorem is somewhat lengthy, and is largely a matter of artful reduction to the
local case where local triviality of vector bundles can be brought in. It may be reasonable to skip
the proof on a first reading.

Proof. We work out the case of tensor products; the symmetric and exterior powers are handled
similarly. Let E = E1 ⊗ · · · ⊗ En. Consider a compatible family of O(U)-multilinear mappings

mU : E1(U)× · · · × En(U) → M (U)

for an O-module M . We want to prove the existence and uniqueness of an O-linear map T : E → M
such that TU (s1 ⊗ · · · ⊗ sn) = mU (s1, . . . , sn) in M (U) for all sj ∈ Ej(U) for all open U ⊆ X.

Step 1. In order to make the problem a local one, it is convenient to first prove uniqueness.
Suppose that T = {TU} and T ′ = {T ′U} are two such O-linear maps. We want TU = T ′U for all
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open U ⊆ X, so by passing to T − T ′ = {TU − T ′U} we just have to show that if T : E → M is
an O-linear map satisfying TU (s1 ⊗ · · · ⊗ sn) = 0 in M (U) for all open U ⊆ X and all sj ∈ Ej(U)
then T = 0 (i.e., TU = 0 for all open U). Fix a choice of open U ⊆ X for which we want to prove
TU = 0. Pick s ∈ E(U), so we want TU (s) ∈ M (U) to vanish. If s were a finite O(U)-linear
combination of elementary tensors, then the vanishing would follow from the vanishing hypothesis
on T . In general we do not know if s admits such an expression, but we can easily get around this:
in general U admits an open covering {Ui} such that all Ej |Ui are trivial, and so all elements of
E(Ui) are finite O(Ui)-linear combinations of elementary tensors of elements of local frames for the
Ej |Ui ’s (1 ≤ j ≤ n). Hence, s|Ui is a finite O(Ui)-linear combination of elementary tensors, and so
TUi(s|Ui) = 0 in M (Ui) for all i. But since T is an O-linear mapping we have TU (s)|Ui = TUi(s|Ui)
for all i, so the element TU (s) ∈ M (U) restricts to 0 in M (Ui) for opens Ui that cover U . But the
element 0 ∈ M (U) has such restrictions, and so by the “unique gluing” axiom for O-modules it
follows that TU (s) must vanish in M (U). This completes the proof of uniqueness.

Step 2. To prove existence, the key point is that the existence problem is local on X because of
uniqueness. Indeed, assume that {Xi} is an open cover of X such that we can solve the existence
problem over Xi. Thus, we have O|Xi-linear maps Ti : E|Xi → M |Xi such that for all opens U ⊆ Xi

and all choices of elements sj ∈ Ej(U),

(Ti)U (s1 ⊗ · · · ⊗ sn) = mU (s1, . . . , sn).

Observe that Ti|Xi∩Xj and Tj |Xi∩Xj solve the same mapping problem over Xi ∩Xj (for factoring
m|Xi∩Xj through the tensor pairing of the Ek|Xi∩Xj ’s into E|Xi∩Xj ), whence by uniqueness (Step
1) they are equal. That is, for any open U ⊆ Xi ∩ Xj we have (Ti)U = (Tj)U as O(U)-linear
maps from E(U) to M (U). Using the equality of Ti|Xi∩Xj and Tj |Xi∩Xj for all i and j, we claim
that there is a (unique) O-linear map T : E → M such that T |Xi = Ti for all i (i.e., for opens
U ⊆ Xi, TU = (Ti)U ). That is, we seek to built a (unique) compatible family of O(U)-linear maps
TU : E(U) → M (U) such that TU = (Ti)U whenever U ⊆ Xi. How are we to do this?

Pick open U ⊆ X and s ∈ E(U). We need to define TU (s) ∈ M (U). This will be done via the
gluing axiom for M . It is necessary that for all i we have

TU (s)|U∩Xi = TU∩Xi(s|U∩Xi) = (Ti)U∩Xi(s|U∩Xi)

in M (U ∩Xi). Since the opens U ∩Xi cover U , the gluing axiom (and transitivity of restriction)
ensures that there is at most one element in M (U) whose restriction to U ∩Xi is (Ti)U∩Xi(s|U∩Xi)
for all i, and that such an element exists if and only if the elements (Ti)U∩Xi(s|U∩Xi) ∈ M (U ∩Xi)
coincide on the overlap (U ∩Xi) ∩ (U ∩Xj) = U ∩ (Xi ∩Xj) for all i and j. We now compute

(Ti)U∩Xi(s|U∩Xi)|U∩Xi∩Xj = (Ti)U∩Xi∩Xj (s|U∩Xi∩Xj ) = (Tj)U∩Xi∩Xj (s|U∩Xi∩Xj )
= (Tj)U∩Xj (s|U∩Xj )|U∩Xj ,

with the second equality due to the identity (Ti)U∩Xi∩Xj = (Tj)U∩Xi∩Xj (using that U ∩Xi ∩Xj ⊆
Xi ∩ Xj). Hence, we may indeed uniquely glue to define TU (s) ∈ M (U). By construction, if
U ⊆ Xi (so U ∩Xi = U) then TU (s) = (Ti)U (s). Since the (Ti)U∩Xi ’s are O(U ∩Xi)-linear, for any
s1, s2 ∈ E(U) and a1, a2 ∈ O(U) we see by restriction to the U ∩ Xi’s that a1TU (s1) + a2TU (s2)
satisfies the restriction conditions (in the M (U ∩Xi)’s) that uniquely characterize TU (a1s2 +a2s2).
Hence, s 7→ TU (s) is an O(U)-linear map from E(U) to M (U). Also, if U ′ ⊆ U is an open subset
and s ∈ E(U) is an element then TU (s)|U ′ ∈ M (U ′) satisfies the restriction properties (in the
M (U ′∩Xi)’s) that uniquely characterize TU ′(s|U ′). Hence, TU (s)|U ′ = TU ′(s|U ′). This verifies that
T = {TU} is an O-linear map from E to M such that T |Xi = Ti for all i.
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With the O-linear “gluing” T of the O|Xi-linear Ti’s now at our disposal, for any open U ⊆ X
and sj ∈ Ej(U) we compute

TU (s1 ⊗ · · · ⊗ sn)|U∩Xi = (Ti)U∩Xi(s1|U∩Xi ⊗ · · · ⊗ sn|U∩Xi)
= mU∩Xi(s1|U∩Xi , . . . , sn|U∩Xi)
= mU (s1, . . . , sn)|U∩Xi ,

and hence TU (s1⊗· · ·⊗sn) = mU (s1, . . . , sn) in M (U) since these elements have the same restriction
in each M (U ∩Xi) with opens U ∩Xi that cover U (as the Xi’s cover X). In other words, T solves
the existence problem. The construction of T was predicated on the ability to solve the existence
problem over opens Xi that cover X, so rather than actually solving the existence problem all we
have proved is this: the solvability of the existence problem is local on X.

Step 3. Let {Xi} be a covering of X by opens such that the finitely many Ej ’s are all trivial
on each Xi. (Such Xi’s exist since finite intersections of open sets are open, and each Ej is trivial
on some open around each point of X.) In view of Step 2, it suffices to solve the existence problem
over each Xi. Hence, we can assume now that all Ej ’s are trivial. Let {sij} in Ej(X) for 1 ≤ i ≤ rj
be a trivializing frame for Ej . Hence, by Example 2.3 the sections

sI := si1,1 ⊗ · · · ⊗ sin,n ∈ (E1 ⊗ · · · ⊗ En)(X) = E(X)

for all I = (i1, . . . , in) with 1 ≤ ij ≤ rj are a trivializing frame for E. For any open U ⊆ X, the
O(U)-module E(U) is free on the basis of sI |U ’s, and so just as we uniquely define linear maps on
a vector space by specifying the images of elements of an ordered basis we may uniquely define an
O(U)-linear map TU : E(U) = E(U) → M (U) by the condition

TU (
∑

aIsI |U ) =
∑

aImU (si1,1, . . . , sin,n) ∈ M (U).

For U ′ ⊆ U it is clear that TU (s)|U ′ = TU ′(s|U ′) for s ∈ E(U) (express s uniquely as an O(U)-linear
combination of the sI |U ’s), so T = {TU} is an O-linear map from E to M .

To see that T “works” (and thereby solves the existence problem), we need to prove that for
open U ⊆ X and vj ∈ Ej(U)

(11) TU (v1 ⊗ · · · ⊗ vn) = mU (v1, . . . , vn)

in M (U). Note that both sides are O(U)-multilinear in the vj ’s! Recall from linear algebra that if
two multilinear mappings agree on n-tuples from spanning sets of the factors then by the rules of
multilinearity they are equal (just as two linear maps that agree on a spanning set of the source are
equal). That argument is not special to linear algebra: it applies verbatim to multilinear mappings
on modules over any commutative ring. Thus, since the elements sij ∈ Ej(U) span Ej(U) as an
O(U)-module, it suffices to treat the case vj = sij ,j with 1 ≤ ij ≤ rj . But TU was defined to make
the desired identity (11) hold in such special cases! �

We now get lots of nice consequences:

Example 4.7. The bilinear pairing (9) gives an O-linear mapping E ⊗ E′∨ → Hom(E′, E) such
that on fibers over x ∈ X it is the natural map E(x) ⊗ E′(x)∨ → Hom(E′(x), E(x)) that is an
isomorphism. (Here we have used commutativity of (10).) Thus, we get a bundle morphism

E ⊗ E′∨ → Hom(E′, E)

that is the natural isomorphism on fibers, so it is an isomorphism of bundles.
Likewise using Example 4.2 and the commutativity of (7), we get a unique Cp bundle morphism

E′ ⊗Hom(E′, E) → E
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such that on x-fibers it is the natural map

E′(x)⊗Hom(E′(x), E(x)) → E(x)

from linear algebra. As a special case, taking E = X ×R gives a natural bundle morphism

E′ ⊗ E′∨ → X ×R

that induces the evaluation pairing E′(x)⊗ E′(x)∨ → R on x-fibers for all x ∈ X.

Example 4.8. To give a bundle map E ⊗ E′ → E′′ is “the same” as to give a bundle map E →
Hom(E′, E′′) (just like in linear algebra!). Explicitly, a bundle map L : E ⊗ E′ → E′′ is the same
as a bilinear pairing E × E′ → E′′, which is to say compatible O(U)-bilinear pairings

BU : E(U)× E′(U) → E′′(U)

for all open U ⊆ X. Likewise, a bundle map E → Hom(E′, E′′) is the same as an O-linear map
between the associated O-modules, which is to say a compatible collection of O(U)-linear maps
TU : E(U) → HomU (E′|U , E′′|U ).

Given BU we define TU to send s ∈ E(U) to the bundle mapping E′
U → E′′|U that “is” the

collection of compatible O(U0)-linear maps BU0(s|U0 , ·) : E′(U0) → E′′(U0) for opens U0 ⊆ U .
Conversely, given TU we define BU (s, s′) = (TU (s))U (s′) ∈ E′′(U). These are readily checked to
have the right linearity and bilinearity properties, and to be inverse constructions.

By chasing local trivializing frames (which lift bases on fibers), one sees (check!) that if bundle
maps L : E ⊗ E′ → E′′ and T : E → Hom(E′, E′′) “correspond” under the above dictionary then
their induced linear fibral maps

L|x : E(x)⊗ E′(x) → E′′(x), T |x : E(x) → Hom(E′(x), E′′(x))

likewise correspond under the recipes in linear algebra.
An important special case is E′′ = X × R: to give a bundle map L : E × E′ → X × R (or

equivalently, a bilinear pairing E × E′ → O) is “the same” as to give a bundle map T : E → E′∨,
with L|x : E(x) ⊗ E′(x) → R “corresponding” to T |x : E(x) → E′(x)∨ as in linear algebra. An
especially interesting case is the evaluation pairing L : E⊗E∨ → X⊗R (that is the usual evaluation
pairing on fibers); this L was built in Example 4.7. For this L we obtain a bundle map T : E → E∨∨

that is (!) the usual double duality isomorphism on fibers and hence is an isomorphism. This gives
“double duality” for vector bundles.

Observe how the next example deftly argues almost “as if” we were in the setting of linear
algebra, not once having to appeal to explicit formulas in local frames (the approach used in the
19th century, and by many today).

Example 4.9. We can build a bundle isomorphism

(E1 ⊗ · · · ⊗ En)⊗ (E′
1 ⊗ · · · ⊗ E′

n′) ' E1 ⊗ · · · ⊗ En ⊗ E′
1 ⊗ · · · ⊗ E′

n′

and bundle maps

Symn(E)⊗ Symm(E) → Symn+m(E), ∧n(E)⊗ ∧m(E) → ∧n+m(E)

that on fibers are the natural maps from linear algebra (as in the handout on tensors and duality).
By Example 4.8, this amounts to constructing bundle maps

E1 ⊗ · · · ⊗ En → Hom(E′
1 ⊗ · · · ⊗ E′

n′ , E1 ⊗ · · · ⊗ En ⊗ E′
1 ⊗ · · · ⊗ E′

n′)

and
Symn(E) → Hom(Symm(E),Symn+m(E)), ∧nE → Hom(∧mE,∧n+mE)



16

that recover the habitual maps on fibers (via the pairings of tensor products and symmetric/exterior
powers).

By Theorem 4.6, it is equivalent to build compatible families of multilinear (resp. symmetric,
alternating) O(U)-module mappings

E1(U)× · · · × En(U) → HomU ((E′
1 ⊗ · · · ⊗ E′

n′)|U , (E1 ⊗ · · · ⊗ En ⊗ E′
1 ⊗ · · · ⊗ E′

n′)|U ′),

E(U)×n → HomU (Symm(E)|U ,Symn+m(E)|U ), E(U)×n → HomU ((∧mE)|U , (∧n+mE)|U )

compatibly with the linear algebra analogues on fibers (via commutative diagrams in the spirit of
(10)). We may make such constructions exactly as in the case of linear algebra. We illustrate with
the case of exterior powers. Pick an ordered n-tuple s1, . . . , sn in E(U). We seek to define a bundle
mapping

µs1,...,sn : (∧mE)|U → (∧n+mE)|U
that is the habitual map on fibers (using the vectors sj(x) ∈ E(x)), is compatible with shrinking
U , and depends on the sj ’s in an alternating O(U)-multilinear manner. The fibral requirement
forces the rest because a map of bundles is determined by its effect on fibers. The source and
target of µs1,...,sn are identified with ∧m(E|U ) and ∧n+m(E|U ) respectively, and so by the universal
property of exterior powers of bundles (now over U) we seek to define a suitable compatible family
of alternating O(U ′)-multilinear mappings

µs1,...,sn,U ′ : E(U ′)×m → (∧n+mE)(U ′)

for all opens U ′ ⊆ U . We define

µs1,...,sn,U ′(s′n+1, . . . , s
′
n+m) = s1|U ′ ∧ · · · ∧ sn|U ′ ∧ s′n+1 ∧ · · · ∧ s′n+m.

This has all of the desired properties. (To check that we get the desired mapping on fibers, note
that any m-tuple of elements in E(x) can be lifted to an m-tuple in E(U ′) for a small open U ′

around x.)

Remark 4.10. Let E be a Cp vector bundle on X. If U lies in an open over which E has a trivi-
alization then elements of E(U) are finite O(U)-linear combinations of elementary wedge products
of elements from the trivializing frame. The preceding example gives well-defined O(U)-bilinear
pairings

(∧nE)(U)× (∧mE)(U) ∧→ (∧n+mE)(U)

denoted (ω, η) 7→ ω ∧ η that are compatible with shrinking U . On fibers over x ∈ X this is the
wedge-product pairing

∧n(E(x))× ∧m(E(x)) → ∧n+m(E(x)),

and hence from the associativity and sign results in the case of linear algebra we conclude that these
wedge-product pairings on U -sections in general satisfy associativity and ω ∧ η = (−1)nmη ∧ω. An
important example is the case when p ≥ 1 and E = T ∗X := (TX)∨ is the cotangent bundle (of class
Cp−1), in which case ∧nE is denoted Ωn

X and elements of Ωn
X(U) are called differential n-forms over

U . If U has Cp coordinates {x1, . . . , xr} then T ∗X|U is trivialized with the sections dxj , so elements
of Ωn

X(U) are finite O ′(U)-linear combinations of elementary wedge products dxj1 ∧ · · · ∧ dxjn for
the Cp−1-structure O ′ on X.

To give a final application of Theorem 4.8, we discuss the relationship between duality and
tensorial operations on bundles.
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Theorem 4.11. For Cp vector bundles E1, . . . , En, there is a unique Cp bundle isomorphism

E∨
1 ⊗ · · · ⊗ E∨

n ' (E1 ⊗ · · · ⊗ En)∨

that induces the linear-algebra isomorphism on fibers. Also, for any Cp vector bundle E on X and
any n ≥ 1 there are unique Cp bundle isomorphisms

Symn(E∨) ' (SymnE)∨, ∧n(E∨) ' (∧nE)∨

that induce the linear-algebra isomorphisms on fibers.

The isomorphisms in the theorem give rise to bilinear O-module pairings

E1 ⊗ · · · ⊗ En × E∨
1 ⊗ · · · ⊗ E∨

n → O,

Symn(E)× Symn(E∨) → O, ∧nE × ∧n(E∨) → O

that (as we can check by passage to fibers!) have the expected effect on elementary tensors and
elementary symmetric/wedge products over opens in X.

Proof. By two applications for the universal property of tensor products (resp. symmetric/exterior
powers) of bundles, we have to show that for open U ⊆ X and `j ∈ E∨

j (U) = HomU (Ej , U ×R)
(resp. `1, . . . , `n ∈ E∨(U) = HomU (E|U , U ×R)) and any open U ′ ⊆ U there are O(U ′)-multilinear
(resp. symmetric, alternating) mappings

µ`1,...,`n,U ′ : E1(U ′)× · · · × En(U ′) → O(U ′)

(resp. µ`1,...,`n,U ′ : E(U ′)×n → O(U ′)) that are compatible with the old linear-algebra mappings on
fibers (as then all compatibility requirements for shrinking U ′ and U will be satisfied). In the case
of tensor products we define

µ`1,...,`n(s′1, . . . , s
′
n) =

n∏
i=1

(`i|U ′)(s′i) ∈ O(U ′)

and in the cases of symmetric and exterior powers we define µ`1,...,`n(s′1, . . . , s
′
n) to respectively be∑

σ∈Sn

n∏
i=1

(`i|U ′)(s′σ(i)),
∑

σ∈Sn

sign(σ)
n∏

i=1

(`i|U ′)(s′σ(i)) = det((`i|U ′)(s′j))

in O(U ′). �

Example 4.12. Suppose p ≥ 1 and let O ′ be the Cp−1 structure on X. A Cp−1 tensor field of type
(r, s) over an open set U ⊆ X is a U -section ω of (TX)⊗r ⊗ (T ∗X)⊗s of class Cp−1 (its “value” at
each u ∈ U is an element in Tu(X)⊗r ⊗ (Tu(X)∨)⊗s that has Cp−1-dependence on u). That is, if
{x1, . . . , xn} are local Cp coordinates on a small open U0 ⊆ U around u then

ω|U0 =
∑

aI,J∂xi1
|U0 ⊗ . . . ∂xir

|U0 ⊗ dxj1 |U0 ⊗ · · · ⊗ dxjs |U0

with aI,J ∈ O ′(U0) for I = {i1, . . . , ir} and J = {j1, . . . , js}.
In Riemannian geometry with p = ∞ one essentially puts a smoothly varying inner product on

the tangent bundle (a “Riemannian metric”), and this has the effect of providing an identification of
the bundles TX and T ∗X. Consequently, in classical (as well as some modern!) books on differential
geometry one sees smooth tensor fields of type (r, s) written as if they are sections of (TX)⊗r ⊗
(TX)⊗s ' (TX)⊗(r+s). The way the classical geometers kept track of the opposite behaviors of
TX and T ∗X with respect to mappings (much like the dichotomy in order of composition when
passing to dual maps) was to indicate with sub/superscript indices that certain “tensor variables”
were either covariant (really sections of TX) or contravariant (really sections of T ∗X), up to
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the annoyance that the old-timers actually used the words co/contravariant in the opposite places
(contrary to current meaning of these words in modern algebra). The indiscriminate identification of
TX and T ∗X sometimes has the effect of making constructions appear to depend on the Riemannian
metric, whereas often the constructions make perfectly good sense without it if one keeps track of
which TX’s should really be T ∗X’s.


