
Math 396. Equivalence of bundles and O-modules
Let (X, O) be a Cp premanifold with corners, 0 ≤ p ≤ ∞. In this handout, we establish the

important result that “equates” the concepts of Cp vector bundle π : E → X and locally free finite-
rank O-module M . (See Theorem 3.1.) This will be a very useful tool in some later considerations
with differential equations on vector bundles (especially in the theory of connections and geodesics
on Riemannian manifolds).

To any Cp vector bundle E on X we have associated a locally free O-module E of finite rank,
with E|U = E|U for all open U ⊆ X, and to any bundle morphism f : E′ → E we associated
an O-linear map f : E′ → E. By construction, f |U = f |U for open U ⊆ X. It was proved that
the resulting O(X)-linear map HomX(E′, E) → HomO(E′, E) given by f 7→ f is compatible with
composition (for a third Cp vector bundle on X) and is an isomorphism.

Our present goal is to reverse this process: to any locally free O-module of finite rank M , we
want to associate a Cp vector bundle VM . For a Cp vector bundle E we will show that VE is
naturally isomorphic to E and for a locally free O-module of finite rank M we will show that VM

(which we shall denote V M for typographical simplicity) is naturally isomorphic to M . In this
sense, the constructions of E from E and of VM from M are inverse to each other.

1. Some preliminaries with germs and fibers at a point

Let M be an O-module over X. For a point x ∈ X, just as we defined the local ring Ox of germs
of Cp functions near x (via representative pairs (U, h) for open U around x and h ∈ O(U), with
equivalence relation via equality near x), we define a set Mx of germs of M at x as follows. For
two pairs (U, s) and (U ′, s′) consisting of opens U,U ′ around x and s ∈ M (U) and s′ ∈ M (U ′),
we say (U, s) ∼x (U ′, s′) if s|W = s′|W in M (W ) for some open W ⊆ U ∩ U ′ around x; this is an
equivalence relation (check!). The equivalence class of (U, s) is denoted [(U, s)]x, or just sx if we
are lazy (since U is not so important). The set Mx is naturally an Ox-module: we apply linear
operations with representatives over a small open around x, the choice of which does not matter
up to the equivalence relation.

Recall from the handout on modules and derivations that if M is a module over a ring R and if
J ⊆ R is an ideal then we write JM ⊆ M to denote the subset of elements consisting of finite sums∑

aimi with ai ∈ J and mi ∈ M ; this is an R-submodule of M precisely because J is an ideal.
(Remember that JM is not the subset of products am with a ∈ J and m ∈ M : this subset is not
stable under addition in M in general.) The case of relevance to us now is R = Ox and J the ideal
mx = ker(Ox � R) of germs of Cp functions around x that vanish at x.

Definition 1.1. The fiber of an O-module M at a point x ∈ X is the R-vector space Mx/mxMx.

In general this fiber may be infinite-dimensional. In most interesting examples Mx and mxMx are
infinite-dimensional, but the quotient space M (x) is actually finite-dimensional in many interesting
cases:

Example 1.2. Let E → X be a Cp vector bundle and let M = E. In this case I claim that M (x)
is naturally isomorphic to E(x)! (This is why we call M (x) the “fiber at x” in general.) For any
open set U around x, there is a natural map M (U) = E(U) → E(x) linear over the evaluation
map O(U) → R at x via s 7→ s(x), and if (U, s) ∼x (U ′, s′) for another open U ′ around x then
s(x) = s′(x). Hence, we get a well-defined map Mx → E(x) via [(U, s)]x 7→ s(x), and this is linear
over the evaluation map Ox → R. Since evaluation kills mx, we see that our map Mx → E(x) kills
mxMx, and so it induces an R-linear map M (x) → E(x). Our task is to show that this naturally
constructed map is an isomorphism. We shall prove that it is both surjective and injective. In each
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case, the local triviality of E → X is the key point. To this end, let us fix an open U0 around x
over which there is a trivializing frame of Cp-sections s1, . . . , sn ∈ E(U0) = M (U0).

For surjectivity, pick any v ∈ E(x). Writing v =
∑

cisi(x) with ci ∈ R, the section s =∑
cisi ∈ E(U0) = M (U0) has value s(x) = v at x and so the germ [(U0, s)]x ∈ Mx maps to v in

E(x). Hence, M (x) → E(x) carries the residue class sx mod mxMx of the germ sx to the initial
arbitrary v ∈ E(x). This gives surjectivity. As for injectivity, pick an element in the kernel and let
[(U, s)]x ∈ Mx be a representative germ (with U ⊆ U0 without loss of generality). We can write
s =

∑
aisi for unique Cp functions ai on U (as the si’s are a trivializing frame for E over U0, and

U ⊆ U0), and the vanishing of s(x) =
∑

aisi(x) in E(x) says that ai(x) = 0 for all i. Hence, each
ai has its germ in Ox that lies in mx, so sx ∈ Mx lies in mxMx. Thus, the image of sx in M (x)
is 0, but (U, s) was chosen to that this image in M (x) was our initial choice of element dying in
E(x). This completes the proof of injectivity.

Example 1.3. Now suppose p ≥ 1 and let O ′ be the underlying Cp−1 structure. To make the
theory of the tangent bundle “work”, it is crucial to R-linearly identify Tx(X) with the fiber of
the O ′-module VecX at x ∈ X. We wish to show that the mapping φx : (VecX)x → Tx(X) sending
a germ s = [(U,~v)]x to the tangent vector ~v(x) ∈ Tx(X) is well-defined (so we denote it s(x))
and satisfies φx(a1s1 + a2s2) = a1(x)φx(s1) + a2(x)φx(s2) for a1, a2 ∈ O ′

x and s1, s2 ∈ (VecX)x.
Using ∂tj ’s for local Cp coordinates tj around x, we will prove moreover that φx is surjective with
kernel exactly m′

x(VecX)x, and so this will show that φx induces a natural R-linear isomorphism
(VecX)(x) ' Tx(X).

To get started, if ~v ∈ VecX(U) and ~v′ ∈ VecX(U ′) are Cp−1 vector fields on opens U and U ′

around x such that the germs of (U,~v) and (U ′, ~v′) at x agree, then ~v|W = ~v′|W as vector fields on
some open W ⊆ U ∩ U ′ around x. In particular, ~v(w) = ~v′(w) in Tw(X) for all w ∈ W , and hence
~v(x) = ~v′(x) in Tx(X). Thus, φx is well-defined.

Given germs s1, s2 of VecX at x and germs a1, a2 of O ′ at x, we may find a small open U around x
on which we may find representatives ~vj for sj and hj for aj . Hence, by definition of the O ′

x-module
structure on (VecX)x, a1s2 + a2s2 is represented by the vector field h1~v1 + h2~v2 over U . By the
definition of the O ′(U)-module structure on VecX(U), at the point x this vector field specializes to
h1(x)~v1(x) + h2(x)~v2(x) in the tangent space at x, and this is exactly a1(x)s1(x) + a2(x)s2(x) in
Tx(X). This proves the desired “linearity” formula for φx (over the evaluation at x).

Finally, we show φx is surjective with kernel m′
x(VecX)x. Pick local Cp coordinates t1, . . . , tn

on an open set U around x. Any tangent vector ~v0 ∈ Tx(X) can be written as
∑

cj∂tj |x with
cj ∈ R, so consider the “constant” vector field ~v =

∑
cj∂tj ∈ VecX(U) where cj ∈ O ′(U) is the

constant function whose value at every point of U is cj . The germ of (U,~v) at x is sent by φx to the
tangent vector

∑
cj(x)∂tj |x =

∑
cj∂tj |x = ~v0. This proves surjectivity. Finally, a germ in (VecX)x

is represented by a vector field of the form
∑

hj∂tj on some open around x for some Cp−1 functions
hj near x, and φx carries the germ of this at x to

∑
hj(x)∂tj |x. Hence, this vanishes if and only

if hj(x) = 0 for all j, which is to say the germ of each hj in O ′
x lies in m′

x for all j. That is, the
kernel of φx is the set of O ′

x linear combinations of the germs (∂tj )x ∈ (VecX)x with coefficients in
m′

x. This is exactly the submodule m′
x(VecX)x, as desired.

Let f : M ′ → M be an O-linear map between O-modules. For any x ∈ X, there is an induced
mapping fx : M ′

x → Mx between modules of germs defined as follows:

fx([(U, s′)]x) = [(U, fU (s′))]x.
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This is well-defined: if U1, U2 ⊆ X are opens around x and s′j ∈ M ′(Uj) with s′1|W = s′2|W in
M ′(W ) for an open W ⊆ U1 ∩ U2 around x, then in M (W ) we have

fU1(s
′
1)|W = fW (s′1|W ) = fW (s′2|W ) = fU2(s

′
2)|W

with the first and last equalities using the compatibility of the fU ’s with respect to restriction (as
in the definition of an O-linear mapping of O-modules). This says exactly that (U1, fU1(s

′
1)) and

(U2, fU2(s
′
2)) represent the same germ in Mx. Hence, fx is well-defined set-theoretically. By chasing

representatives, one checks that fx is Ox-linear (recall how the Ox-module structure on Mx and
M ′

x was defined via representatives).
Returning to the general O-linear map f : M ′ → M and x ∈ X, since fx : M ′

x → Mx is Ox-
linear it carries the submodule mxM ′

x into the submodule mxMx. (Indeed, for elements m′
j ∈ M ′

x

and aj ∈ mx we have fx(
∑

ajm
′
j) =

∑
ajfx(m′

j) ∈ mxMx.) Thus, passing to the quotient induces
an R-linear fiber mapping

f(x) : M ′(x) = M ′
x/mxM ′

x → Mx/mxMx = M (x);

concretely, if an element m′ ∈ M ′(x) is represented by some germ m′ ∈ M ′
x then f(x)(m′) ∈ M (x)

is represented by the germ fx(m′) ∈ Mx.

Remark 1.4. It follows from the definitions that if g : M ′′ → M ′ is another O-linear mapping,
then (f ◦ g)x = fx ◦ gx as Ox-linear maps from M ′′

x to Mx, and so also (f ◦ g)(x) = f(x) ◦ g(x)
as R-linear maps from M ′′(x) to M (x). That is, the passage from an O-module to its fiber at a
point is “well-behaved” with respect to composition of mappings.

In the special case M = E and M ′ = E′ for Cp vector bundles E and E′ over X, we know
that every O-linear mapping M ′ → M arises from a unique Cp vector bundle mapping E′ → E.
In Example 1.2 we saw that the fibers E′(x) and E(x) in the sense of O-modules are naturally
identified with the fibers E′(x) and E(x) in the sense of vector bundles, and so there arises an
important issue of compatibility: if f : E′ → E is a Cp vector bundles mapping and f : E′ → E is
the associated O-linear mapping, how do the “fiber mappings”

f |x : E′(x) → E(x), f(x) : E′(x) → E(x)

compare via the identifications of E(x) with E(x) and of E′(x) with E′(x)? Fortunately, everything
works as it should:

Theorem 1.5. Fix x ∈ X. The diagram

E′(x)
f(x)

//

'
��

E(x)

'
��

E′(x)
f |x

// E(x)

commutes, where the columns are the natural isomorphisms made Example 1.2.

Proof. An element in E′(x) = Ex/mxE′
x is represented by a germ [(U, s′)]x with open U ⊆ X

around x and s′ ∈ E′(U) = E′(U). By definition, f(x) is induced by the map E′
x → Ex

given by “composition with f” on germs at x. This carries the germ [(U, s′)]x of E′ to the germ
[(U, f

U
(s′))]x = [(U, f ◦ s′)]x of E. By definition of the columns in our desired commutative square,

the images of these germs in E′(x) and E(x) respectively map to s′(x) ∈ E(x) and (f◦s′)(x) ∈ E(x).
Hence, we want f |x : E′(x) → E(x) to carry s′(x) to (f ◦s′)(x). This follows from the very definition
of the O(U)-module mapping f : E′(U) → E(U). �
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2. Lots of lemmas

We fix M , so for each x ∈ X we get a finite-dimensional R-vector space M (x). We define VM

as a set to be the disjoint union
VM =

∐
x∈X

M (x),

equipped with the evident projection map of sets π : VM → X that sends points in M (x) to x ∈ X.
Hence, each fiber π−1(x) = M (x) has a structure of finite-dimensional R-vector space. Our first
goal is to give VM a topology such that π : VM → X becomes a topological vector bundle (using
the linear structure just put on the fiber π−1(x) over each x ∈ X). We shall build a topology by
gluing topologies on subsets indexed by pairs (U,ϕ) consisting of non-empty open sets U ⊆ X and
O|U -linear isomorphisms ϕ : M |U ' O|⊕nU

U with nU ≥ 0. Since M is locally free of finite rank,
there exist such pairs (U,ϕ) with U ’s covering X. For each such pair (U,ϕ), we get an R-linear
isomorphism ϕ(u) : M (u) ' RnU on u-fibers for each u ∈ U . (In particular, nU only depends on
U and not ϕ: it is the common R-dimension of the fibers M (u) for all u ∈ U .) Hence, we arrive
at a bijection of sets

ξU,ϕ : π−1(U) =
∐
u∈U

M (u) →
∐
u∈U

RnU = U ×RnU

that carries π−1(U) → U to the standard projection U ×RnU → U and induces the linear isomor-
phism ϕ(u) : M (u) ' RnU on fibers over each u ∈ U .

Since the U ’s cover X as we vary (U,ϕ), the π−1(U)’s cover VM set-theoretically. We use the
bijection ξU,ϕ to put a topology on π−1(U) via the topology on U ×RnU (i.e., we “force” ξU,ϕ to be
a homeomorphism). Letting SU,ϕ denote the subset π−1(U) in VM with the topology just defined
via ξU,ϕ, we want to show that these uniquely glue to a topology on VM with respect to which each
SU,ϕ is an open subset of VM and gets as the subspace topology exactly the topology imposed by
forcing ξU,ϕ to be a homeomorphism. (Warning: Each such U admits many ϕ’s, so on the set
π−1(U) we get many topologies SU,ϕ. These will soon be proved to all coincide, but for now we
have to keep track of ϕ and not just U when contemplating topologies on π−1(U).) By the criterion
for gluing topologies, we have to prove:

Lemma 2.1. For (U,ϕ) and (U ′, ϕ′) as above with U ∩ U ′ 6= ∅, the subset π−1(U) ∩ π−1(U ′) =
π−1(U ∩ U ′) inside π−1(U) = SU,ϕ and π−1(U ′) = SU ′,ϕ is open in each of the topological spaces
SU,ϕ and SU ′,ϕ′. It gets the same subspace topology from each. (In particular, taking U = U ′, the
topology on π−1(U) is independent of ϕ.)

If U ∩ U ′ = ∅ then π−1(U) ∩ π−1(U ′) = ∅ and hence SU,ϕ ∩ SU ′,ϕ′ = ∅ in VM . Thus, such pairs
do not intervene (or rather, do so trivially) in the gluing criterion.

Proof. Since U ∩ U ′ is non-empty, the common dimensions nU and nU ′ of the fibers of M over
points of U and U ′ respectively must be equal. Let n denote this common dimension. Under the
topological identification ξU,ϕ of SU,ϕ with U ×Rn, the subset π−1(U ∩U ′) goes over to the subset
(U ∩ U ′) ×Rn that is clearly open in U ×Rn. Likewise, π−1(U ∩ U ′) is open in SU ′,ϕ′ . Hence, it
remains to check the equality of subspace topologies. In other words, when we bijectively identify
π−1(U ∩ U ′) with (U ∩ U ′) × Rn using each of ξU,ϕ and ξU ′,ϕ′ then we claim that both of these
bijections carry the product topology on (U ∩U ′)×Rn over to the same topology on π−1(U ∩U ′).
Equivalently, we claim that the bijection

ξU ′,ϕ′ ◦ ξ−1
U,ϕ : (U ∩ U ′)×Rn → (U ∩ U ′)×Rn
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is a homemorphism.
We can do better (as we shall require later): this bijection is a Cp isomorphism. We shall compute

it explicitly. Let {sj} and {s′i} be the trivializations of M |U and M |U ′ corresponding to ϕ and ϕ′,
so M |U∩U ′ has two trivializations: {sj |U∩U ′} and {s′i|U∩U ′}. Hence, there are unique expressions
sj |U∩U ′ =

∑n
i=1 aijs

′
i|U∩U ′ with aij ∈ O(U ∩ U ′) and det(aij) : U ∩ U ′ → R a non-vanishing Cp

function. In other words, (aij) : U ∩ U ′ → GLn(R) is a Cp mapping. The mapping ξU ′,ϕ′ ◦ ξ−1
U,ϕ is

(x, v) 7→ (x, (aij(u))(v))

for x ∈ U ∩ U ′ and v ∈ Rn. This is clearly a Cp mapping, due to the Cp property of the aij ’s on
U ∩ U ′ and the formula for evaluating a matrix on a vector in Euclidean space. The same method
proves that the inverse map (given by swapping the roles of (U,ϕ) and (U ′, ϕ′)) is Cp; explicitly, it
is given by the analogous matrix formula using the inverse matrix (that we can also see is Cp via
Cramer’s formula and the non-vanishing of det(aij) on U ∩ U ′). �

We have put a topology on VM , and we claim it makes π : VM → X continuous. As we vary
through (U,ϕ) as above, the subsets π−1(U) give an open covering of X, so by the local nature
of continuity it suffices to prove that the restriction πU : π−1(U) → U of π to each π−1(U) is
a continuous map (taking the target of πU to be U or X does not affect whether or not it is
continuous). The topology on π−1(U) is rigged so that we have homeomorphisms ξU,ϕ : π−1(U) '
U ×RnU such that πU ◦ ξ−1

U,ϕ is the standard projection U ×RnU → U that is certainly continuous.
Hence, πU is continuous. We can do better: the ξU,ϕ’s are R-linear on fibers, and so provide the
local topological trivializations that are required to conclude that π : VM → X with its linear
structure on fibers is a topological vector bundle over X.

We now want to enhance our construction to make VM a Cp vector bundle over X such that the
ξU,ϕ’s are Cp trivializations. In the proof of Lemma 2.1, we saw that for pairs (U,ϕ) and (U ′, ϕ′)
such that U ∩U ′ is non-empty, the “transition maps” ξU ′,ϕ′ ◦ ξ−1

U,ϕ are Cp automorphisms of the Cp

premanifold with corners (U ∩ U ′)×Rn (with n = nU = nU ′). If U ×Rn and U ′ ×Rn were open
sets in sectors in finite-dimensional vector spaces then we could say that we have built a Cp atlas
on VM and so we would thereby obtain a Cp structure on VM . However, our situation is slightly
more general than the formation of Cp structures from Cp atlases because U might be “big” and
so the spaces U ×Rn are merely Cp premanifolds with corners rather than the open sets in sectors
in vector spaces. (We could shrink the U ’s to bypass this issue, but it would be unnatural to do so
here, and more importantly the lemma below by which we will handle this issue will be extremely
useful in other settings.) The mild generality of “big” U presents no difficulty, due to:

Lemma 2.2. Choose 0 ≤ p ≤ ∞. Let Z be a topological space equipped with a covering by open
subsets {Zi} and homeomorphisms φi : Zi → Yi to Cp premanifolds with corners (Yi,Oi). (In
particular, Z is a topological premanifold with corners.) If the transition mappings

φj ◦ φ−1
i : φi(Zi ∩ Zj) ' φj(Zi ∩ Zj)

between open sets in the Cp premanifolds with corners Yi and Yj are Cp isomorphisms then there is
a unique Cp structure O on Z with respect to which the φi’s are Cp isomorphisms from (Zi,O|Zi)
to (Yi,Oi) for all i.

This lemma generalizes the construction of Cp-structures from Cp-atlases in the sense that the
targets Yi are now arbitrary Cp premanifolds with corners rather than merely open sets in sectors
in finite-dimensional R-vector spaces.
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Proof. The proof is identical to the construction of a Cp-structure from a Cp-atlas, except that
since we now have a global theory of Cp premanifolds with corners (whereas earlier we only had
the “local” theory of Cp-structures on open sets in sectors in finite-dimensional R-vector spaces)
we may use such global objects in the earlier role of opens in sectors in vector spaces. For each
open set U ⊆ Z we define O(U) to be the set of functions f : U → R such that f is “locally Cp

with respect to the φi’s”, which is to say that for all i the function f ◦ φ−1
i : φi(U ∩ Zi) → R on

the open set φi(U ∩ Zi) in Yi is a Cp function. One checks readily that U 7→ O(U) is an R-space
structure on Z (because the Oi’s are on each Yi).

To check that O is a Cp-structure on Z, we want the homeomorphism φi : Zi → Yi to be an
isomorphism of structured R-spaces with respect to O|Zi on Zi and Oi on Yi. That is, if U ⊆ Zi is an
open subset and f : U → R is a function then we claim f ∈ O(U) if and only if f ◦φ−1

i ∈ Oi(φi(U)).
Equivalently, in view of the definition of O, we must prove that if f ◦φ−1

i is Cp on φi(U) ⊆ Yi then
for all j it is automatic that f ◦ φ−1

j is Cp on φj(U ∩ Uj) ⊆ Yj . To verify this, note that

(1) f ◦ φ−1
j = (f ◦ φ−1

i ) ◦ (φi ◦ φ−1
j )

on U ∩ Uj = U ∩ Ui ∩ Uj , and recall the assumption that the transition mapping φi ◦ φ−1
j from

φj(Ui ∩Uj) to φi(Ui ∩Uj) is a Cp isomorphism. It follows from (1) that f ◦φ−1
j is a composite of a

Cp function and a Cp isomorphism, so it is a Cp function. This takes care of the existence aspect of
the lemma, and uniqueness is clear because the definition given for U 7→ O(U) is the only possible
one that is consistent with the requirements for O to be an R-space structure on Z making the
φi’s isomorphisms of structured R-spaces. �

By Lemma 2.2, we obtain a unique Cp-structure on VM with respect to which the homeomor-
phisms ξU,ϕ : π−1(U) ' U×RnU are Cp isomorphisms. In particular, the restrictions πU : π−1(U) →
U of π are Cp because ξU,ϕ is a Cp isomorphism and the composite πU ◦ ξ−1

U,ϕ : U ×RnU → U is
the standard projection that is certainly a Cp mapping. It follows that π : VM → X is also a Cp

mapping (as we have just checked that it is Cp when restricted to a collection of open subsets that
cover VM ), so with the linear structure on its fibers the map π : VM → X is a Cp vector bundle
because the ξU,ϕ’s provide Cp trivializations over the opens U ⊆ X that cover X as we vary (U,ϕ).
This completes the construction of VM .

To analyze the properties of this construction, we require some more lemmas. First, we need to
glue O-module maps (analogously to how we glue vector bundle morphisms). The following lemma
will only be used in the setting of locally free O-modules with finite rank, but such conditions are
not relevant in the proof and so we avoid them.

Lemma 2.3. Let (X, O) be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and let M and M ′ be
O-modules. Let {Ui} be an open covering of X. Let Mi denote the O|Ui-module M |Ui, and likewise
for Mij as an O|Ui∩Uj -module, and similarly for M ′.

If fi : M ′
i → Mi is an O|Ui-linear map for each i and fi|Ui∩Uj = fj |Ui∩Uj as O|Ui∩Uj -linear maps

from M ′
ij to Mij for all i and j then there exists a unique O-linear map f : M ′ → M such that

the O|Ui-linear restriction f |Ui : M ′
i → Mi equals fi for all i.

Remark 2.4. As an important special case, the isomorphism property for an O-linear map is local.
To be precise, suppose we are given an O-linear map f : M ′ → M and that the restriction fi of f
over each Ui is an O|Ui-linear isomorphism then the unique inverses f−1

i : Mi → M ′
i coincide over

Ui ∩ Uj ’s (where f−1
i and f−1

j restrict to inverses of f |Ui∩Uj and hence coincide). Thus, the f−1
i ’s

globally glue to an O-linear map f ′ : M → M ′ that is an inverse to f because the composites f ′ ◦f
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and f ◦ f ′ restrict to the identity maps over each Ui and hence (by the uniqueness aspect of the
lemma) must be the identity over all of X.

Proof. Let U ⊆ X be an open set, so U is covered by the opens U ∩ Ui. For s′ ∈ M ′(U), let
s′i = s′|U∩Ui ∈ M ′(U ∩Ui) = M ′

i (U ∩Ui). We get elements (fi)U∩Ui(s
′
i) ∈ Mi(U ∩Ui) = M (U ∩Ui),

and on the overlap (U ∩Ui)∩ (U ∩Uj) = U ∩ (Ui ∩Uj) we have that (fi)U∩Ui(s
′
i) and (fj)U∩Uj (s

′
j)

have the same restriction, namely the image of s′|Ui∩Uj under the common map

(fi)U∩Ui∩Uj = (fj)U∩Ui∩Uj : M ′(U ∩ (Ui ∩ Uj)) → M (U ∩ (Ui ∩ Uj)).

Hence, the (fi)U∩Ui(s
′
i)’s are the restrictions of a unique element in M (U) that we shall denote

fU (s′). This defines set-theoretic maps fU : M ′(U) → M (U) for all opens U ⊆ X.
To check that fU is O(U)-linear, pick s′1, s

′
2 ∈ M ′(U) and a1, a2 ∈ O(U). We want

fU (a1s
′
1 + a2s

′
2) = a1fU (s′1) + a2fU (s′2)

in M (U), and to check such equalities it suffices to do so after restriction to M (U ∩ Ui) for all i
because the U ∩ Ui’s are an open cover of U . But by the definition of fU , restricting to U ∩ Ui

converts the proposed equalities in the system of equalities

(fi)U∩Ui((a1s
′
1 + a2s

′
2)|U∩Ui)

?= a1|U∩Ui · (fi)U∩Ui(s
′
1|U∩Ui) + a2|U∩Ui · (fi)U∩Ui(s

′
2|U∩Ui).

This equality follows from the O(U ∩ Ui)-linearity of (fi)U∩Ui and the equality

(a1s
′
1 + a2s

′
2)|U∩Ui = a1|U∩Ui · s′1|U∩Ui + a2|U∩Ui · s′2|U∩Ui

that expresses the fact that M ′(U) → M ′(U ∩ Ui) is linear over O(U) → O(U ∩ Ui).
With the fU ’s now known to be O(U)-linear, we next have to check that they fit together to

define a map of O-modules M ′ → M , which is to say that if U ′ ⊆ U is an open subset then
fU (s′)|U ′ = fU ′(s′|U ′) in M (U ′) for any s′ ∈ M ′(U). Such equality may be checked in each
M (U ′ ∩Ui), and so by definition of fU and fU ′ we simply invoke the compatibility of (fi)U∩Ui and
(fi)U ′∩Ui

with respect to restriction maps M ′(U∩Ui) → M ′(U ′∩Ui) and M (U∩Ui) → M (U ′∩Ui).
We have now built an O-linear map f : M ′ → M , and by its very construction we see that if U ⊆ Ui

for some i then fU = (fi)U as maps from M ′(U) to M (U). That is, f |Ui : M ′|Ui → M |Ui coincides
with fi. Hence, f is the desired “gluing” of the fi’s. An inspection of the definition of f shows that
it is the only possibility for a solution to our gluing problem. �

Lemma 2.5. Let M ′ and M be locally free O-modules with finite rank.
(1) If two O-linear maps f, g : M ′ ⇒ M satisfy f(x) = g(x) as R-linear maps from M ′(x) to

M (x) for all x ∈ X then f = g.
(2) If f : M ′ → M is an O-linear map then the set-theoretic map V (f) : VM ′ → VM over X

given on fibers by the linear map f(x) : M ′(x) → M (x) is a Cp vector bundle morphism.
Also, f is an isomorphism if and only if all R-linear maps f(x) : M ′(x) → M (x) are linear
isomorphisms.

The first part of the lemma says that maps between locally free O-modules of finite rank are
uniquely determined by their effect on fibers (taken in the sense of fibers for O-modules), and this
is analogous to (but not as trivial as!) the physically obvious fact that a bundle morphism between
Cp vector bundles over X is uniquely determined by its induced linear maps on fibers (taken in
the sense of vector bundles). The end of the second part of the lemma is analogous to the result
proved earlier for vector bundles, namely that a bundle morphism that is a linear isomorphism on
fibers (taken in the sense of vector bundles) is an isomorphism of vector bundles.
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Proof. We first prove (1). Since f(x) − g(x) = (f − g)(x) (why?), we may focus our attention on
f−g. That is, we just have to show that if θ : M ′ → M is O-linear and θ(x) = 0 for all x ∈ X then
θ = 0 (i.e., θU : M ′(U) → M (U) vanishes for all opens U ⊆ X). This problem is local on X, and
since X can be covered by opens Xi such that M |Xi and M ′|Xi are both free O|Xi-modules (say
with respective ranks ni and n′i) then we may replace X with Xi and so we may assume that there
exist O-linear isomorphisms M ' O⊕n and M ′ ' O⊕n′ . Composing θ with isomorphisms on its
source and target is harmless for the purpose of proving vanishing and it preserves the assumption
of vanishing on fibers, so we may assume M = O⊕n and M ′ = O⊕n′ . Thus, θ is given by a matrix
(aij) with aij ∈ O(X) in the sense that θU ((c1, . . . , cn)) = (

∑
j a1j |U · cj , . . . ,

∑
i an′j |U · cj) for

c1, . . . , cn ∈ O(U). On x-fibers, θ(x) : Rn → Rn′ is given by the matrix (aij(x)), and the vanishing
assumption on fibers therefore implies aij(x) = 0 for all x ∈ X and all i, j. Hence, aij = 0 for all
i, j, so θU = 0 for all U ; i.e., θ = 0. This completes the proof of (1).

For (2), since V (f) is a map over X and is linear on fibers, it is a morphism of Cp vector bundles
if and only if it is a Cp mapping. This problem is local over X (why?), so we may assume M
and M ′ are free of respective finite ranks n and n′ as O-modules. Fix choices of trivializations
ϕ : M ' O⊕n and ϕ′ : M ′ ' O⊕n′ . Let {sj} and {s′i} be the corresponding trivializating sections
in M (X) and M ′(X), so fX(sj) =

∑
aijs

′
i for unique aij ∈ O(X). By the construction of the Cp

structure on VM and VM ′ , we have Cp vector bundle isomorphisms

ξX,ϕ : VM ' X ×Rn, ξX,ϕ′ : VM ′ ' X ×Rn′ .

Thus, the set-theoretic map V (f) is Cp if and only if the composite map

ξX,ϕ′ ◦ V (f) ◦ ξ−1
X,ϕ : X ×Rn → X ×Rn′

is Cp. But unwinding the definitions of V (f) and the ξ’s shows that this map is exactly

(x, v) 7→ (x, (aij(x))(v))

for x ∈ X and v ∈ Rn, so the Cp property of the aij ’s and the formula for evaluating a matrix on
a vector in Euclidean space gives the desired Cp result for V (f).

To complete the proof of (2), we have to prove that f is an isomorphism of O-modules if and
only if f(x) is an R-linear isomorphism for all x ∈ X. Since passage to the fiber map is compatible
with composition, if f is an isomorphism (with inverse f−1) then f(x) is an R-linear isomorphism
(with inverse f−1(x)) for all x ∈ X. For the converse, by Remark 2.4 we may work locally over
X. Thus, we can assume M and M ′ are trivial. Fix O-linear isomorphisms ϕ : M ' O⊕n and
ϕ′ : M ′ ' O⊕n′ . Since f(x) is an isomorphism for each x ∈ X and we can assume X is non-empty,
we must have n′ = n. The map f is an isomorphism if and only if ϕ′ ◦ f ◦ ϕ−1 is an isomorphism,
and the x-fiber map for ϕ′◦f ◦ϕ−1 is the map ϕ′(x)◦f(x)◦ϕ−1(x) that is certainly an isomorphism
for all x ∈ X. Hence, we may assume M = O⊕n and M ′ = O⊕n. The map f is given by an n× n
matrix (aij) with aij ∈ O(X) in the sense that fU (c1, . . . , cn) = (

∑
j a1j |U · cj , . . . ,

∑
j anj |U · cj)

for all open U ⊆ X and c1, . . . , cn ∈ O(U). The fibral map f(x) : Rn → Rn is given by the matrix
(aij(x)), so the fibral isomorphism condition implies det(aij) : X → R is nowhere-vanishing. Hence,
we can use Cramer’s formula to write down an O-linear inverse map M → M ′ using a matrix whose
entries are Cp functions on X. �

3. Main Theorem and applications

The following theorem makes precise the sense in which the construction of the Cp vector bundle
VM from a locally free and finite rank O-module M is inverse to the construction of the locally
free and finite rank O-module E from a Cp vector bundle E. In particular, it shows that every
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O-module M that is locally free with finite rank is naturally isomorphic to E for a Cp vector bundle
E that is naturally assocated to M .

Theorem 3.1. For any locally free O-module of finite rank M , there is a unique isomorphism
of O-modules θM : V M ' M such that on x-fibers for each x ∈ X it is the identity map on
M (x). Also, for any Cp vector bundle π : E → X there is a unique Cp vector bundle morphism
θE : VE ' E such that on fibers over each x ∈ X it is the identity map on E(x).

In the fibral descriptions, we are implicitly using the R-linear isomorphisms E(x) ' E(x) for
any Cp vector bundle E → X (this was discussed in Example 1.2) and VM (x) ' M (x) for any
locally free O-module of finite rank M (this follows from how VM was defined). There are nice
relations between the two θ’s: V (θM ) : VV M

' VM is equal to θVM
, and θE : V E ' E is equal to

θE . These equalities are easily checked by calculation on fibers.

Proof. The uniqueness of θE and θM is due to the fact that maps of Cp vector bundles and locally
free O-modules of finite rank are uniquely determined by their effect on fibers over the base space.
We need to prove existence for θE and θM . Once we construct θE as a Cp map of vector bundles,
it must be a bundle isomorphism since it is an isomorphism on fibers. Likewise, since θM has been
specified to be an isomorphism on fibers, by Lemma 2.5(2) it must be an O-linear isomorphism
once it is merely constructed as an O-linear map. The problem of constructing θE (resp. θM ) is
local over X. Indeed, if {Ui} is an open covering of X such that we can solve the construction
problem over each of the Ui’s, then we get maps θE|Ui

(resp. θM |Ui
) for each i and over Ui ∩Uj the

solutions over Ui and Uj restriction to solutions to the same construction problem. Hence, by the
uniqueness that has already been established, these restrictions over Ui ∩ Uj must agree; i.e.,

θE|Ui
|Ui∩Uj = θE|Uj

|Ui∩Uj , θM |Ui
|Ui∩Uj = θM |Uj

|Ui∩Uj .

The lemma on gluing for vector bundle morphisms (resp. Lemma 2.3) then ensures that there is
a unique vector bundle morphism VE → E (resp. O-linear map V M → M ) that restricts to θE|Ui

(resp. θM |Ui
) over Ui for each i, and this is clearly the desired map θE (resp. θM ).

Since our construction problem is now proved to be local over X, we may assume that E and
M are trivial for the assertions at issue. That is, we can assume that there exists a Cp vector
bundle isomorphism ϕ : E ' X × Rn for some n and an O-linear isomorphism ϕ′ : M ' O⊕n′

for some n′. The bundle isomorphism E ' X × Rn corresponds to trivializing sections {si} in
E(X) and so defines an O-linear isomorphism E ' O⊕n by expressing elements in E(U) as unique
O(U)-linear combinations of the si|U ’s for all open U ⊆ X. This O-linear isomorphism yields a Cp

vector bundle isomorphism VE ' VO⊕n (by Lemma 2.5(2)), and by construction of VM we have a
Cp vector bundle isomorphism VO⊕n ' X ×Rn given on fibers by the identity map Rn ' Rn. The

composite bundle isomorphism VE ' VO⊕n ' X ×Rn ϕ−1

' E is checked to induced the identity on
E(x) on x-fibers for each x ∈ X, so we have constructed θE .

The construction of θM in the trivial case goes essentially the same as for θE . The choice of
O-linear isomorphism ϕ′ : M ' O⊕n′ corresponds to trivializing sections {si} in M (X) and (using
Lemma 2.5(2)) it gives rise to an isomorphism VM ' VO⊕n′ ' X ×Rn′ . Passing to the associated
locally free O-modules of finite rank gives an O-linear isomorphism

V M ' X ×Rn′ ' O⊕n′ ϕ′−1

' M

in which the middle isomorphism is the standard one (through the identification of Cp sections
U → X ×Rn′ with maps u 7→ (u; c1(u), . . . , cn′(u)) for cj ∈ O(U)). This induces the identity on
M (x) on x-fibers over each x ∈ X, so it gives the desired O-linear isomorphism θM . �
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As a fundamental application of Theorem 3.1, we may now construct the tangent bundle. Suppose
X is a Cp premanifold with corners, with 1 ≤ p ≤ ∞. Let O ′ be the R-space structure on X
associated to the “underlying” Cp−1 premanifold with corners. Of special interest to us is the
O ′-module VecX whose value on a non-empty open set U is the O ′(U)-module of Cp−1 vector fields
on U .

Definition 3.2. The tangent bundle TX → X is the Cp−1 vector bundle VVecX
.

We have natural R-linear isomorphism TX(x) ' VecX(x) ' Tx(X), where the first step is

the composite isomorphism VM (x) ' V M (x)
θM (x)
' M (x) for M = VecX and the second step is

induced by [(U,~v)]x 7→ ~v(x) for ~v ∈ VecX(U) with open U around x (this second map was studied
in Exampe 1.3). The natural O ′-linear isomorphism θVecX

: TX ' VecX provides the precise
relationship between the tangent bundle and Cp−1 vector fields on opens in X: a set-theoretic
vector field ~v : u 7→ ~v(u) ∈ Tu(X) ' (TX)(u) over an open U ⊆ X is Cp−1 if and only if as a
set-theoretic U -section of the Cp−1 vector bundle TX → X it is a Cp−1 mapping.

Example 3.3. If {x1, . . . , xn} is a Cp coordinate system on an open U containing x, then {∂xj}
trivializes VecX |U and hence trivializes TX = VVecX

over U via sections whose values in each fiber
TX(u) = VecX(u) ' Tu(X) over u ∈ U are exactly the ∂xj |u’s. In other words, when we identify
the ∂xj ’s with trivializing sections for TX|U the natural isomorphism TX(x) ' Tx(X) for x ∈ U
carries their fiber-values over to the tangent vectors ∂xj |x at x. Thus, there is no risk of confusion
with viewing the ∂xj ’s as elements of TX(U) and identifying TX(x) with Tx(X) for x ∈ U .

Example 3.4. Let us push the preceding calculation further in the special case that X is open in
a finite-dimensional vector space V . In this case I claim that there is a canonical isomorphism
X × V ' TX of C∞ vector bundles over X, given on fibers by the mapping

V ' (TX)(x) ' Tx(X)

sending v ∈ V to the directional derivative operator Dv,x ∈ Tx(X) at x. Let us choose a ba-
sis {v1, . . . , vn} of V and let t1, . . . , tn be the dual functionals (basis of V ∨). We then have
a bundle isomorphism X × Rn ' TX via the preceding example, inducing the fiber mapping
Rn ' (TX)(x) ' Tx(X) that sends ej to ∂tj |x = Dvj ,x for all j and all x ∈ X. Thus, the composite
bundle isomorphism

X × V ' X ×Rn ' TX

induces the fiber mapping V ' Rn ' (TX)(x) ' Tx(X) that sends vj to Dvj ,x for all j. But the
mapping V → Tx(X) defined by v 7→ Dv,x is linear and has the same effect on the basis vectors vj ,
so these mappings coincide.

An important property of the tangent bundle is that it globalizes the theory of the tangent map
at points. More precisely:

Theorem 3.5. Let f : X ′ → X be a Cp mapping between Cp premanifolds with corners, 1 ≤ p ≤ ∞.
There is a unique morphism of Cp−1 vector bundles

TX ′

��

df // TX

��
X ′

f
// X
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such that for each x′ ∈ X ′ the induced R-linear map TX ′(x′) → TX(f(x′)) is exactly the old
tangent map df(x′) : Tx′(X ′) → Tf(x′)(X). Moreover, if g : X ′′ → X ′ is a second such map, then
d(f ◦ g) = df ◦ dg.

As a special case, if X ′ = X and f is the identity map then df is the identity map on TX
because this holds on fibers over each x ∈ X (due to the tangent map of the identity of X being
the identity on each tangent space of X).

Proof. Once the global df is constructed, the identity d(f ◦g) = df ◦dg may be checked by working
on fibers where (via the isomorphisms TX(x) ' Tx(X) for each x ∈ X and analogues for X ′ and
X ′′) it is just the Chain Rule. Also, the uniqueness of df is due to the fact that we are specifying
it on fibers. Our problem is therefore one of constructing df as a map of Cp−1 bundles over the
Cp−1 mapping f : X ′ → X. By gluing for bundle morphisms and the uniqueness of what we are
trying to construct, it suffices to work locally on X and X ′ since solutions locally over the base
must agree over overlaps and hence glue to give a global mapping that is (check!) a solution to our
global problem. We may therefore work locally over X and then over X ′ to reduce to the special
case when X admits Cp coordinates {x1, . . . , xn} and X ′ admits Cp coordinates {x′1, . . . , x′n′}. Let
fi = xi ◦ f : X ′ → R be the component functions of f .

By Example 3.3 we have global trivializing sections {∂xi} in TX(X) and {∂x′j
} in TX ′(X ′) that

induce the ∂xi|x’s in TX(x) ' Tx(X) for each x ∈ X and the ∂x′j
|x′ ’s in TX ′(x′) ' Tx′(X ′) for

each x′ ∈ X ′. These give Cp−1 bundle isomorphisms TX ' X ×Rn over X and TX ′ ' X ′ ×Rn′

over X ′. Consider the Cp−1 mapping TX ′ ' X ′ × Rn → X × Rn ' TX in which the middle
mapping is given by

(x′, v) 7→ (f(x′), ((∂x′j
fi)(x′))(v))

for x′ ∈ X ′ and v ∈ Rn. This middle mapping is certainly a Cp−1 mapping since f is Cp and the
functions ∂x′j

fi : X ′ → R are Cp−1. Thus, if we call this composite Cp−1 mapping df , then it is
a mapping over f : X ′ → X inducing the fibral map TX ′(x′) → TX(f(x′)) that is exactly the
Jacobian matrix ((∂x′j

fi)(x′)) when TX ′(x′) ' Tx′(X ′) is given the ordered basis e′ = {∂x′j
|x′} and

TX(f(x′)) ' Tf(x′)(X) is given the ordered basis e = {∂xi |f(x′)}. This Jacobian matrix calculates
the old tangent mapping df(x′) : Tx′(X ′) → Tf(x′)(X) with respect to the ordered bases e′ and e,
so our construction df : TX ′ → TX has the desired fibral properties. �


