
Math 396. Maps of vector bundles and O-modules

1. Introduction

Let (X,O) be a Cp premanifold with corners with 0 ≤ p ≤ ∞. In class we gave a recipe for
constructing an O-module E associated to any Cp vector bundle π : E → X: for any non-empty
open set U ⊆ X, E(U) is the O(U)-module E(U) of Cp sections to E → X over U ⊆ X. (If U
is empty, we define E(U) = {0}.) We saw in class that E ' O⊕n as O-modules if and only if
E ' X ×Rn as Cp vector bundles over X.

Let us recall how the formation of E is well-behaved with respect to restriction to open subsets
in X. If X ′ ⊆ X is an open subset, then we claim that the O|X′-module E|X′ is exactly the one
associated to the vector bundle E|X′ → X ′. The crux is that open subsets U ⊆ X ′ are exactly the
open sets of X that are contained in X ′ (as X ′ is open in X), and for such U we have that the
module E(U) over O(U) = (O|X′)(U) is equal to the set of Cp sections of E → X over U , which is
the same as the set of Cp sections of E|X′ → X ′ over U .

The passage from E to E is much better than merely well-behaved with respect to restriction
over open sets in X; it is also well-behaved with respect to variation in E. More specifically, if
f : E′ → E is a bundle morphism between Cp vector bundles π′ : E′ → X and π : E → X then we
get an O-linear map f : E′ → E as follows. We have to define O(U)-linear maps f

U
: E′(U)→ E(U)

for all opens U ⊆ X such that the f
U

’s are compatible with shrinking U . In view of how E and
E′ are defined, this is a collection of compatible O(U)-linear maps f

U
: E′(U) → E(U) between

O(U)-modules of Cp sections for non-empty open U ⊆ X (and f∅ is taken to be the zero map).
The definition of f

U
for non-empty open U is given by composition: for any Cp-section s : U → E′

we define f
U

(s) ∈ E(U) to be f ◦ s : U → E. To see that f ◦ s really makes sense in E(U), we
note that it is a Cp map because f and s are Cp, and it is a section to π : E → X over U because
π ◦ (f ◦ s) = (π ◦ f) ◦ s = π′ ◦ s = 1U due to f being a map of vector bundles (giving π ◦ f = π′)
and s being a section of E′ over U (giving π′ ◦ s = 1U ). The following lemma ensures that these
set-theoretic maps f

U
for varying U do define a map of O-modules E′ → E:

Lemma 1.1. For each non-empty open set U ⊆ X, f
U

: E′(U) → E(U) is an O(U)-linear map.
Moreover, if U ′ ⊆ U is a non-empty open subset then the diagram

E′(U)
f
U //

��

E(U)

��
E′(U ′)

f
U′

// E(U ′)

commutes, where the vertical maps are restrictions.

We do not need to track the situation with the empty set because there is only one set-theoretic
map to the zero module over any ring, namely the zero map.

Proof. To check O(U)-linearity, we must show that for s1, s2 ∈ E′(U) and a1, a2 ∈ O(U),

f
U

(a1s1 + a2s2) = a1 · fU (s1) + a2 · fU (s2)

in E(U). That is,

f ◦ (a1s1 + a2s2) ?= a1 · (f ◦ s1) + a2 · (f ◦ s2)
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in E(U). Equivalently, for each u ∈ U we need

f |u((a1s1 + a2s2)(u)) = a1(u) · f |u(s1(u)) + a2(u) · f |u(s2(u))

where f |u : E′(u) → E(u) is the R-linear fiber map over u induced by the bundle map f over X.
But by definition of the O(U)-module structure on E′(U) we have (a1s1 + a2s2)(u) = a1(u)s1(u) +
a2(u)s2(u) in the R-vector space E′(u), so the desired identity on u-fibers just expresses the R-
linearity of f |u. This completes the proof that f

U
is O-linear.

Next, we have to verify the compatibility with respect to restriction to smaller (non-empty) open
sets: this is the commutative diagram in the lemma. We have to show that for s ∈ E′(U), the
restriction (f

U
(s))|U ′ ∈ E(U ′) is equal to f

U ′
(s|U ′). To check such equality of sections over U ′ it is

the same to check at each point u′ ∈ U ′, so the problem is to prove (f
U

(s))(u′) = (f
U ′

(s|U ′))(u′)
in E(u′) for all u′ ∈ U ′. That is, we want (f ◦ s)(u′) = (f ◦ s|U ′)(u′) for all u′ ∈ U ′. The map
f ◦ s : U → E has restriction to U ′ ⊆ U that is certainly equal to f ◦ s|U ′ , so we are done. �

The formation of f gives a map of sets

HomX(E′, E)→ HomO(E′, E)

from the set of Cp vector bundle morphisms to the set of O-linear maps: we send f to f . (Note
that if E′ = E then idE = idE .) Both Hom-sets have an O(X)-module structure (we add maps
and multiply by global functions in O(X) in the evident pointwise manner), and reviewing the
definition of f shows that this map of Hom-sets is O(X)-linear. Of much greater interest is that
it is an isomorphism, or equivalently that it is bijective. That is, we claim that any O-linear map
E′ → E has the form f for a unique Cp vector bundle map f : E′ → E over X. The significance of
this is that it ensures we can work with vector bundles via the theory of O-modules without losing
touch with Cp vector bundle maps.

Before we take up the task of proving the bijectivity result on Hom-sets, we record that passage
from f to f is also well-behaved with respect to composition:
Lemma 1.2. If g : E′′ → E′ and f : E′ → E are bundle morphisms between Cp vector bundles,
then f ◦ g : E′′ → E is equal to f ◦ g.

Proof. By definition of bundle morphisms, we must prove that for each open set U ⊆ X, the O(U)-
linear map f ◦ g

U
: E′′(U) → E(U) is the composite of g

U
: E′′(U) → E′(U) and f

U
: E′(U) →

E(U). The case U = ∅ is trivial (as everything vanishes in this case), so we may assume U is
non-empty. We have to prove that composing the map E′′(U) → E′(U) defined by s′′ 7→ g ◦ s′′
and the map E′(U) → E(U) defined by s′ 7→ f ◦ s′ gives the map E′′(U) → E(U) defined by
s′′ 7→ (f ◦ g) ◦ s′′. Since

(f ◦ g) ◦ s′′ = f ◦ (g ◦ s′′),
we are done. �

2. Bijection of Hom sets

The result is this:
Theorem 2.1. Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞. For any two Cp vector
bundles E and E′ on X the map of sets

HomX(E′, E)→ HomO(E′, E)

defined by f 7→ f is bijective; that is, every O-linear map E′ → E has the form f for a unique Cp

bundle mapping f : E′ → E over X.
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Before we prove the theorem, we record an important corollary.

Corollary 2.2. Let M be a locally free O-module with finite rank. If E → X and E′ → X are
Cp vector bundles and θ : E ' M and θ′ : E′ ' M are O-module isomorphisms then there is a
unique Cp isomorphism of bundles f : E′ ' E such that θ ◦ f = θ′. In other words, up to unique
isomorphism there is at most one pair (E, θ) for a given M .

In a later handout it will be proved that for any M such a pair (E, θ) always exists, and so we
may say that the concepts of Cp vector bundle and locally free O-module of finite rank are “the
same”.

Proof. The necessary and sufficient condition on f is f = θ−1 ◦ θ′, and Theorem 2.1 ensures that
there do exist unique bundle maps f : E′ → E and f ′ : E → E′ such that f = θ−1 ◦ θ′ and
f ′ = θ′−1 ◦ θ. We have to prove that f is a bundle isomorphism, and we shall actually prove that
f ′ is inverse to f . Using Lemma 1.2 we get

f ◦ f ′ = f ◦ f ′ = θ−1 ◦ θ′ ◦ θ′−1 ◦ θ = idE = idE ,

so by the injectivity in Theorem 2.1 we must have f ◦ f ′ = idE . Similarly, f ′ ◦ f = idE′ , so f and
f ′ are inverse to each other. In particular, f is an isomorphism of Cp vector bundles. �

Now we prepare to prove Theorem 2.1. We prove the bijectivity on Hom-sets in two stages:
for trivial bundles and then in the general case. First assume that E and E′ are trivial, say with
trivializing sections s1, . . . , sn in E(X) and s′1, . . . , s

′
n′ in E′(X). To give a map E′ → E is to

specify where the s′j ’s go, say s′j 7→
∑
aijsi for aij ∈ O(X) for 1 ≤ j ≤ n′ and 1 ≤ i ≤ n. The

trivializations identify E with O⊕n and E′ with O⊕n
′
, so we have to prove that the only compatible

collections of O(U)-linear maps TU : O(U)⊕n
′ → O(U)⊕n for varying U are those given by

(c1, . . . , cn′) 7→

∑
j

a1j |U · cj , . . . ,
∑
j

anj |U · cj


for unique aij ∈ O(X).

If we are given a compatible collection of TU ’s, then by compatibility with restriction from X to
U we have

TU ((c1, . . . , cn′)) = TU

∑
j

cj · ej |U

 =
∑
j

cj · TU (ej |U ) =
∑
j

cj · TX(ej)|U .

Thus, from the expressions TX(ej) = (a1j , . . . , anj) ∈ O(X)⊕n we see that T = {TU} arises from
such aij ’s. Moreover, the aij ’s are uniquely determined from the TX(ej)’s, so this settles the case
when E and E′ are trivial.

Now we pass to the general case. Let {Ui} be an open covering of X on which E and E′ become
trivial. (To find such a cover, we first find trivializing open covers {Xk} for E and {X ′k′} for E′,
and we take the Ui’s to be the overlaps Xk ∩Xk′ indexed by ordered pairs i = (k, k′). Each x ∈ X
lies in some Xk and some X ′k′ , so x lies in some overlap Xk ∩ X ′k′ . Hence, these Ui’s do indeed
form a trivializing cover for E and E′.) Let Ei = E|Ui and Eij = E|Ui∩Uj , and similarly for E′, so
the bundles Ei and E′i on Ui are trivial and the bundles Eij and E′ij on Uij are trivial. We will
systematically use the settled case of trivial bundles, applied to the restrictions of E and E′ over Ui
and Ui∩Uj for all i and j. We will also make frequent use of the observation that for any inclusion
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of open sets U ′ ⊆ U in X (such as Uij inside of Ui, or Ui inside of X) the diagram of Hom-sets

HomU (E′, E) //

��

HomO|U (E′|U , E|U )

��
HomU (E′|U ′ , E|U ′) // HomO|U′ (E

′|U ′ , E|U ′)

is commutative.
To prove injectivity in the general case, suppose f, g : E′ ⇒ E are bundle morphisms such that

f = g. This implies the equality f |Ui = g|Ui of O|Ui-module maps for all i, which is to say that the
bundle morphisms f |Ui , g|Ui : E′|Ui ⇒ E|Ui induce the same O|Ui-module maps for all i. Hence,
by injectivity in the settled case of trivial bundles (applied over the base space Ui!) it follows that
f |Ui = g|Ui for all i, so f = g. This proves injectivity in general.

Turning to the case of surjectivity, let ϕ : E′ → E be a map of O-modules. We seek to construct
a bundle morphism f : E′ → E such that f = ϕ. Let ϕi = ϕ|Ui as a map of O|Ui-modules for all
i. By the settled case of trivial bundles (applied over the base space Ui!) we have ϕi = f

i
for a

unique bundle morphism fi : E′|Ui → E|Ui for all i. Consider the two bundle morphisms

fi|Ui∩Uj , fj |Ui∩Uj : E′|Ui∩Uj ⇒ E|Ui∩Uj .
These give rise to O|Ui∩Uj -module maps f

i
|Ui∩Uj = ϕi|Ui∩Uj and f

j
|Ui∩Uj = ϕj |Ui∩Uj that are equal:

they coincide with ϕ|Ui∩Uj . Hence, by injectivity for the settled case of trivial bundles (applied over
the base space Ui ∩ Uj !) we get fi|Ui∩Uj = fj |Ui∩Uj for all i and j. This says that the fi’s satisfy
the hypotheses for gluing of bundle morphisms, so there is a unique bundle morphism f : E′ → E
such that f |Ui = fi for all i. Hence, f |Ui = f

i
= ϕi = ϕ|Ui for all i.

To conclude that f = ϕ, thereby settling surjectivity, it remains to prove that if {Ui} is an open
covering of X and ϕ,ψ : M ′ ⇒M is a pair of O-linear maps of O-modules such that ϕ|Ui = ψ|Ui
as maps from M ′|Ui to M |Ui for all i, then ϕ = ψ. That is, we want ϕU = ψU as maps from
M ′(U) to M (U) for all open U ⊆ X. Choose s′ ∈M ′(U), so we want ϕU (s′) = ψU (s′) in M (U).
Since {U ∩ Ui} is an open covering of U , to check equality in M (U) it suffices to check equality of
restrictions in M (U ∩Ui) for all i. Thus, we pick an i and need to prove ϕU (s′)|U∩Ui = ψU (s′)|U∩Ui
in M (U ∩Ui). But since ϕ and ψ are maps of O-modules, we have compatibilities with respect to
restriction to smaller opens. In particular,

ϕU (s′)|U∩Ui = ϕU∩Ui(s
′|U∩Ui), ψU (s′)|U∩Ui = ψU∩Ui(s

′|U∩Ui)
in M (U ∩ Ui). Hence, it suffices to prove ϕU∩Ui = ψU∩Ui . But by hypothesis ϕ|Ui = ψ|Ui as
maps from M ′|Ui to M |Ui , so in particular these restrictions over Ui induce the same maps from
M ′(U ∩ Ui) to M (U ∩ Ui). This is exactly the desired equality of maps ϕU∩Ui = ψU∩Ui .


