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1 Introduction to the trace formula

1.1 The Lefschetz fixed point formula

Weil’s motivation for the trace formula was by analogy to the classical theorem of
Lefschetz:

Theorem 1.1 (Lefschetz fixed point theorem). Let M be a compact, oriented man-
ifold. If : M — M 1is a continuous map with isolated fixed points, then

#Fix(Y) = 3 (1) Te(", H' (M, R)).

We caution that # Fix(1)) has to be interpreted with some care: it really denotes
a fixed point count with multiplicities. A better way to phrase it as follows. Inside
M x M we have two submanifolds: the diagonal A and the graph I'y,. We can then
try to take

# Fix(v) := A -T'y, = “intersection number of A and I'y,”.

When A and I'y, intersect transversely this intersection number coincides with the
naive point count, but it can be defined more generally. The “correct” version of the



theorem is then
ATy => (-1)'Tr(y, H(M,R)).
(2

Weil envisioned that an algebraic analogue of this story would yield an interesting
trace formula for algebraic varieties over a finite field. If Xj is a variety over Fy, and
X = Xo xF, F,, then we could take ¢: X — X to be the Frobenius morphism ¢ =
(Frobx, x Id). Then # Fix() should count the F g -points of X whose coordinates
are fired by Frobenius, which is the same as saying that they lie in F.

To summarize, a version of the Lefschetz trace formula in étale cohomology would
say: for a smooth proper variety X/F,

#X(Fy) =D (1) Te(yp, H (X, Qy)).
i
The purpose of these notes is to prove a slight generalization of this statement. (We
can remove the assumptions on smoothness or properness, trading cohomology for
compactly-supported cohomology, and allow general étale sheaves.)

1.2 The Frobenius endomorphism

We recall the Frobenius action on sheaves, which factor into the statement of the
Lefschetz trace formula.

For any scheme Xo/Fy, let Fx, be its g-Frobenius, inducing f + f? on rings.
For any étale sheaf Fy on Xg, we have an isomorphism

FI"]:O : F)*(Ofo — Fo.
Letting X = Xo xF, F, and F be the pullback of Fy to X, we have an endomorphism
on cohomology:

(Fx,x1d)*
R

F: H(X,F) (X, (Fx, x 1d)*F) 2% Hi(X, F).

We remind you that F coincides with the action of geometric Frobenius on H*(X, F)
induced by (Idx, x Frob").

More generally, let gq be an étale sheaf on Spec k = F
morphism

- Then we have a

FI‘ng Fggec kg - g — g

Upon choosing a separable closure of k to identify G with a Gal(k/k)-modules M
(under which M zigks), the map endomorphism Frcgl corresponds to the “arithmetic
Frobenius” in Gal(k/k) acting on M.

e If we apply this to G = H* (X, Fo) then d = 1 and
Frg: H(X,F) - H (X, F)

coincides with the geometric Frobenius action on the Gal(k/k)-module corre-
sponding to G.



e We will also apply this discussion to k = x(x) for a closed point x € | X|, and
denote by
F.: Fz— Fz

the endomorphism corresponding to the geometric Frobenius in Gal(k/k).

1.3 Statement of the formula

Theorem 1.2. Let Xy be a variety over Fy and Fo a constructible Qq-sheaf on Xj.
Let X = Xy Xp, F, and F be the pullback of Fy to X. Then we have

> Te(Fe, Fe) = Y (-1 Te(F, HY(X, F)).

zeX (Fy) i

Example 1.3. Let Xy = P!. Then we know that

Q i=0
H(X, Q) =H'(X,Q) =40 i=1.
Qu(-1) i=2

(The only interesting aspect of this is the identification of the Galois structure on
H?, which was explained in my previous talk on Poincaré duality.) Therefore, we
have

1 i=0
Tr(F, H(X,F) =40 i=1
q t1=2

so the trace formula tells us that
#Pl(Fq) =1+gq

as we know!

Example 1.4. Let Xq = A'. Then

0 1=0
Hi(X,Qp) = H'(X,Qr) =10 i =
Qu(—1) i=2
The trace formula tells us that
#Al(Fq) =4q

as expected.



2  Weil’s trace formula

The proof of Theorem will proceed by reduction to the case of curves, where
eventually something geometric happens. We will go through this geometric step
first. The goal is to establish a special case due to Weil:

Theorem 2.1 (Weil). Let C be a smooth projective curve over k = Fy and: C — C
an endomorphism over k. Then

2

ATy =3 (=)' Tr(¥", H'(C, Q).

i=0
Once we have a fairly robust apparatus of étale cohomology at our disposal, the
proof becomes quite formal (analogous to the proof of Leschetz’s trace formula in
topology).

Remark 2.2. Weil didn’t have access to étale cohomology, so he proved Theorem [2.1]
(or really, a cohomology-free reformulation of it) by using the theory of the Jacobian.
The point is that he essentially knew what étale cohomology of smooth projective
curves should be, in terms of Jacobians.

2.1 Cohomology classes of algebraic cycles

Let X be a smooth variety of dimension d over an algebraically closed field k = k.
Our first mini-goal is to explain how to associated to a closed subvariety i: Y — X
a cycle class clx (Y) € H*(X;Qy).

We may assume that Y is irreducible (the cycle class of a union will be the sum
of the cycle classes of the components), of dimension e. When Y is also smooth, this
can be defined as follows. We have a pullback map

i HY(X5Qe) — HZ (Y5 Qo).
We can dualize this to obtain
(i) HX(Y;Qp)Y — HX(X;Qy)Y.

Then we can identify these duals with compactly-supported cohomology using Poincaré
duality (which is where we use the smoothness assumption):

HIY;Qule)” — 2 HI(X;Qule))
| | o

H?7HY; Q) —— H?*7(X; Qu(d — e)).



Definition 2.3. If Y is smooth and irreducible, the cycle class
cx(Y) € H*72¢(X; Qu(d — €))

is the image of 1 € H(Y; Q) under (i*)V, using the identification (2.1)).

If Y is not smooth, then unfortunately we don’t have Poincaré duality available.
However, there is a dense open subset j: U C Y which is smooth which induces an
isomorphism

HE(U) = H2(Y)

(as one can see by looking at the the long exact sequence of the pair). There-
fore, the fundamental class in H2¢(U; Qq(e)) transfers to a fundamental class in
H2¢(Y,Qq(e)), which we can then stuff into H2%2¢(X; Q(d — e)).

Definition 2.4. In general, we define the cycle class

clx(Y) € H**(X; Qu(d — )
to be the image of the fundamental class in H2¢(Y; Q) under (i*)", using the iden-
tification

i*)\/

HI(Y;Qu(e)” — s HI(X; Qule))

H* (X5 Qu(d — ¢))

That was a little abstract, so here is a concrete interpretation. Thanks to
Poincaré duality, the class clx (Y) is uniquely determined by the data of the pairings

(clx(Y), B)x for all g € H:(X;Q)

and we have

<C1X(Y),5>X=/Yi*ﬁ-

I like to write this in the following form, which makes sense when Y is smooth:
(txcr, B)x = (o, 1" B)y for all a« € H*(Y;Qy), B € H:(X;Qy).

Remark 2.5. There is another interpretation of the cycle class for a divisor in
terms of Chern classes. Let D C X be a divisor. Then we get a line bundle O(D), to
which we can assign a first Chern class ¢1(O(D)) € H?*(X;Qu(1)) assembled from
the boundary homomorphisms

HY(X;G,,) = H*(X; pen).



2.2 Proof of Weil’s Theorem

By the preceding section, we can associated cohomology classes to the embeddings
A — CxCandI'y, — C x C, obtaining cloxc(A) and cloxc(I'y). (Note that in
this case A and I' are both smooth, both being isomorphic to C.)

The first order of business is to “identify” the class cloxc(A). Since A is so
canonical, it must have a canonical description. To express this more conveniently,
we fiz a trivialization pye = Zy, thus identifying Q(j) = Qg for all j. The point is
that this makes H*(C' x C; Q) self-dual.

Lemma 2.6. Let {e;} be a basis for H*(C; Qq) and { f;} its dual basis, so (e;, fj)x =
0ij. Under the Kiinneth isomorphism

H*(C'x C;Qq) = H*(C; Q) ® H*(C;Qu)
we have
A Z%@fi

The proof is a straightforward exercise in unwinding the definition of the push-
forward

H*(A; Q) — H*P2(C x C; Q).

Instead of going through these motions, I would rather tell you about a picture I
have, which “explains” the formula. A cohomology class o € H*(C x C; Qy) defines
a correspondence on H*(C'), as follows:

a— [ue H(C; Q) — pax(a — pi(u))].

This defines a map
H*(C x C;Qp) — End(C).

In fact, if the cohomology class o has a more refined interpretation, e.g. as a cy-
cle class, then we can realize this action at the correspondingly more refined level.
Obviously the class of A should act as the identity, so this map should take

Clcxc(A) — Id.

We can unwind this map using Kiinneth and Poincaré duality:

H*(C; Q) ® H*(C; Q) —2— H*(C; Qu)" ® H*(C; Qu)
Kiinneth H
H*(C x C; Q) » End(H*(C; Q).

Now the formula of Lemma[2.6]is the familiar expression of Id € End(C) as the sum
of a basis tensored with its dual basis.



Exercise 2.7. Check the claims made in the preceding paragraphs.

Now suppose
ClCXC Fw ZCJZ fj®€u

By the picture we just explained, the action on cohomology is given by
P (er) =pac((er ®1) = > cji- fj@e) =) e
ij i

Therefore, the graded trace is

¢ Z I/HIJ C QE)) Zcii(*l)degei-

while

AF¢ ZCUZ ek’®fk7f]®el>
o Z%&,ﬂ 1y
,J
_ Zcii _1 dege;
%

2.3 Intersection number vs cup product

One issue we glossed over in the preceding section is in what sense the cohomological
pairing (A,T'y) is an accurate reflection of “A - T'y”. Another interpretation of the
latter quantity is in terms of the intersection product on Chow groups. This is itself
subtle to define in general, but in some cases it is clear what the answer should be.
For instance, we might ask the following questions:

e When A and I'y, intersect transversely, does the cohomological pairing coincide
with the naive #A NT'y? (We know that the intersection pairing does have
this property.)

e If ¢ = Frobx, x Id for some X(/F, descending X, do any of these coincide
with #Xo(Fy)?

Let’s address the second question first. Frobenius enjoys the happy property that
its graph always intersects A transversely. This is because d(fP) = 0 in characteristic
p, so dFrob = 0. So T{, ,HA is a diagonally embedded copy of T;,C, while T{, , Iy is
the copy of T;,C embedded into the first factor of T,,C' x T;,C". These tangent spaces
are always transverse.

We know that the (Chow-theoretic) intersection product always coincides with
the naive point count in the happy case of a transverse intersection, so it suffices to



see that the cohomology pairing of curves on a surface coincides with the intersection
product in general. It will be useful to recall the definition of the intersection product
on a surface.

Let S be a smooth projective surface over an algebraically closed field k. We
can define an intersection product on CH!(S) = Pic(S) as follows. By linearity, it
suffices to define the intersection [C] - [D] where C, D are (effective) curves. When
C and D intersect transversally, we have the short exact sequence

0— OC(—D) — OC — OCQD —0

and #(C N D) = degOcnp = —degOc(—D). Motivated, by this, we define in
general:
[C] - [D] := deg O(D)c-

Let’s compare this to the cohomological definition. The inclusion i: C' — §
induces
b HY(C;Qu) = H*2(8, Qu(1))
with the property that
(ixa, BYs = (e, i*B) .
In particular, for § = Clg(D) and a =1 (so i,a = Clg(C')), we have

(Cl5(C), Cls(D)) = / 8.

By Remark f is the first Chern class of the divisor O(D) so i*f is the first Chern
class of its restriction to C, by functoriality of Chern classes (which is very easy in
this case).

3 Perfect complexes

3.1 Reformulation of the trace formula

Consider the statement of Theorem [I.2] We know that the constructible Q-sheaf
F, and its cohomology, are really defined from pro-systems of constructible torsion
sheaves (F,,). We want to deduce it from the version for F,, for each n:

Z Tr(Fy, (Fn)z) = Z(*l)i Tr(F, Hé(X, Fn))-

zeX(Fq) i

Now what does this mean? Each F, is a constructible Z/¢"*1Z-module, so at best
this is an equality of numbers in Z /(" T1Z.

Once we start working with modules over Z/¢""1Z another question arises: what
is the trace? We should probably take JF,, to have stalks that are flat over Z/¢"*1Z in
order to talk about the trace on the left side. However, we then run into the problem



that even if F,, has stalks flat over Z/¢""1Z, its cohomology groups H.(X, F,) don’t
necessarily retain this property.

The way out of this conundrum is based on the following idea. If we have projec-
tive module over a ring A, then we have a good notion of trace of an endomorphism.
If we have a module that is not projective, then we try to replace it by a complex of
projectives, and extend the endomorphism to an endomorphism of complexes.

3.2 Perfect complexes

Let A be a ring, which we’ll often take to be Z/¢"Z. First we review how to the trace
of an endomorphism of a finite projective module M over A. Perhaps we should first
review how to take the trace if M is free. In this case we can choose an isomorphism
M = AN, so that any endomorphism u: M — M can be represented by a matrix
(Aij). We then define the trace of u to be the sum of the diagonal entries \;;. That
this is well-defined amounts to

Tr(ABA™!) = Tr(B)

for any A, which is a consequence of the cyclicity property Tr(AB) = Tr(BA).
If M is projective, then it is a summand of a free module A" so we can choose

a decomposition
AN =Me M.

We can then extend an endomorphism u of M to AN by 0 on M’, and define the
trace of u to be the trace of this extension.

If P is a finite complex of finite projective modules over A, and u.: P — P is
an endomorphism, meaning a commutative diagram

P_1 >P0 >P1 > ..

Pl b

P_1 >P0 >P1 > .

then we define '
Tr(u,) = z:(—l)Z Tr u;.
i
Definition 3.1. We say K. € D(X) is perfect if it is isomorphic to a finite complex
of finitely generated (stalk-)projective étale sheaves of A-modules. We denote by
Dpere(X) the full subcategory of perfect complexes.

If we have a map f: K — K_between perfect complexes in D.(X), we can try
to define Tr f by picking an isomorphism « to a finite complex of finite projective
modules P, and setting

Trf:=Tr(ao foa ', P).



This depended on many choices, so it requires a little bit of work to show that this
is well-defined.
The goal is to prove a more general formula

Y T(F,K,) =) (-1) Te(F, H(X,K))

zeX(Fq) i

for perfect complexes K. Implicit in this goal is assertion that H:(X, K) is a per-
fect complex (in D(Spec Fy)) if K was a perfect complex in D(X). Our current
definition isn’t suited for checking something like this, so we need a more robust
characterization.

Proposition 3.2. K € D%(X) is perfect if and only if the following two conditions
are satisfied:

1. the homology sheaves H'(K) are constructible,
2. K has finite Tor-dimension.

Proof sketch. The conditions are clearly necessary. For the converse, start building
a quasi-isomorphism P — K with each P; projective and finitely generated over A
(possible by the finiteness assumption on the homology groups). This may continue
indefinitely, but truncating below the Tor-dimension of K yields a quasi-isomorphic
complex of flat and finitely generated, hence projective, A-modules. O

Theorem 3.3. Let f: X — S be a map of schemes. If K € Dpeys(X), then RAK €
Dpert(S).

Proof. First we handle the constructibility. We have a spectral sequence
RIfi(HP(K)) = RFMf(K)

and by assumption HP(K) is constuctible on X. Since fi preserves constructibility,
R1f\(HP(K)) is also constructible, hence so is RPTYf(K).
Next let’s examine the Tor-dimension. Let N be a sheaf on S. Then

(RAK) & N = RA(K & f*N).

L L

Since K has finite Tor-dimension, K ® f*N has bounded homology, so Rfi(K ®
f*N) also has bounded homology.

O

10



4 Reduction to the case of curves

We now put forth the general version of the trace formula (for Frobenius):

Theorem 4.1. Let Xq be a variety over Fy and Ko € Dyer(Xo). Let X = XoxF, F,
and K be the pullback of Ky to X. Then we have

Y T(F, K,) =) (-1)Te(F, H(X, K)) (4.1)

2EX(Fy) i
with both sides understood in the sense of {3.3.

Repeating the sort of reasoning that we have used many times, we're going to
reduce this to the case of curves, which we’ll handle in the next section. In the
reduction there will be one step which is rather subtle. We’ll gloss over it at the
start and then point it out later; the reader may amuse himself or herself by trying
to spot it.

The basic mechanism for the reduction is as follows:

1. If Xg = Up U Yy is a partition of Xy into a closed subset Yy and its closed
complement Uy, and (4.1)) holds for Uy and Yp, then it holds for Xj.

2. If f: Xg — Sp is a map and (4.1]) holds for Sy, and all fibers of f, then it holds
for Xo.

If we establish these two claims, and grant the case where X is a curve, then we are
done by induction on dim X: we can chop up Xo = Uy U Y} such that Uy admits a
curve fibration to a variety of smaller dimension, and Y; is also “smaller” than Xj.
So it suffices to prove the two assertions above. Let T;(Xo, K) be the LHS of
and T,(Xo, K) be the RHS (I for “local” and g for “global”).

Proof of 1. Let j: Uy — Xg and i: Yy — Xg be the two inclusion maps. It is easy to
see that if Ko € Dpers(Xo), then j*Ko € Dpert(Up)and i* Ko € Dpert(Yo). Therefore,
the assumption that (4.1) holds for Uy and V}, implies that

E(UOM]*K) = Tg(U(Ja]*K)
T1(Yo,i"K) = Tg(Yo, i"K)

Since T; is purely local, we manifestly have

By the additivity of the trace in long exact sequences, applied to the cohomology
LES induced by the exact triangle

Ji'K - K — i,3"K

11



and the fact that H}(Uy, j*K) = H}(Xo, jij*K) and H}(Yy, " K) = H} (X0, 13" K),
we have also

T4(Uo, 7 K) + Ty (Yo, " K) = T,(Xo, K), (4.2)
thus establishing the claim in light of the preceding equations. O

Proof of 2. Let f: Xo — Sy be a map. By Theorem , RfiIK € Dpe(S). Then
(4.1) applied to RfiK tells us that

T1(So, RAK) = T4(S0, RAIK).
Since RI.(X, RfiK) = RT'.(X, K) we have
Ty (So, RHK) = Ty(Xo, K).
On the other hand,

Ti(So, RAK) = > Tr(F, (RAK)s)
s€50(Fq)

and (4.1)) applied to f~!(s) plus proper base change says that Tr(F,, (RfiK)s) =
Ti(f~1(s), Kj-1(5)). Thus, we find that

T)(So, RAK) = Y Tu(f (), Kj-15)) = Ti(X, K).
s€So(Fq)

O

Now we should explain where we have lied. The subtlety is in . In fact it
is not true in general that for an endomorphism of an exact triangle in Dpere(X),
the trace of the middle term is the sum of the traces of the outer terms! This is
true for an endomorphism of complexes, but the point is that you can’t always lift a
“commutative diagram” in the derived category to a commutative diagram in chain
complexes. The derived category is like the homotopy category, so you can lift it to
a diagram which is “commutative up to homotopy”, but it turns out that this isn’t
good enough.

However, the additivity does hold in our situation. The point is that it
should hold whenever the endomorphism is produced in a “canonical” way, which
tends to always be the case in practice. There are at least two ways of articulating
this.

e One is the original method of Deligne. The idea is to define an enhanced version
of the derived category, where one starts with an abelian category consisting
out of modules plus endomorphism. Then one takes the derived category of
this abelian category, and any exact triangle in such induces an endomorphism
of an exact triangle in the usual derived category. The point is that by baking
the endomorphism into the objects before passing to homotopy, we ensure that
the endomorphisms are “sufficiently canonical”.

12



e Another is the “filtered derived category” approach of Illusie. Here one also
enhances the abelian category, by carrying around the data of a filtration on
the module. A two-step filtration then induces an exact triangle, and again an
endomorphism produced in a filtered way is “sufficiently canonical” to enjoy
the additivity property. The point is that the triangle j17* — Id — i.¢* can be
lifted to the filtered derived category, essentially because it can be applied at
the sheaf level.

5 The case of curves

5.1 Reductions and setup

Finally we are reduced to showing for a curve. Weil’s Theorem tells us that
is true for a proper curve and constant sheaf (and arbitrary morphism). The
idea is to reduce to this case, by chopping up the curve into pieces where the sheaves
becomes locally constant, and then passing to a cover that trivializes them.

We begin with some simplifications. We can easily prove directly the 0-dimensional
case of Theorem (it is not totally content-free!), which by excision lets us cut out
a finite set of closed points any time we wish.

e We may assume that K is a finite complex of finitely generated projective
modules. By filtering K by its “naive filtration”, we reduce to the case where
K = F is a constructible A-sheaf with finitely generated projective stalks.

e By restricting to a stratum, we may assume that F is locally constant.

e By replacing X by an open subset U, we may assume that X is smooth and
irreducible.

e By partitioning X into the union of its rational points and their complement,
we may assume that X (Fy) = (). The goal is then to show that

Tr(F, RT.(X,F)) =0.
Since F is locally constant, we can find a finite étale Galois cover f: Yy — Xj

such that f*F is constant. We can find smooth compactifications X < X and
Yy < Y extending to a ramified covering:

Y —— Y
b
X —X
Roughly speaking, the idea is to try to compute Tr(F, R['.(X,F)) in terms of

Tr(F, RT'.(Y, f*F))). The latter is something that we can sort of handle using Weil’s
Theorem 2.1

13



There is a counit map

F P F=h1F—F.

Let G = Gal(Yp/Xo). The sheaf f.f*F has an action of G coming from the fact
that it is pushed forward from Yj, while F doesn’t, so this map factors through

(fef"Fla = F.

We can check on stalks that this is an isomorphism. Indeed, for T € X

(' Fla= D F
yef~1(@)

with the G-action induced by its permutation action on the G-torsor f~1(z).
Say f*M has value group M := H°(Y, f*F). Then M is a A[G]-module, and

Ffol(F) = f*(A® M) = (foA) @A M

with the G-action being the diagonal one. Therefore,

F = ((fs) @A M) @p(q A (5.1)

We claim that these tensor products really coincide with the derived tensor prod-
ucts. The only nonobvious point is why (f<A) ®x M is projective over A[G]. Since
f+A = A[G] is the regular representation, it is certainly projective over A[G]. Since
M is flat over A, the tensor product (f,A)®a M is obviously projective if G-action is
through the left factor. Unfortunately, this is not the case: the G-action is diagonal.
But in fact, these are isomorphic as G-representations! In other words, there is an
isomorphism of G-representations

AGl® M — A[G] @ M

where M has the trivial G-action, given by g ® m — ¢ ® ¢~ 'm.

So we have
RU(X, F) = RTc(X, ((fxd) @a M) @411 A)

L L
= RTc(X, ((foh) ®@a M) ®4(c) A)
= (RTe(X, fuld) @n M) @p(q) A
= (RL(Y,A) @ M) @51 A

5.2 Computing the trace

We have just seen that

ch(Xv ]:) = (RFC(Y7 A) QA M) ®A[G] A (5'2)

14



We want to understand the action of Frobenius on the LHS in terms of the action of
Frobenius on I'.(X, f«A). We begin by understanding the effect of the G-coinvariants.

More generally, suppose we have a projective A[G]-module P, for a finite group
G, equipped with an additional endomorphism F: P — P commuting with the G-
action, hence descending to F': Pg — Pg. This is the same as saying that P is a
module over A[G x NJ.

Lemma 5.1. We have

G| Tx(F, Pg) = > Tr((g, F
geG

Remark 5.2. It is possible to prove a more refined equality
Tr(F, Pg) = ZTr g, F
| geG

First we have to give meaning to the right hand side. We can view P as a module
over the group ring A[G], and take its trace over A[G], which takes values in the
quotient by the subgroup generatored by commutators. The resulting module has a
basis indexed by conjugacy classes, and the coefficient of the identity is a canonical
“|G[th root” of 3 i Tr((g, F), P). For the details, see [1].

Proof. We want to prove the equality

G| Te(F, Pg) = »_ Tr((g, F
geG

Now comes a trick: the endomorphism » geG 9 factors through P — Pg:

P#P@
i 7 S (0.F)

where Y is defined by
D (g F)=moX.

geG

By the properties of the trace,
Tr(roX: Po — Pg) =Tr(Xonm: P — P).
Therefore we deduce

G| Tx(F, Pg) = Y Tr((g, F
geG



Using this in (5.2)), we deduce that

|G| Te(F, RTe(X, F)) = Y Tr((g, F), RT(Y, A) @5 M) (5.3)
geG

Here we recall that RT'(Y,A) ®x M has the diagonal G-action, while the action of
F is trivial on the M factor.

At this point we’d like to factorize the trace into the piece on RI'¢(Y, A) and the
one on M, using Tr(A ® B) = Tr(A) Tr(B):

Tr((g, F), RUc(Y,A) @a M) =Tr((g, F), RU(Y, A)) - Tr((g, F), M).
Recall that we want to show that
Tr(F, RT.(X,F)) =0. (5.4)

If we show that
|G| Te(F,RT (X, F)) =0 (5.5)

for all coefficient rings A = Z/mZ with m coprime to the characteristic of k, then
(5.4) will follow for all such A. (The equation for Z/m|G|Z implies for
Z/mZ.) For this purpose, by it suffices to show that Tr((g, F'), RT':(Y,A))
vanishes for every g. In this case the cohomology endomorphism (g, F') is induced
by a map of schemes g~ o Fy,: Y — Y

Tr((g, F), RTo(Y, A)) = Tr((g ™" o Fy,)*, RT(Y, A)).

5.3 Coup de grace
We have reduced to showing that
Tr((g™ o Fyy)*, RTL(Y; A)) = 0.
Consider the compactified ramified covering map
Y —— Y
|
X —X
By Weil’s Theorem [2.1] we know that

Tr((g~" o Fy,)", RT.(Y, A)) = Tr(Fg,Ay)
yEFix(Fg)

Now by excision,

Tr((g_loFyo)*, RPC(?a A)) = Tr((g_loFyo)*, RFC(K A))—{—Tr((g_IOFyO)*, RFC(?_Y7 A))
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Let i: Y —Y — Y denote the inclusion (this is just the inclusion of finitely many
closed points). By the 0-dimensional case of Theorem we have

Tr((g7t o Fy,)*, RT.(Y — Y, A)) = > Tr(Fg, A,).
y€Fix(g~loFy))\Y

Therefore, it suffices to see that there are no points y € Y fixed by g~ 1o Fy;. Indeed,
if there were then f(y) € X would be fixed by Fx,, but by assumption X has no
rational points. We are done.
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