1. INTRODUCTION

Let (X, \mathscr{O}) be a C^p premanifold with corners with $0 \leq p \leq \infty$. In class we gave a recipe for constructing an \mathscr{O} -module \underline{E} associated to any C^p vector bundle $\pi : E \to X$: for any non-empty open set $U \subseteq X$, $\underline{E}(U)$ is the $\mathscr{O}(U)$ -module E(U) of C^p sections to $E \to X$ over $U \subseteq X$. (If Uis empty, we define $\underline{E}(U) = \{0\}$.) We saw in class that $\underline{E} \simeq \mathscr{O}^{\oplus n}$ as \mathscr{O} -modules if and only if $E \simeq X \times \mathbf{R}^n$ as C^p vector bundles over X.

Let us recall how the formation of \underline{E} is well-behaved with respect to restriction to open subsets in X. If $X' \subseteq X$ is an open subset, then we claim that the $\mathscr{O}|_{X'}$ -module $\underline{E}|_{X'}$ is exactly the one associated to the vector bundle $E|_{X'} \to X'$. The crux is that open subsets $U \subseteq X'$ are exactly the open sets of X that are contained in X' (as X' is open in X), and for such U we have that the module E(U) over $\mathscr{O}(U) = (\mathscr{O}|_{X'})(U)$ is equal to the set of C^p sections of $E \to X$ over U, which is the same as the set of C^p sections of $E|_{X'} \to X'$ over U.

The passage from E to \underline{E} is much better than merely well-behaved with respect to restriction over open sets in X; it is also well-behaved with respect to *variation in* E. More specifically, if $f: E' \to E$ is a bundle morphism between C^p vector bundles $\pi': E' \to X$ and $\pi: E \to X$ then we get an \mathscr{O} -linear map $\underline{f}: \underline{E}' \to \underline{E}$ as follows. We have to define $\mathscr{O}(U)$ -linear maps $\underline{f}_U: \underline{E}'(U) \to \underline{E}(U)$ for all opens $U \subseteq X$ such that the \underline{f}_U 's are compatible with shrinking U. In view of how \underline{E} and \underline{E}' are defined, this is a collection of compatible $\mathscr{O}(U)$ -linear maps $\underline{f}_U: E'(U) \to E(U)$ between $\mathscr{O}(U)$ -modules of C^p sections for non-empty open $U \subseteq X$ (and $\underline{f}_{\emptyset}$ is taken to be the zero map). The definition of \underline{f}_U for non-empty open U is given by composition: for any C^p -section $s: U \to E'$ we define $\underline{f}_U(s) \in E(U)$ to be $f \circ s: U \to E$. To see that $f \circ s$ really makes sense in E(U), we note that it is a C^p map because f and s are C^p , and it is a section to $\pi: E \to X$ over U because $\pi \circ (f \circ s) = (\pi \circ f) \circ s = \pi' \circ s = 1_U$ due to f being a map of vector bundles (giving $\pi \circ f = \pi'$) and s being a section of E' over U (giving $\pi' \circ s = 1_U$). The following lemma ensures that these set-theoretic maps f_U for varying U do define a map of \mathscr{O} -modules $\underline{E}' \to \underline{E}$:

Lemma 1.1. For each non-empty open set $U \subseteq X$, $\underline{f}_U : E'(U) \to E(U)$ is an $\mathcal{O}(U)$ -linear map. Moreover, if $U' \subseteq U$ is a non-empty open subset then the diagram

$$\begin{array}{c} E'(U) \xrightarrow{\underline{J}_U} E(U) \\ \downarrow & \downarrow \\ E'(U') \xrightarrow{\underline{f}_{U'}} E(U') \end{array}$$

commutes, where the vertical maps are restrictions.

We do not need to track the situation with the empty set because there is only one set-theoretic map to the zero module over any ring, namely the zero map.

Proof. To check $\mathscr{O}(U)$ -linearity, we must show that for $s_1, s_2 \in E'(U)$ and $a_1, a_2 \in \mathscr{O}(U)$,

$$\underline{f}_U(a_1s_1 + a_2s_2) = a_1 \cdot \underline{f}_U(s_1) + a_2 \cdot \underline{f}_U(s_2)$$

in E(U). That is,

$$f \circ (a_1 s_1 + a_2 s_2) \stackrel{?}{=} a_1 \cdot (f \circ s_1) + a_2 \cdot (f \circ s_2)$$

in E(U). Equivalently, for each $u \in U$ we need

 $f|_u((a_1s_1 + a_2s_2)(u)) = a_1(u) \cdot f|_u(s_1(u)) + a_2(u) \cdot f|_u(s_2(u))$

where $f|_u : E'(u) \to E(u)$ is the **R**-linear fiber map over u induced by the bundle map f over X. But by *definition* of the $\mathscr{O}(U)$ -module structure on E'(U) we have $(a_1s_1 + a_2s_2)(u) = a_1(u)s_1(u) + a_2(u)s_2(u)$ in the **R**-vector space E'(u), so the desired identity on u-fibers just expresses the **R**-linearity of $f|_u$. This completes the proof that f_U is \mathscr{O} -linear.

Next, we have to verify the compatibility with respect to restriction to smaller (non-empty) open sets: this is the commutative diagram in the lemma. We have to show that for $s \in E'(U)$, the restriction $(\underline{f}_U(s))|_{U'} \in E(U')$ is equal to $\underline{f}_{U'}(s|_{U'})$. To check such equality of sections over U' it is the same to check at each point $u' \in U'$, so the problem is to prove $(\underline{f}_U(s))(u') = (\underline{f}_{U'}(s|_{U'}))(u')$ in E(u') for all $u' \in U'$. That is, we want $(f \circ s)(u') = (f \circ s|_{U'})(u')$ for all $u' \in U'$. The map $f \circ s : U \to E$ has restriction to $U' \subseteq U$ that is certainly equal to $f \circ s|_{U'}$, so we are done.

The formation of f gives a map of sets

$$\operatorname{Hom}_X(E', E) \to \operatorname{Hom}_{\mathscr{O}}(\underline{E}', \underline{E})$$

from the set of C^p vector bundle morphisms to the set of \mathscr{O} -linear maps: we send f to \underline{f} . (Note that if E' = E then $\underline{\mathrm{id}}_E = \mathrm{id}_{\underline{E}}$.) Both Hom-sets have an $\mathscr{O}(X)$ -module structure (we add maps and multiply by global functions in $\mathscr{O}(X)$ in the evident pointwise manner), and reviewing the definition of \underline{f} shows that this map of Hom-sets is $\mathscr{O}(X)$ -linear. Of much greater interest is that it is an *isomorphism*, or equivalently that it is bijective. That is, we claim that any \mathscr{O} -linear map $\underline{E}' \to \underline{E}$ has the form \underline{f} for a *unique* C^p vector bundle map $f : E' \to E$ over X. The significance of this is that it ensures we can work with vector bundles via the theory of \mathscr{O} -modules without losing touch with C^p vector bundle maps.

Before we take up the task of proving the bijectivity result on Hom-sets, we record that passage from f to f is also well-behaved with respect to composition:

Lemma 1.2. If $g: E'' \to E'$ and $f: E' \to E$ are bundle morphisms between C^p vector bundles, then $f \circ g: \underline{E}'' \to \underline{E}$ is equal to $f \circ g$.

Proof. By definition of bundle morphisms, we must prove that for each open set $U \subseteq X$, the $\mathscr{O}(U)$ linear map $\underline{f} \circ \underline{g}_U : \underline{E}''(U) \to \underline{E}(U)$ is the composite of $\underline{g}_U : \underline{E}''(U) \to \underline{E}'(U)$ and $\underline{f}_U : \underline{E}'(U) \to \underline{E}(U)$. The case $U = \emptyset$ is trivial (as everything vanishes in this case), so we may assume U is non-empty. We have to prove that composing the map $E''(U) \to E'(U)$ defined by $s'' \mapsto g \circ s''$ and the map $E'(U) \to E(U)$ defined by $s' \mapsto f \circ s'$ gives the map $E''(U) \to E(U)$ defined by $s'' \mapsto (f \circ g) \circ s''$. Since

$$(f \circ g) \circ s'' = f \circ (g \circ s''),$$

we are done.

2. BIJECTION OF HOM SETS

The result is this:

Theorem 2.1. Let X be a C^p premanifold with corners, $0 \le p \le \infty$. For any two C^p vector bundles E and E' on X the map of sets

$$\operatorname{Hom}_X(E', E) \to \operatorname{Hom}_{\mathscr{O}}(\underline{E}', \underline{E})$$

defined by $f \mapsto \underline{f}$ is bijective; that is, every \mathcal{O} -linear map $\underline{E}' \to \underline{E}$ has the form \underline{f} for a unique C^p bundle mapping $f: E' \to E$ over X.

Before we prove the theorem, we record an important corollary.

Corollary 2.2. Let \mathscr{M} be a locally free \mathscr{O} -module with finite rank. If $E \to X$ and $E' \to X$ are C^p vector bundles and $\theta : \underline{E} \simeq \mathscr{M}$ and $\theta' : \underline{E}' \simeq \mathscr{M}$ are \mathscr{O} -module isomorphisms then there is a unique C^p isomorphism of bundles $f : E' \simeq E$ such that $\theta \circ \underline{f} = \theta'$. In other words, up to unique isomorphism there is at most one pair (E, θ) for a given \mathscr{M} .

In a later handout it will be proved that for any \mathscr{M} such a pair (E, θ) always exists, and so we may say that the concepts of C^p vector bundle and locally free \mathscr{O} -module of finite rank are "the same".

Proof. The necessary and sufficient condition on f is $\underline{f} = \theta^{-1} \circ \theta'$, and Theorem 2.1 ensures that there do exist unique bundle maps $f : E' \to E$ and $f' : E \to E'$ such that $\underline{f} = \theta^{-1} \circ \theta'$ and $\underline{f'} = \theta'^{-1} \circ \theta$. We have to prove that f is a bundle isomorphism, and we shall actually prove that $\overline{f'}$ is inverse to f. Using Lemma 1.2 we get

$$\underline{f \circ f'} = \underline{f} \circ \underline{f'} = \theta^{-1} \circ \theta' \circ {\theta'}^{-1} \circ \theta = \mathrm{id}_{\underline{E}} = \underline{\mathrm{id}}_{\underline{E}},$$

so by the injectivity in Theorem 2.1 we must have $f \circ f' = id_E$. Similarly, $f' \circ f = id_{E'}$, so f and f' are inverse to each other. In particular, f is an isomorphism of C^p vector bundles.

Now we prepare to prove Theorem 2.1. We prove the bijectivity on Hom-sets in two stages: for trivial bundles and then in the general case. First assume that E and E' are trivial, say with trivializing sections s_1, \ldots, s_n in E(X) and $s'_1, \ldots, s'_{n'}$ in E'(X). To give a map $E' \to E$ is to specify where the s'_j 's go, say $s'_j \mapsto \sum a_{ij}s_i$ for $a_{ij} \in \mathcal{O}(X)$ for $1 \leq j \leq n'$ and $1 \leq i \leq n$. The trivializations identify \underline{E} with $\mathcal{O}^{\oplus n}$ and \underline{E}' with $\mathcal{O}^{\oplus n'}$, so we have to prove that the only compatible collections of $\mathcal{O}(U)$ -linear maps $T_U: \mathcal{O}(U)^{\oplus n'} \to \mathcal{O}(U)^{\oplus n}$ for varying U are those given by

$$(c_1,\ldots,c_{n'})\mapsto \left(\sum_j a_{1j}|_U\cdot c_j,\ldots,\sum_j a_{nj}|_U\cdot c_j\right)$$

for unique $a_{ij} \in \mathscr{O}(X)$.

If we are given a compatible collection of T_U 's, then by compatibility with restriction from X to U we have

$$T_U((c_1,\ldots,c_{n'})) = T_U\left(\sum_j c_j \cdot e_j|_U\right) = \sum_j c_j \cdot T_U(e_j|_U) = \sum_j c_j \cdot T_X(e_j)|_U.$$

Thus, from the expressions $T_X(e_j) = (a_{1j}, \ldots, a_{nj}) \in \mathscr{O}(X)^{\oplus n}$ we see that $T = \{T_U\}$ arises from such a_{ij} 's. Moreover, the a_{ij} 's are uniquely determined from the $T_X(e_j)$'s, so this settles the case when E and E' are trivial.

Now we pass to the general case. Let $\{U_i\}$ be an open covering of X on which E and E' become trivial. (To find such a cover, we first find trivializing open covers $\{X_k\}$ for E and $\{X'_{k'}\}$ for E', and we take the U_i 's to be the overlaps $X_k \cap X_{k'}$ indexed by ordered pairs i = (k, k'). Each $x \in X$ lies in some X_k and some $X'_{k'}$, so x lies in some overlap $X_k \cap X'_{k'}$. Hence, these U_i 's do indeed form a trivializing cover for E and E'.) Let $E_i = E|_{U_i}$ and $E_{ij} = E|_{U_i \cap U_j}$, and similarly for E', so the bundles E_i and E'_i on U_i are trivial and the bundles E_{ij} and E'_{ij} on U_{ij} are trivial. We will systematically use the settled case of trivial bundles, applied to the restrictions of E and E' over U_i and $U_i \cap U_j$ for all i and j. We will also make frequent use of the observation that for any inclusion of open sets $U' \subseteq U$ in X (such as U_{ij} inside of U_i , or U_i inside of X) the diagram of Hom-sets

is commutative.

To prove injectivity in the general case, suppose $f, g : E' \rightrightarrows E$ are bundle morphisms such that $\underline{f} = \underline{g}$. This implies the equality $\underline{f}|_{U_i} = \underline{g}|_{U_i}$ of $\mathscr{O}|_{U_i}$ -module maps for all i, which is to say that the bundle morphisms $f|_{U_i}, g|_{U_i} : E'|_{U_i} \rightrightarrows E|_{U_i}$ induce the same $\mathscr{O}|_{U_i}$ -module maps for all i. Hence, by injectivity in the settled case of trivial bundles (applied over the base space U_i !) it follows that $f|_{U_i} = g|_{U_i}$ for all i, so f = g. This proves injectivity in general.

Turning to the case of surjectivity, let $\varphi : \underline{E}' \to \underline{E}$ be a map of \mathscr{O} -modules. We seek to construct a bundle morphism $f : E' \to E$ such that $\underline{f} = \varphi$. Let $\varphi_i = \varphi|_{U_i}$ as a map of $\mathscr{O}|_{U_i}$ -modules for all *i*. By the settled case of trivial bundles (applied over the base space U_i !) we have $\varphi_i = \underline{f}_i$ for a unique bundle morphism $f_i : E'|_{U_i} \to E|_{U_i}$ for all *i*. Consider the two bundle morphisms

 $f_i|_{U_i \cap U_j}, f_j|_{U_i \cap U_j} : E'|_{U_i \cap U_j} \rightrightarrows E|_{U_i \cap U_j}.$

These give rise to $\mathscr{O}|_{U_i \cap U_j}$ -module maps $\underline{f}_i|_{U_i \cap U_j} = \varphi_i|_{U_i \cap U_j}$ and $\underline{f}_j|_{U_i \cap U_j} = \varphi_j|_{U_i \cap U_j}$ that are equal: they coincide with $\varphi|_{U_i \cap U_j}$. Hence, by injectivity for the settled case of trivial bundles (applied over the base space $U_i \cap U_j$!) we get $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for all i and j. This says that the f_i 's satisfy the hypotheses for gluing of bundle morphisms, so there is a unique bundle morphism $f: E' \to E$ such that $f|_{U_i} = f_i$ for all i. Hence, $\underline{f}|_{U_i} = \underline{f}_i = \varphi_i = \varphi_i|_{U_i}$ for all i.

To conclude that $\underline{f} = \varphi$, thereby settling surjectivity, it remains to prove that if $\{U_i\}$ is an open covering of X and $\varphi, \psi : \mathscr{M}' \rightrightarrows \mathscr{M}$ is a pair of \mathscr{O} -linear maps of \mathscr{O} -modules such that $\varphi|_{U_i} = \psi|_{U_i}$ as maps from $\mathscr{M}'|_{U_i}$ to $\mathscr{M}|_{U_i}$ for all i, then $\varphi = \psi$. That is, we want $\varphi_U = \psi_U$ as maps from $\mathscr{M}'(U)$ to $\mathscr{M}(U)$ for all open $U \subseteq X$. Choose $s' \in \mathscr{M}'(U)$, so we want $\varphi_U(s') = \psi_U(s')$ in $\mathscr{M}(U)$. Since $\{U \cap U_i\}$ is an open covering of U, to check equality in $\mathscr{M}(U)$ it suffices to check equality of restrictions in $\mathscr{M}(U \cap U_i)$ for all i. Thus, we pick an i and need to prove $\varphi_U(s')|_{U \cap U_i} = \psi_U(s')|_{U \cap U_i}$ in $\mathscr{M}(U \cap U_i)$. But since φ and ψ are maps of \mathscr{O} -modules, we have compatibilities with respect to restriction to smaller opens. In particular,

$$\varphi_{U}(s')|_{U \cap U_{i}} = \varphi_{U \cap U_{i}}(s'|_{U \cap U_{i}}), \ \psi_{U}(s')|_{U \cap U_{i}} = \psi_{U \cap U_{i}}(s'|_{U \cap U_{i}})$$

in $\mathscr{M}(U \cap U_i)$. Hence, it suffices to prove $\varphi_{U \cap U_i} = \psi_{U \cap U_i}$. But by hypothesis $\varphi|_{U_i} = \psi|_{U_i}$ as maps from $\mathscr{M}'|_{U_i}$ to $\mathscr{M}|_{U_i}$, so in particular these restrictions over U_i induce the same maps from $\mathscr{M}'(U \cap U_i)$ to $\mathscr{M}(U \cap U_i)$. This is exactly the desired equality of maps $\varphi_{U \cap U_i} = \psi_{U \cap U_i}$.