
Math 395. Compactness review from Math 296
In Math 296, the theory of compact subsets of finite-dimensional normed vector spaces was

developed, and some interesting results (such as the extreme value theorem on such subsets, and
their characterization as the closed and bounded subsets) were proved. This handout reviews some
of those results and proofs, to convince you that the proofs worked much more generally (in either
metric or topological spaces, depending on the situation).

1. Relations with continuity

Recall that the crux of the Extreme Value Theorem was the result that a continuous image of
a compact set is compact, at least in the context of subsets of finite-dimensional R-vector spaces.
The same argument works in general:

Theorem 1.1. Let f : X → X ′ be a continuous map between topological spaces. If K ⊆ X is
compact (for the subspace topology) then f(K) ⊆ X ′ is compact.

Proof. The inclusion i : K → X is continuous when using the subspace topology on K, so the map
f ◦ i : K → X ′ is continuous. Its image is f(K), so we may replace f with f ◦ i to reduce to the
case when X is compact. Also, when the subset f(X) ⊆ X ′ is given the subspace topology then
we have seen that in general (having nothing to do with compactness) continuity of f is the same
as that of the surjective map X → f(X). Hence, since our problem concerns subsets of f(X) and
the subspace topology is transitive, we can replace X ′ with f(X) to reduce to the case when f is
surjective.

That is, f is now a continuous surjection with compact source, and we want to prove compactness
of the target. Let {U ′

i} be an open cover of X ′, so {f−1(U ′
i)} is an open cover of the compact X.

By compactness of X, some finite collection of f−1(U ′
i)’s covers X, say for i1, . . . , in, whence the

union of their images f(f−1(U ′
ij

)) covers f(X) = X ′. Since f(f−1(U ′
i)) ⊆ U ′

i for each i, it follows
that the union of U ′

i1
, . . . , U ′

in
fills up all of X ′. �

A map f : (X, ρ) → (X ′, ρ′) between metric spaces is uniformly continuous if, for every ε > 0,
there exists δ > 0 such that ρ(x1, x2) < δ implies ρ′(f(x1), f(x2)) < ε. This certainly forces f to be
continuous (as it imposes a strong condition, namely that “δ is uniform across X for a given ε”), and
it is a natural generalization of uniform continuity in the context of maps between subsets of finite-
dimensional normed vector spaces. Note that this notion is a metric condition and not topological.
Indeed, the definition uses the metric structure in an essential way, and there is no evident way to
discuss “uniformity” in general topological spaces without imposing some extra structure on the
space to make possible a comparison of what is going on at different points, so this strongly suggests
that uniform continuity is a metric notion. To be rigorous (since we have seen that other notions
that seem to be metric concepts, such as the “accumulation point” definition for closedness or the
“sequential” definition for continuity, do in fact admit topological formulations), we should really
exhibit an example of a continuous map between metrizable spaces that is uniformly continuous
with respect to one pair of metrics inducing the given topologies, but is not uniform for another
such pair of metrics.

Example 1.2. On R, define ρ(x, y) = |ex − ey|. This is readily seen to be a metric, and it induces
the usual topology on R. Let f : R → R be the map f(x) = x. This is certainly continuous (a
topological property), and it is uniformly continuous for the usual metric on both source and target
(with δ = ε). However, if we give the source the usual metric and give the target the metric ρ then
uniform continuous with ε = 1 would say that for some δ > 0 we have ρ(f(x), f(y)) < 1 whenever
|x − y| < δ, which is to say |ex − ey| < 1 for |x − y| < δ. However, taking y = x + δ/2 for any
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δ > 0 gives |ex − ey| = ex|1 − eδ/2| and with any fixed δ > 0 this gets arbitrarily large (and so
certainly ≥ 1) if we use x very large. Thus, uniform continuity does not hold for f with respect to
this modified choice of metrics to give the usual topology on R.

Having confirmed that uniform continuity really is a metric notion (or at least that it is definitely
not topological), let us prove the natural generalization of the result on uniform continuity from
Math 296:

Theorem 1.3. Let K be a compact metric space and f : K → Y a continuous map to another
metric space. The map f is uniformly continuous.

Proof. Pick ε > 0. For each k ∈ K there exists δk > 0 such that for any k′ ∈ K satisfying
ρK(k′, k) < δk we have ρY (f(k′), f(k)) < ε. The open balls Bδk/2(k) for varying k ∈ K cover
K, so by compactness finitely many do the job, say Bδki

/2(ki) for points k1, . . . , kn ∈ K. Let
δ = mini δki

/2 > 0. If k, k′ ∈ K satisfy ρK(k, k′) < δ then since k ∈ Bδki0
/2(ki0) for some i0 we

have
ρK(k′, ki0) ≤ ρK(k′, k) + ρK(k, ki0) < δ + δki0

/2 ≤ δki0
/2 + δki0

/2 = δki0
,

so k, k′ ∈ Bδki0
(ki0). Thus, both f(k) and f(k′) lie in the open ε-ball around f(ki0), whence by the

triangle inequality ρY (f(k), f(k′)) < 2ε. To summarize, for ε > 0 we have constructed δ > 0 such
that if k, k′ ∈ K satisfy ρK(k, k′) < δ then ρY (f(k), f(k′)) < 2ε. This is exactly the property of
uniform continuity (up to the usual business with universal positive constant multipliers on ε). �

2. Sequential compactness

A metric space (X, ρ) is sequentially compact when every sequence in X has a convergent subse-
quence. This looks like a metric notion, but it turns out to be purely topological: it only depends on
the underlying topological space. For example, in Rn it was shown that a subset with its subspace
topology is compact (a manifestly topological property) if and only if it is sequentially compact.
The same result (with suitably generalized proof) works for any metric space:

Theorem 2.1. Let (X, ρ) be a metric space. It is compact if and only if it is sequentially compact.

Proof. First assume X is compact, and let {xn} be a sequence in X. If it has no convergent
subsequence, then for any x ∈ X there exists εx > 0 such that Bεx(x) contains xn for only
finitely many n. (Indeed, if for some x no such εx exists then each ball B1/N (x) would contain
xn for infinitely many n, and so by taking N → ∞ we could build a subsequence converging to
x, contrary to hypothesis.) As an aside, note that we could even shrink εx to excise xn’s distinct
from x, though it might happen that x = xn for some (or even finitely many) n and so we certainly
cannot shrink εx so that Bεx(x) is disjoint from the set of xn’s for all n.

The open balls Bεx(x) for x ∈ X give an open covering of X, so there is a finite subcover: there
exist finitely many x’s (which we has better not call x1, . . . , xm, as the notation xi has already been
reserved!) whose associated open balls Bεx(x) cover X. However, each such ball contains xn for
only finitely many n, and so the union X of the finite collection of such balls likewise contains xn

for only finitely many n. This is absurd.
Conversely, suppose X is sequentially compact. Let {Ui} be an open cover of X, and suppose

that there is no finite subcover. We seek a contradiction. First of all, X must be totally bounded.
Indeed, if for some ε0 > 0 the space X is not covered by finitely many ε0-balls then we can
recursively make an infinite sequence of points xn ∈ X such that xn is not in the open ε0-ball
around any xm with m < n, and so the sequence {xn} has ρ(xn, xm) ≥ ε0 for all n 6= m. But such
a sequence {xn} clearly cannot have a convergent subsequence, contrary to the assumption that X
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is sequentially compact. Hence, for each N ≥ 1 the space X is covered by finitely balls B1/N (x),
say for x in some finite set of points ΣN ⊆ X. Since {Ui} has no finite subcover yet the finitely
many balls B1/N (x) for x ∈ ΣN do cover X, it follows that for each N there exists some xN ∈ ΣN

for which the ball B1/N (xN ) is not contained in any Ui. (Indeed, if for some N and each of the
finitely many x ∈ ΣN the ball B1/N (x) is contained in a Ui, then the resulting finitely many such
Ui’s would cover X, contradicting the assumption that {Ui} has no finite subcover.)

Consider the sequence {xN}. By sequential compactness, some subsequence {xN1 , xN2 , . . . } has
a limit x ∈ X. We have x ∈ Ui0 for some i0, and so by openness there exists ε > 0 such that
Bε(x) ⊆ Ui0 . For a large N > 2/ε we have xN ∈ Bε/2(x), so since 1/N < ε/2 the triangle
inequality gives

B1/N (xN ) ⊆ Bε(x) ⊆ Ui0 ,

contradicting how the xN ’s were chosen. This contradiction ensures that {Ui} has to have a finite
subcover after all. �

3. Products and closed sets

Two important properties of compactness were used in the proof that closed and bounded subsets
of Rn (using a norm metric) are necessarily compact: preservation of compactness under formation
of products (such as [a, b]n ⊆ Rn) and compactness of closed subsets of compact sets. We now
prove both results in general topological spaces, adapting the proofs from Math 296.

Theorem 3.1. A closed subset C in a compact topological space X is automatically compact (with
its subspace topology), and if X1, . . . , Xn are compact topological spaces then so is

∏
Xi with the

product topology.

Proof. We first prove that a closed set C in a compact space X is necessarily compact when C is
given its subspace topology. Since compactness for a subset (with the subspace topology!) can be
checked in terms of coverings by opens from the ambient space, let {Ui} be a collection of opens in
X whose union contains C. We seek a finite subcollection that does the job too. Well, since C is
closed in X, the complement U = X −C is open in X and hence U together with the Ui’s actually
cover all of X (as the union of the Ui’s already contains C). Hence, some finite collection of the
Ui’s, perhaps together with U , covers X since X is compact. We may or may not have included U
in this finite subcover, but either way it doesn’t touch C and so the finite subcollection of Ui’s just
found must have union containing C (as points of C sure don’t lie in U). This is the desired finite
subcover.

Now we prove that a finite product of compact spaces is compact. As in the case of preservation
of connectedness under formation of finite products, we may induct on n to reduce to the case
n = 2. Let X and X ′ be compact topological spaces; we want to prove that X ×X ′ is compact.
Let {Ui} be an open covering, so we seek a finite subcovering. We argue by slices, exactly as in our
study of connectivity (and as in the proof used in Math 296). First, we reduce to the case when the
opens in the covering are themselves products of opens in the factor spaces. Each open Ui contains
a product of opens V × V ′ around each of its points, and so the collection of all such opens V × V ′

contained in Ui for varying i is also an open cover of X ×X ′. If this covering has a finite subcover,
then each open V × V ′ in this finite subcover is contained in some Ui, and the resulting finitely
many “bigger” Ui’s will clearly also cover X ×X ′. This would provide the desired finite subcover.
Thus, we may suppose each Ui is a product, say Ui = Vi × V ′

i for opens Vi ⊆ X and V ′
i ⊆ X ′.

For each x ∈ X, the slice {x} ×X ′ in X ×X ′ gets as its subspace topology exactly the original
topology on X ′ (as we saw in the discussion of products of connected spaces). Since X ′ is compact,
it follows that finitely many of the opens Ui cover the slice {x}×X ′. That is, some finite collection
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Ui1,x , . . . , Uinx,x has union containing {x} × X ′. We have Ui = Vi × V ′
i for every i. Let Vx =

Vi1,x ∩ . . . V ′
inx,x

, so this is an open in X containing x and Vx×V ′
ij,x

⊆ Uij,x for each x. Moreover, Vx

meets {x} ×X ′ in the subset V ′
inx ,x of X ′, so the covering condition on the slice {x} ×X ′ implies

that the V ′
ij,x

’s cover X ′ for 1 ≤ j ≤ nx. Hence, the opens Vx × V ′
ij,x

⊆ Uij,x for 1 ≤ j ≤ nx cover
Vx × X ′ for each x ∈ X, so each subset Vx × X ′ in X × X ′ is contained in the union of finitely
many Ui’s (namely Uij ,x for 1 ≤ j ≤ nx). By compactness of X, some finite set of Vx’s covers X,
say Vx1 , . . . , Vxm . Thus, the finitely many Vxj × X ′’s cover X × X ′, and since each of these is in
turn contained in a union of finitely many Ui’s, the finite collection of such Ui’s as we run through
the finitely many xj ’s gives a finite set of Ui’s that covers all of X ×X ′. �


