The ℓ-adic Fourier Transform

Akshay Venkatesh∗

Mary 24, 2017

1 Kloosterman sums

Let \(\psi: \mathbb{F}_p \to \mathbb{C}^\times \) or \(\mathbb{Q}_p^\times \) be a character, e.g.
\[
 x \mapsto e^{2\pi i x/p}.
\]
An important property is that
\[
 \sum_{a \in \mathbb{F}_p} \psi(ay) = \begin{cases}
 0 & y \neq 0, \\
 p & y = 0
 \end{cases} \quad (1.1)
\]

For \(a \in \mathbb{F}_p^\times \), the Kloosterman sum \(K(a) \) is
\[
 K(a) = \sum_{xy=a} \psi(x+y) = \sum_{x \in \mathbb{F}_p, x \neq 0} \psi(ax + x^{-1}). \quad (1.2)
\]

Example 1.1. \(K(a) \) is always a real number, because the sum is symmetric with respect to complex conjugation. For \(p = 7 \) and \(a = 1 \), it is
\[
 \zeta_7^2 + \zeta_7^{-1}s + \zeta_7 + \zeta_7^{-2} + \zeta_7 + \zeta_7^{-1}.
\]

Remark 1.2. The analogue of \(K(a) \) over \(\mathbb{R} \) would be something like
\[
 \int_{\mathbb{R}} e^{i(ax+1/x)} \, dx.
\]
This isn’t convergent, but
\[
 \int_{\mathbb{R}} e^{-ax+1/x} \, dx \sim \sqrt{a}K(\sqrt{a})
\]
where \(K \) is a Bessel function. There is a parallel between these special functions and the special sheaves that will arise later.

∗notes by Tony Feng
This was first studied by Kloosterman, in analyzing the Hardy-Littlewood circle method. Obviously \(|K(a)| < p\); Kloosterman wanted to show that \(|K(a)|\) is much less than \(p\). He showed that

\[|K(a)| \leq p^{3/4}. \]

Weil later improved this to \(|K(a)| \leq 2\sqrt{p}\).

We’ll discuss Kloosterman’s proof. He studied the sum

\[\sum_{a} |K(a)|^4 \]

and showed

\[\sum_{a} |K(a)|^4 \leq cp^3. \]

We start off by writing

\[\sum_{a} |K(a)|^4 = \sum_{a} \sum_{x,y,z,w,} \psi(a(x + y - z - w) + (x^{-1} + y^{-1} - z^{-1} - w^{-1}) \]

Using \(1.1\), this is

\[= p \sum_{x+y=z+w} \psi(x^{-1} + y^{-1} - z^{-1} - w^{-1}) \]

\[= p \left(\sum_{x+y=z+w, x^{-1}+y^{-1}=z^{-1}+w^{-1}, x^{-1}+y^{-1} \neq z^{-1}+w^{-1}} \psi(x^{-1} + y^{-1} - z^{-1} - w^{-1}) + \# \left\{ x^{-1} + y^{-1} = z^{-1} + w^{-1} \right\} \right) \]

Recall that we want to get a bound of \(p^3\), while the trivial bound is about \(p^4\). The second term \(\# \left\{ x^{-1} + y^{-1} = z^{-1} + w^{-1} \right\}\) has only about \(p^2\) terms, so that’s good. The first term is \(p\) times a sum over \(p^3\) things, so we need to do something intelligent there. Luckily, it has a scaling symmetry. The sum over each \(\mathbb{F}_p^*\)-orbits is \(-1\) by \(1.1\).

So, letting \(N = \# \{ x + y = z + w \}\) and \(A = \# \{ x^{-1} + y^{-1} = z^{-1} + w^{-1} \}\), we get

\[\sum_{a} |K(a)|^4 = p \left(\frac{N - A}{p - 1}(-1) + A \right). \]

To conclude that, note that \(N\) has size about \(p^3\), \(A\) has size about \(p^2\).

Remark 1.3. You can evaluate \(N\) and \(A\) exactly. For odd \(p\), we think \(A = 3(p - 2)(p - 1)\). This gives

\[\sum_{a} |K(a)|^4 = 2p^3 + \text{ (lower order terms)}. \]
Kloosterman’s argument is the earliest instance I know of the following principle: to bound a single value of a function, put that function in a family and raise it to a higher power. This idea was used again by Rankin in the context of modular forms, which Deligne said was an inspiration for his proof of the Weil conjectures.

2 The sheaf-function correspondence

We now want to implement this idea with sheaves. Let X be a variety over \mathbb{F}_p. Suppose you have a Weil sheaf \mathcal{F} on X, meaning a sheaf on $X_{\mathbb{F}_p}$ with a Frobenius endomorphism. Then we get a function f on $|X|$ or $X(\mathbb{F}_p^n)$, given by $f(x) =$ trace of geometric Frobenius at x.

Remark 2.1. If for example \mathcal{F} is lisse and semisimple, then the function f determines the sheaf, because the Frobenii are dense in the monodromy group.

2.1 Translation of sheaf-theoretic operations

Operations on sheaves can be translated into operations on functions.

- The tensor product of sheaves translates into product of functions.
 $$\mathcal{F} \otimes \mathcal{G} \mapsto f_\mathcal{F} \cdot f_\mathcal{G}$$

- The pullback of sheaves translates into pullback of functions.
 $$\pi^* \mathcal{F} \mapsto f_\mathcal{F} \circ \pi$$

- If \mathcal{F} is pure of weight $w \in \mathbb{Z}$, then \mathcal{F}^\vee corresonds to the function $\overline{f} p^{-w} \deg$. For instance, the Kloosterman sums being real-valued corresponds to the Kloosterman sheaves being self-dual up to Tate twist.

- If \mathcal{F} is in the derived category of Weil sheaves\footnote{Although we have glided over this point in this seminar, the construction of the “derived category of ℓ-adic sheaves” (or Weil sheaves) is actually quite subtle. It is not obtained by the naïve construction taking the derived category of a category of ℓ-adic sheaves, although this is often what one pretends for practical purposes. Suffice it to say that working rigorously with the “derived category of ℓ-adic sheaves” requires a good deal more care than one might think; “arguments” which treat this category as a genuine derived category are merely reasoning by analogy.} then
 $$R\pi_! \mathcal{F} \mapsto \sum_i (-1)^i f_{H^i, \mathcal{F}}$$

With these conventions, the Lefschetz trace formula translates into the statement that the derived pushforward of sheaf corresponds to the pushforward of f as defined by

$$y \in Y(\mathbb{F}_p^n) \mapsto \sum_{x \in X(\mathbb{F}_p^n), \pi(x) = y} f(x).$$
For example, given a map \(\pi: X \to \mathbb{A}^1 \), then the function
\[
y \in \mathbb{F}_p^m \mapsto \#X_y(\mathbb{F}_p^m)
\]
comes from \(R\pi_! \mathbb{Q}_\ell \).

Example 2.2. We’re going to make a sheaf corresponding to the function \(\psi \).

We start out with the Artin-Schreier cover
\[
y^p - y = x \subset \mathbb{A}^2.
\]
This maps via the \(x \)-coordinate to \(\mathbb{A}^1 \), which is an étale cover. The Galois group is canonically \(\mathbb{Z}/p\mathbb{Z} \), generated by \(y \mapsto y + 1 \). In other words, this cover induces a map
\[
\pi_1(\mathbb{A}^1_{\mathbb{F}_p}) \to \mathbb{Z}/p\mathbb{Z} \xrightarrow{\psi} \mathbb{Q}_\ell^*.
\]
Let \(\mathcal{L}_\psi \) be the corresponding rank 1 lisse sheaf on \(\mathbb{A}^1 \). We compute the associated function. We need to figure out where Frobenius goes. The Frobenius at \(x \in \mathbb{A}^1(\mathbb{F}_p^m) \) takes \((x, y) \mapsto (x^{p^m}, y^{p^m}) \). Of course \(x^{p^m} = x \). We have
\[
\begin{align*}
y^p &= y + x \\
y^{p^2} &= y^p + x^p = y + x + x^p \\
&
\vdots \\
y^{p^m} &= y + x + x^p + \ldots + x^{p^{m-1}}
\end{align*}
\]
Therefore, the Frobenius at \(x \) takes
\[
(x, y) \mapsto (x, y + x + x^p + x^{p^2} + \ldots + x^{p^{m-1}}).
\]
The conclusion is that Frobenius acts on the stalk \(\mathcal{L}_\psi \) as multiplication by \(\psi(\text{Tr}_{\mathbb{F}_p^{p^m}/\mathbb{F}_p}(x)) \).
Therefore geometric Frobenius acts as multiplication by \(\psi(- \text{Tr}_{\mathbb{F}_p^{p^m}/\mathbb{F}_p}(x)) = \overline{\psi}(\text{Tr}_{\mathbb{F}_p^{p^m}/\mathbb{F}_p}(x)) \).

2.2 The method of families

Suppose we have an open subset \(U \subset \mathbb{A}^1 \), and \(\mathcal{G} \) is a Weil sheaf on \(U \), associated to a function \(g \). Assume \(g \geq 0 \). (This can be arranged by taking the sum of \(\mathcal{G} \) with its conjugate.)

We can then bound a single value of \(g \) by a sum:
\[
g(x) \leq \sum_{x \in \mathbb{F}_p^m} g(x).
\]
Of course this isn’t sharp, but if you apply this to large powers of \(g \) then it will be sharp.
To simplify things, assume \(H^0_c(G) = 0 \). Then
\[
\sum_{x \in U(F_p^m)} g(x) = \sum_{\beta = \text{eig. of } F \text{ on } H^2_c} \beta^m - \sum_{\alpha = \text{eig. of } F \text{ on } H^1_c} \alpha^m.
\]

We can easily analyze the \(\beta \)'s, by using Poincaré duality to relate \(H^2_c \) to the coinvariants of geometric \(\pi_1 \). But the point is that \(\max |\alpha| \leq \max |\beta| \), which allows you to ignore \(\alpha \). Why? This is because the expression is positive.

Remark 2.3. This same observation appears elsewhere. For instance, the Weil bound is not optimal. For a curve it gives \(p + 1 + 2g\sqrt{p} \), but this can’t be attained because it would give a negative number of points over \(F_p^2 \).

This argument (applied to a high power of \(g \)) is the engine that provides the bounds in the proof.

The central part of the proof will be the following statement: if \(F \) is pure of weight \(w \) on \(U \subset \mathbb{A}^1 \), then the weights of \(H^1_c(U, F) \) are \(\leq w + 1 \). In terms of the functions \(f_F \) associated to \(F \), this statement translates to the bound
\[
\sum_{x \in U(F_p^m)} f_F(x) \leq p^{m(w+1)/2}.
\]

If \(H^0_c = 0 \) and \(H^2_c = 0 \) (it is easy to reduce to this case), then
\[
\text{Tr}(\text{Frob}^m, H^1_c) = - \sum_{x \in U(F_p^m)} f_F(x)
\]
so this becomes a question of bounding the eigenvalues of Frobenius on cohomology.

To obtain this estimate, we try to embed it into a family. We want to find a function \(g \) on \(\mathbb{A}^1 \) (associated to a sheaf) such that \(g(0 \in F_p^m) = \sum f_F(x) \). Then we’ll use the method of families. The punchline is that we take \(g \) to be the Fourier transform of \(f \). So next we’ll make a sheaf associated to the function \(g = \text{FT}(f) \), defined by
\[
\text{FT}(f_F)(y) = \sum_{x \in F_p^m} f_F(x) \psi \circ \text{Tr}(yx)
\]
for \(y \in F_p^m \).

3 Fourier transform

Let \(F \) be a sheaf on \(\mathbb{A}^1 \). We make a new sheaf \(\text{FT}_\psi F \) such that
\[
f_{\text{FT}_\psi}(y) = \sum_{x \in F_p^m} f_F(x) \psi \circ \text{Tr}(yx).
\]

We just replicate the Fourier transform step-by-step.
We start with F, pull it back to A_2 via $(x, y) \mapsto x$. Then we tensor with m^*L_ψ, where $m(x, y) = xy$. Finally, to sum over the first variable we push forward via $(x, y) \mapsto y$. The last step is to shift by degree 1, basically to preserve the property of being a sheaf (but it still might not quite).

Denote this functor by F_ψ.

Theorem 3.1. We have

$$F_\psi \circ F_\psi = \text{Id (up to Tate twist)}.$$

This mirrors the usual calculation

$$\sum_y \psi(-yz) \sum_x f(x) \psi(yx) = \sum_{x,y} f(x) \psi(y(x - z)) = p^m f(z).$$

The proof replicates this calculation at the level of sheaves. The only step that wasn’t formal was the calculation

$$\sum_{a \in \mathbb{F}_p} \psi(ay) = \begin{cases}
0 & y \neq 0 \\
p &
\end{cases}$$

so we need a sheaf-theoretic analogue of it, which is

$$H^*_c(\mathbb{A}_{\mathbb{F}_p}^1, L_\psi) = 0.$$

To prove this, recall that the sheaf L_ψ came from the covering

$$y^p - y = x$$

by taking the ψ-component of the pushforward of the constant sheaf. Then H^*_c is the $\psi^{\pm 1}$-component of $H^*_c(C, \overline{\mathbb{Q}}_C)$, which is 0 (since $C = \mathbb{A}^1$).

The idea of the proof of the Weil conjectures is to bound F-eigenvalues on $H^1_c(U \subset \mathbb{A}^1, \mathcal{G})$, which is the fiber at 0 of $FT_\psi(\mathcal{G})$.

4 Kloosterman sheaves

Recall that we defined the Kloosterman function

$$K(a) = \sum_{xy = a} \psi(x + y) = \sum_{x \in \mathbb{F}_p, x \neq 0} \psi(ax + x^{-1}).$$

We’re going to make a sheaf Kl on \mathbb{G}_m such that

$$f_{Kl}(a \in \mathbb{F}_p^m) = \sum_{x \in \mathbb{F}_p^m} \psi \circ \text{Tr}(ax + x^{-1}).$$
We start with L_ψ on G_m to get $\psi(x)$, apply inversion to get $\psi(x^{-1})$, and apply FT_ψ.

This gives a lisse sheaf K_l on G_m, pure of weight 1. Since $\text{rank}(K_l) = 2$, this corresponds to a representation $\pi_1(G_m) \to \text{GL}_2(\overline{Q}_l)$ whose Zariski closure is SL_2 (the real-ness suggests the sheaf is self-dual).

Suppose we want to understand $K_{l,a}$ for $a \in \mathbb{F}_p$. Take $a = 1$. It is the ψ-component of $H^1_c(y^p - y = x + x^{-1})$. We will show that $\dim H^1_c(y^p - y = x + x^{-1}) = 2(p - 1) + 1$. This strongly suggests that, because there are $p - 1$ characters ψ, each piece has dimension 2.

If you actually want to compute, you have to understand the behavior of the sheaf at ∞. Consider

$$y^p - y = x + x^{-1} \to G_m$$

and compactify it to $X \to \mathbb{P}^1$, of degree p.

By Riemann-Hurwitz,

$$2g_X - 2 = p(-2) + \deg(\text{ram. divisor}).$$

The ramification is supported at 0, ∞. Since the equation $y^p - y = x + x^{-1}$ is symmetric, the answer will be the same at both points, so we just to the calculation 0. Localizing at 0, we need to consider the field extension L/K where $K = \mathbb{F}_p((x))$ and $L = K(y)$ with $y^p - y = x + x^{-1}$. Since $v(x) = 1$, we have $v(y) = -1/p$, $\tau = y^{-1}$ is a uniformizer. The discriminant is the field extension

$$\prod_{i \neq j} (\tau_i - \tau_j)$$

Since the conjugates just add, a typical term is

$$\frac{1}{y+1} - \frac{1}{y} = \frac{-1}{y(y+1)}$$

with valuation $2/p$. So the discriminant has valuation $p(p - 1)(2/p) = 2(p - 1)$.

(This is double what one would expect in characteristic 0.) So the conclusion is that

$$2g_X - 2 = p(-2) + 4(p - 1) \implies \dim H^1(X) = 2(p - 1).$$

To get C from the compactified guy, you delete 2 points so

$$\dim H^1(C) = 2(p - 1) + 1.$$

So we’ve verified that $\text{rank } KL = 2$.

Remark 4.1. This is related to the fact that the K-Bessel function from Remark 1.2 satisfies a second-order differential equation.
Let’s return to the estimate:

$$\sum |K(a)|^4 \sim 2p^3.$$

This sum can be interpreted as

$$\sum \text{Tr}(F|H_c^i(Kl \otimes Kl^\vee \otimes Kl \otimes Kl^\vee)(-1)^i).$$

By Deligne, H_c^1 contributes a second-order term, so the leading term comes from

$$H_c^2 = (V \otimes V^\vee \otimes V \otimes V^\vee)_{\pi_{\text{geom}}^1}(-1) = (V \otimes V^\vee \otimes V \otimes V^\vee)_{\pi_{\text{geom}}^1}.$$

We can interpret $V \otimes V^\vee \otimes V \otimes V^\vee = \text{End}(V \otimes V^\vee)$. So we want to compute

$$\dim \text{End}(V \otimes V^\vee)_{\pi_{\text{geom}}^1}.$$

We have an irreducible decomposition of $V \otimes V^\vee$ into the direct sum of a 3-dimensional representation and a 1-dimensional representation, so there are indeed two independent π_{geom}^1-equivariant endomorphisms.