
SEMISTABLE REDUCTION FOR ABELIAN VARIETIES

BRIAN CONRAD

1. Introduction

The semistable reduction theorem for curves was discussed in Christian’s notes. In these
notes, we will use that result to prove an analogous theorem for abelian varieties. After some
preliminaries on semi-abelian varieties (to convince us that the notion is a robust one), we
will review the notion of a semi-abelian scheme (introduced in Christian’s lecture), recall
the statement of the semistable reduction theorem, and explain why it suffices to prove that
result in the special case of Jacobians. A discussion of the proof in that case, indicating the
role of results of Artin and Raynaud concerning Picard functors, will be given in the final
section of the notes. The bulk of these notes are concerned with proving many useful facts
about abelian varieties by using the semistable reduction theorem as a “black box” (another
reason we postpone its proof until the end of the notes).

2. Some algebraic group generalities

Let k be a field. We’d like to study general smooth connected commutative k-groups, with
an eye towards understanding the structure of the identity component of the special fiber of
the Néron model of an abelian variety over the fraction field of a discrete valuation ring with
residue field k. As usual, we insist on allowing arbitrary k, without perfectness hypotheses,
because we want the theory to be applicable at codimension-1 points on normalizations of
some flat moduli spaces over Z with generic dimension > 0, for which the residue field at
generic points in positive characteristic is never perfect.

In this section we discuss some preliminaries concerning exact sequences of group schemes
of finite type over a field, and then review some facts concerning tori, unipotent groups, and
commutative linear algebraic groups. A robust theory of quotients of smooth group varieties
modulo normal smooth closed subgroup varieties emerges from the following result:

Proposition 2.1. Let f : G′ → G be a homomorphism between finite type group schemes
over a field k.

(1) The image f(G′) in G is closed, and f is a closed immersion if and only if ker f = 1.
In particular, if f is a monomorphism then it is a closed immersion.

(2) If H ′ is a closed k-subgroup scheme of G′ then there exists a faithfully flat quotient
map q : G′ → G′/H ′ onto a finite type k-scheme G′/H ′; that is, q is initial among
k-morphisms G′ → X that are invariant with respect to the right action of H ′ on G′.
The formation of this quotient commutes with extension on k, it is smooth if G′ is
smooth, and when G′ and H ′ are smooth this coincides with the notion of quotient in
the sense of [Bo].
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(3) If H ′ is a closed normal k-subgroup scheme of G′ then G′/H ′ admits a unique k-group
structure making q a homomorphism, and ker q = H ′. If moreover G′ is affine then
G′/H ′ is affine.

(4) If G and G′ are smooth then f(G′) is a smooth closed k-subgroup of G and the map
G′/ ker f → f(G′) is an isomorphism. In particular, if f is surjective and G and G′

are smooth then f is a quotient mapping.

For part (3), we recall that a monomorphism H → G between group schemes over a base
scheme S is a normal subgroup scheme if H(T ) is normal in G(T ) for every S-scheme T , or
equivalently the map G×S H → G defined by (g, h) 7→ ghg−1 factors through H. Hence, in
the smooth case over Spec k with H and G of finite type, it is equivalent to say that H(k)
is a normal subgroup of G(k).

Proof. For a proof of (1), see [SGA3, VIB, 1.2, 1.4.2]. For (2), see [SGA3, VIA, §3] apart from
the smoothness of G′/H ′ when G′ is smooth and the consistency with [Bo]. To prove the
smoothness when G′ is smooth, we may and do increase the ground field to be algebraically
closed, so smoothness and regularity coincide. By faithful flatness of G′ → G it follows
that every local ring OG,g admits a faithfully flat map to OG′,g′ for g′ ∈ f−1(g) 6= ∅. But
a noetherian ring is regular if it admits a faithfully flat extension ring that is regular [Mat,
Thm. 23.7]. Hence, all local rings on G are regular, so G is smooth (as we arranged k = k).
When G′ and H ′ are both smooth, the agreement with the quotient in the sense of [Bo] is
due to both notions of quotient serving as an initial object among H ′-invariant maps from
G′ to smooth k-schemes.

To prove (3), in case G′ and H ′ are smooth we may appeal to [Bo, II, §5–§6] (thanks to
the agreement noted in (2)). The general case is reduced to the case of smooth G′ and H ′

in [SGA3, VIB, 11.17]. Finally, (4) is explained in [CGP, Ex. A.1.12]. �

Definition 2.2. A short exact sequence of finite type k-group schemes is a diagram

1→ G′
j→ G

q→ G′′ → 1

such that G′ = ker q (via j) and G′′ = G/G′ (via q). In particular, q is initial for homomor-
phisms from G that annihilate G′, and q is faithfully flat.

By Proposition 2.1(2), these properties persist after any extension of the ground field.
Since q is faithfully flat of finite type, it follows from descent theory that the associated
diagram of group functors (on the category of k-schemes, for which these functors are sheaves
for the fppf topology) is short exact as a diagram of group sheaves for the fppf topology.

Example 2.3. For a surjective map f : G′ � G between smooth finite type k-groups, and
H = ker f , it follows from Proposition 2.1(4) that 1 → H → G′ → G → 1 is a short exact
sequence. Equally important is a kind of converse: if G′ is a smooth k-group scheme of finite
type and H is a closed normal k-subgroup scheme then the quotient G = G′/H not only
makes 1→ H → G′ → G→ 1 a short exact sequence (thanks to Proposition 2.1(3)), but G
is necessarily smooth. This is part of Proposition 2.1(2).

Example 2.4. If G′ is a smooth connected affine k-group and G is an abelian variety, then
there are no nontrivial k-homomorphisms from G′ to G or from G to G′. Indeed, by Propo-
sition 2.1, any homomorphism f : G′ → G has normal kernel and hence f(G′) is a closed
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smooth affine k-subgroup of G. But since G is proper, so is the closed f(G′). Hence, f(G′)
is proper and affine, so it is finite, and thus by connectedness it is a single point. This must
be the identity, so f is trivial. In the reverse direction, any map from a proper k-scheme
to an affine k-scheme of finite type has finite image, so by connectedness considerations the
only homomorphism from G to G′ is the trivial one.

Lemma 2.5. Let G be a connected k-group scheme that is locally of finite type. Then G is
finite type (equivalently, quasi-compact) and geometrically connected over k. In particular, a
smooth connected k-group is necessarily of finite type.

Proof. This is a special case of [SGA3, VIA, Prop. 2.4]. Here is a sketch. First one handles
geometric connectedness using arguments not specific to groups (any connected k-scheme
with a k-point remains connected after an arbitrary extension of the ground field). Then
for the quasi-compactness we may assume k = k and replace G with Gred so that G is
smooth. Since smooth connected k-schemes are irreducible, for any non-empty affine open
set U and g ∈ G(k) the open sets U and gU−1 meet. Hence, the image of U × U under the
multiplication map G × G → G contains G(k), so all k-points of G lies in a quasi-compact
subset of G. But k = k, so this forces G to be quasi-compact. �

It may seem like useless hypergenerality to assume just locally finite type and not finite
type, but in our later work with certain Picard varieties we really will just know “locally
finite type” at the outset. Of more immediate importance to us is that connectedness implies
geometric connectedness for such k-groups, as that permits us to extend the ground field in
proofs without ruining connectedness conditions. (The case of most interest is the identity
component of the special fiber of a Néron model.)

Theorem 2.6 (Chevalley). Let G be a smooth connected group scheme over a perfect field
k. There exists a unique short exact sequence

1→ Gaff → G→ A→ 1

with Gaff affine and A an abelian variety.

This theorem is the basis for the work of Lang and Rosenlicht using generalized Jacobians
to classify finite abelian (ramified) coverings of smooth proper geometrically connected curves
over perfect fields. For finite fields, this recovers their geometric approach to class field theory
of global function fields.

Proof. For an exposition of the proof in the language of schemes, see [C1]. (The references
therein also point to the original proofs.) Briefly, the plan of the proof goes as follows. A
Galois descent argument (using uniqueness, as well as the Galois property of k/k for the
perfect field k) reduces the problem to the case k = k. One further reduces to the case that
G has no nontrivial homomorphism to an abelian variety (in particular, to a Jacobian), and
then the aim is to prove that G is affine.

The absence of maps to Jacobians is used to build big projective representations of G
on spaces of rational functions on G. By noetherian induction, such a representation is
constructed for which the associated homomorphism f : G→ PGLn is injective on geometric
points and hence has infinitesimal kernel. But f(G) is a smooth closed k-subgroup of PGLn
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(Proposition 2.1(1)), so it inherits affineness from PGLn and hence we get a short exact
sequence 1→ H → G→ f(G)→ 1 with infinitesimal (hence k-finite) H. A descent theory
argument then shows that the k-finiteness of H implies the finiteness of the “H-torsor”
morphism G→ f(G), so G is finite over the affine f(G) and hence is affine. �

We respectively call Gaff and A the affine part and abelian part of G. By Example 2.4,
these are functorial in G; we will use this later. The exact sequence in Chevalley’s theorem
is called the Chevalley decomposition of G.

Remark 2.7. The perfectness hypothesis in Chevalley’s theorem cannot be dropped. For
counterexamples over any imperfect field, see [CGP, Ex. A.3.8] (and see [CGP, Thm. A.3.9]
for an interesting salvage over arbitrary fields of positive characteristic). We will always
apply Chevalley’s theorem after passing to the case of an algebraically closed ground field.

Recall that a homomorphism f : G′ → G between finite type k-group schemes is an
isogeny if f is a finite flat surjection, or equivalently (by descent theory) it is faithfully flat
and ker f is finite. When G′ and G are smooth, by the Miracle Flatness Theorem [Mat, 23.1]
(or generic flatness combined with homogeneity considerations) it is equivalent to say that
f is surjective and dimG′ = dimG (or that f is surjective and ker f is finite).

Proposition 2.8. If f : G′ → G is a surjective homomorphism (resp. isogeny) between

smooth connected k-groups and k is perfect then G′aff → Gaff is surjective (resp. an isogeny)

and likewise for the induced map G′/G′aff → G/Gaff between the abelian parts.

Proof. Since dimG = dimGaff + dim(G/Gaff), and similarly for G′ in place of G, once the
surjective case is settled the isogeny case will be immediate by dimension considerations. The
closed k-subgroup f(G′aff) in Gaff is normal in f(G′) = G, so the smooth connected quotient

group G/f(G′aff) makes sense and is a quotient of the abelian variety G′/G′aff , so it is an
abelian variety. Thus, its smooth connected closed k-subgroups are abelian varieties, such
as Gaff/f(G′aff). But this latter quotient is affine by Proposition 2.1(3), so it is trivial. This
proves surjectivity between affine parts, and surjectivity between abelian parts is obvious. �

From the viewpoint of Chevalley’s theorem, semi-abelian varieties are the smooth con-
nected commutative k-groups whose affine part over k is a power of Gm. Before we take
up the study of semi-abelian varieties, we need to record a basic structural fact concerning
smooth connected commutative affine groups over a field k (to be applied to the affine part
of the Chevalley decomposition over k). Thus, we now review some basic definitions and
results connected to linear algebraic groups. We will say much more than we need, mainly
to convey the sense in which tori are much nicer than unipotent groups (thereby explaining
why the definition of “semi-abelian variety” is cannot be improved).

Remark 2.9. The phrase “linear algebraic group” means “smooth affine group” over a field;
this terminology is justified because any smooth affine group over a field k is k-isomorphic to
a closed k-subgroup of some GLn over k [Bo, 1.10]. Such embeddings are a powerful tool in
the theory, allowing concepts like “Jordan decomposition” for geometric points to be carried
over functorially from GLn to any linear algebraic group [Bo, 4.4].
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By [Bo, 10.9], over an algebraically closed field every 1-dimensional smooth connected
affine group is isomorphic to Gm or Ga. This leads to the two general classes of smooth
connected affine groups which pervade the basic structure theory of linear algebraic groups:
tori and unipotent groups. We take up each in turn.

Definition 2.10. A k-torus is a smooth affine commutative k-group T such that Tk ' Gr
m

for some r ≥ 0. If T is k-isomorphic to Gr
m for some r, then T is k-split.

By [Bo, §8] (see especially [Bo, 8.3]), any k-torus T becomes split after a finite Galois
extension on k and all smooth connected k-subgroups or quotients of T are tori. In particular,
Tks ' Gr

m and hence the (geometric) character group

X(Tks) := Homks(Tks ,Gm) ' Endks(Gm)⊕r = Z⊕r

is a finite free Z-module whose natural Gal(ks/k)-action is discrete. (Note that X(Tks) =
X(Tk) since the k-endomorphisms of Gm are defined over ks and even over the prime field.)
The arguments in [Bo, §8] show that T  X(Tks) is an anti-equivalence between the category
of k-tori and the category of Gal(ks/k)-lattices; this makes tori accessible objects. It is also
true that if the outer terms of a short exact sequence of smooth connected k-groups are tori
then so is the middle term (without assuming it to be commutative), and that then the outer
terms are k-split if and only if the middle is, but we do not need these facts.

Just as tori are related to groups built up from Gm, there is an analogue for Ga called
unipotence. The starting point is the observation that Ga is isomorphic to the closed sub-
group {( 1 ∗

0 1 )} in GL2. There are two ways to define unipotence; the definitions look quite
different, but are equivalent. As a starting point, we make a definition inspired by [SGA3]:

Definition 2.11. A smooth connected affine k-group U is unipotent if Uk admits a compo-
sition series whose successive quotients are isomorphic to Ga.

Remark 2.12. Unipotence can be defined more generally (without smoothness or connected-
ness), but we do not need it in such generality. It can be shown (via descent theory) that the
affineness hypothesis on U in the definition is redundant, but we do not need that either.

Remark 2.13. In [Bo] the definition of unipotence is that all points in U(k) have unipotent
image under some k-subgroup inclusion U ↪→ GLn (the choice of which turns out not to
matter). This is the traditional definition in the theory of linear algebraic groups. Let’s
establish the equivalence with the above definition. The well-definedness and functoriality of
Jordan decomposition for linear algebraic groups [Bo, 4.4(3),(4)] ensure that our definition
of unipotence implies the traditional one (for smooth connected affine k-groups). Conversely,
by [Bo, 4.8, 10.6(2)], a smooth connected affine k-group that is unipotent in the traditional
sense is unipotent in our sense.

The traditional definition of unipotence makes it clear that unipotence is inherited by
smooth connected k-subgroups and quotients. Less evident but true is that any unipotent
smooth connected affine k-group is k-isomorphic to a closed k-subgroup of the strictly upper-
triangular subgroup in some GLn over k [Bo, 15.5(ii)] (thereby justifying the terminology
“unipotent”).
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Definition 2.14. A unipotent smooth connected affine k-group U is split if it admits a
composition series of smooth connected k-subgroups such that the successive quotients are
k-isomorphic to Ga.

Here are two striking contrasts with tori. First, any unipotent smooth connected affine
k-group U becomes split over a finite purely inseparable extension of k [Bo, 15.5(ii)], and
hence U is k-split when k is perfect. Second, the k-split property is inherited by quotients
[Bo, 15.4(i)], but is not inherited by smooth connected closed subgroups in general when k
is imperfect. (The classic counterexample in G2

a over an arbitrary imperfect field was given
in Samit’s talk in the fall.)

Lemma 2.15. Let T be a k-torus, and U a smooth connected unipotent k-group. There are
no nontrivial homomorphisms between T and U (in either direction).

Proof. We may assume k = k, and then use composition series to reduce to the case T = Gm

and U = Ga. The density of nontrivial torsion in T with order not divisible by char(k) and
the absence of such torsion in Ga forces any homomorphism Gm → Ga to vanish. In the
opposite direction, a homomorphism Ga → Gm corresponds to a nowhere-vanishing function
on Ga. But the only such functions are the constants, so such a homomorphism is trivial. �

The importance of tori and unipotent groups for our purposes is through their role in the
following general structure theorem in the commutative case:

Proposition 2.16. Let G be a smooth connected commutative affine k-group.

(1) There is a unique k-torus T in G that contains all k-tori of G, and U = G/T is
unipotent.

(2) If k is perfect then there is a unique splitting G = T × U .
(3) The formation of T and U is functorial in G, and a surjective homomorphism (resp.

isogeny) G′ → G between smooth connected commutative affine k-groups induces
surjective homomorphisms (resp. isogenies) T ′ → T and U ′ → U . In particular, G′

is a torus if and only if G is a torus, and likewise for unipotence.

Note that by Lemma 2.15, the formation of T and U automatically commutes with exten-
sion of the ground field (since if S is a torus in GK then its image in GK/TK = (G/T )K = UK
must be trivial, forcing S ⊆ TK).

Proof. Part (1) is [Bo, 10.6(3)], which also gives (2) over k. For perfect k this product
decomposition of Gk descends to k by Galois descent. (A simpler proof over perfect k is given
by [Bo, 4.7].) The functoriality in (3) follows from Lemma 2.15. Since dimG = dimT+dimU
and likewise for G′, and the rest goes as in the proof of Proposition 2.8 (using T in the role
of Gaff). �

Remark 2.17. The perfectness hypothesis in Proposition 2.16(2) cannot be dropped. See
[CGP, Ex. 1.1.3] for a counterexample over any imperfect field.

3. Semi-abelian varieties

Recall that Chrisitan define a semi-abelian variety over k to be a smooth connected com-
mutative k-groupG such thatGk is an extension of an abelian variety by a torus; equivalently,
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Gaff
k

is a torus. By Proposition 2.8 and Proposition 2.16(3), it follows that for an isogeny
G′ → G between smooth connected commutative k-groups, G′ is semi-abelian if and only
if G is. Also, again using Proposition 2.16, a smooth connected commutative k-group G is
semi-abelian if and only if Gaff

k
(or equivalently, Gk) contains no nontrivial smooth connected

unipotent k-subgroup. This is the main reason that the semi-abelian condition is powerful
(since unipotent groups are generally a source of headaches).

Despite the failure of Chevalley’s theorem over imperfect fields, we now show that the
extension structure on Gk can always be descended to k in the semiabelian case:

Theorem 3.1. Let G be a smooth connected k-group, and assume that Gaff
k

is a torus. Then
G is necessarily commutative and there is a unique short exact sequence of k-groups

1→ T → G→ A→ 1

for a k-torus T and abelian variety A over k.

This shows that in the definition of “semi-abelian variety” we do not need to assume
commutativity of G. The descent of the torus to k will be essential in our later study of
abelian varieties with semistable reduction.

Proof. We first prove the commutativity, so we may and do assume k = k. It now suffices to
show that any smooth connected extension E of an abelian variety A by the k-group T = Gr

m

is necessarily commutative. First we show that T is central in E. The centrality of T in
E is equivalent to the triviality of the E-action on T via conjugation. Consider the closed
subgroups T [N ] for N ≥ 1 not divisible by char(k). These are étale, since [N ] : T → T
induces multiplication by N on the tangent space at the identity (an isomorphism since
char(k) - N). Thus, the T [N ] are finite constant groups (since k = k), and they are clearly
functorial in T (e.g., preserved under any automorphism).

By consideration of each Gm-factor of T , we see that the finite constant subgroups T [N ]
are collectively Zariski-dense, so to prove the triviality of the E-action on T it suffices to
show that E acts trivially on each T [N ]. But E is connected and T [N ] is a finite constant
k-group, so the triviality of the action is immediate (as each point of T [N ] has open and
closed stabilizer in E). Hence, T is central in E, as desired. Combining this centrality with
the commutativity of A = E/T , the commutator map E × E → E factors through a map

A× A = (E/T )× (E/T ) = (E × E)/(T × T )→ T

carrying (1, 1) to 1. But A×A is proper and connected, and T is affine, so this map vanishes
and thus E is commutative.

Returning to our initial k, now with G known to be commutative, we will descend Gaff
k

to a k-torus T in G. Once this is done, G/T must be an abelian variety because (G/T )k =
Gk/G

aff
k

= A is proper (and properness descends through a ground field extension). The
uniqueness of the resulting extension structure on G is a formal consequence of existence,
by Example 2.4.

To carry out the descent from k to k, if we can solve the descent down to ks then the
uniqueness over ks (granting existence) implies via Galois descent that we can push the
descent down to k. Hence, we may and do rename ks as k, so now k = ks. We will
construct the desired k-torus T in G via closure of suitable finite étale torsion subgroups.
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(The technique of construction via closure of étale torsion is very useful; it will occur later
in the proof of Grothendieck’s inertial criterion for semistable reduction.)

Choose a prime ` 6= char(k), so each G[`n] is a finite étale k-group, and hence is constant
because k = ks. In other words, Gk[`

n] consists entirely of k-rational points; i.e., G(k)[`n] =
G(k)[`n]. Thus, every subgroup of G(k)[`n] arises from a unique subgroup of G(k)[`n]. We
therefore get a rising chain of subgroups Sn ⊆ G(k)[`n] corresponding to the `n-torsion in the
torus Gaff

k
, so ∪nSn is a subgroup of G(k). The Zariski closure in G of any abstract subgroup

of G(k) is a smooth closed k-subgroup of G whose formation commutes with extension of the
ground field (see [Bo, 1.3(b)]). Hence, the identity component T of this closure is a smooth
connected closed subgroup of G such that Tk ⊆ Gaff

k
. But Gaff

k
is a torus, so its smooth

connected closed subgroups are tori and no proper subtorus can contain all of its `-power
torsion (as the dimension of a k-torus can be read off from the order of its `-power torsion
subgroups, akin to the case of abelian varieties). Thus, Tk = Gaff

k
. �

Corollary 3.2. Let 1→ G′ → G→ G′′ → 1 be a short exact sequence of smooth connected
groups over a field k. Then G is semi-abelian if and only if G′ and G′′ are semi-abelian.

Proof. We may and do assume k = k. Assume G is semi-abelian. The smooth connected
closed subgroupG′aff of the torusGaff must be a torus, soG′ is semi-abelian. TheGaff → G′′aff

is surjective by Proposition 2.8, so G′′aff inherits the torus property from Gaff , and hence
G′′ is semi-abelian. Conversely, assume G′ and G′′ are semi-abelian. To prove that G is
semi-abelian we have to prove that Gaff is a torus, or equivalently (by Proposition 2.16) that

a unipotent smooth connected subgroup U in Gaff is trivial. Its image in the torus G′′aff is
trivial, so U ⊆ ker(G→ G′′) = G′ and hence U is contained in G′aff . But G′aff is a torus, so
U = 1. �

Corollary 3.3. Let G be a semi-abelian variety over a field k, and H a closed k-subgroup
scheme. If the `-torsion scheme H[`] vanishes for some prime ` then H is finite.

Proof. We may assume k = k and replace H with H0
red so that H is smooth and connected.

We will prove H = 0. By Corollary 3.2, H is semi-abelian. Its maximal torus T satisfies
T [`] ⊆ H[`] = 0 yet T [`] has order `dimT , so T = 0. Thus, H is an abelian variety. But then
0 = H[`] has order `2 dimH , so H = 0. �

4. Semistable reduction

Let R be a discrete valuation ring, K its fraction field, and k its residue field.

Proposition 4.1. Let f : A→ B be a map between abelian varieties over K, and let A and
B denote the respective Néron models of A and B over R.

(1) If f is an isogeny and either of A 0
k or B0

k is semi-abelian then so is the other, and
then f 0

k : A 0
k → B0

k is an isogeny.
(2) Conversely, if the reduction f 0

k is an isogeny then f is an isogeny. f is an isogeny.

Proof. First we prove (1). There exists an isogeny h : B → A such that f ◦ h = [n]B and
h◦f = [n]A for some nonzero integer n. Since multiplication by n is an isogeny on any semi-
abelian variety over k, once the equivalence of semi-abelian reductions is established it follows
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that f 0
k is an isogeny if and only if h0

k is. Hence, by symmetry we may replace f with h if
necessary so that A 0

k is semi-abelian. Then ker f 0
k is contained in the ker([n]A)0

k = ker[n]A 0
k
,

which is finite. Since dim A 0
k = dim Ak = dim AK = dimA = dimB = dim B0

k, f
0
k is

therefore an isogeny. In particular, B0
k inherits the semi-abelian property from A 0

k .
Now we prove (2). The isogeny over k implies equality of dimensions, so dimA = dimB.

Hence, to deduce that f is an isogeny it suffices to prove that it is quasi-finite. Consider
the “quasi-finite locus” U ⊆ A consists of a ∈ A that are isolated in f−1(f(a)). This locus
is non-empty since by hypothesis it contains A 0

k . By semicontinuity of fiber dimension for
finite type maps between noetherian schemes, U is open. Since A is R-flat, it follows that
U meets the generic fiber A = AK . Hence, f : A → B has an isolated point in some fiber,
so by homogeneity f has finite fibers. �

Recall that an abelian variety A over K has semistable reduction if A 0
k is semi-abelian

(with A denoting the Néron model of A over R). We may a similar definition when R is
semi-local Dedekind (requiring the identity component of the fiber of A at each closed point
of SpecR to be semi-abelian). Our eventual goal is to use the semistable reduction theorem
for curves to prove:

Theorem 4.2 (Semistable reduction for abelian varieties). For an abelian variety A over
K, there exists a finite separable extension K ′/K such that AK′ has semistable reduction
over the integral closure R′ of R in K.

Note that by separability of K ′/K, R′ is module-finite over R. When R is complete, or
more generally henselian, then R′ is again local. However, in general R′ is merely semi-
local (and Dedekind). We want to apply the theory over number fields, so insisting on
the henselian (or completeness) hypothesis is unwise (though it is largely harmless, due to
Krasner’s Lemma and the compatibility of the formation of Néron models with respect to
local base change to the completion or henselization).

We will also prove Grothendieck’s inertial criterion for semistable reduction, which gen-
eralizes the Néron–Ogg–Shafarevich criterion for good reduction. For now, we show that to
prove Theorem 4.2, it suffices to consider the case of Jacobians:

Proposition 4.3. To prove the semistable reduction theorem over K, it suffices to treat the
special case of Jacobians of smooth and geometrically connected proper curves X over K.

We refer the reader to [Mi2] for a general discussion of the theory of Jacobian varieties.

Proof. Let A be an abelian variety over K. By using a projective embedding of A over K
and Bertini-style slicing arguments, it is a classical fact (see [Mi2, Thm. 10.1], which applies
since K is infinite) that there exists a smooth and geometrically connected proper curve X
over K such that A is a quotient of its Jacobian JX over K. By Poincaré reducibility over
K, we get an isogeny A×B ∼ JX for an abelian variety B over K. By hypothesis there is a
finite separable extension K ′/K such that (JX)K′ has semistable reductive over the integral
closure R′ of R in K ′. By Proposition 4.1 applied over each of the finitely many localizations
of R′ at a maximal ideal, (A × B)K′ = AK′ × BK′ has semistable reduction over R′. But
Néron models commute with products, and a (smooth) direct factor of a semiabelian variety
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is semiabelian (as a special case of Corollary 3.2). Hence, AK′ has semistable reduction over
R′. �

Consider the task of proving the semistable reduction theorem for the Jacobian of a curve
X over K (smooth, proper, and geometrically connected). We will later review the definition
of and existence results concerning the Picard variety Pic0

X/K (which is also explained in [Mi2]
over a field); this is the dual of the Jacobian, so the two are isogenous (and in fact isomorphic,
via the canonical autoduality of the Jacobian), so our problem is to find a finite separable
extension K ′/K such that (Pic0

X/K)K′ = Pic0
XK′/K

′ has semistable reduction over R′. By the

semistable reduction theorem for curves (!), there exists a finite separable extension K ′/K
such that XK′ = X ′ ⊗R′ K ′ for a projective flat morphism X ′ → SpecR′ with X ′ regular
and geometric closed fibers all semistable. (Note that such a map is necessarily its own Stein
factorization, due to normality of R′ and integrality and connectedness of the geometric
generic fiber, so its closed fibers are automatically geometrically connected; see Lemma 7.1.)

How can we get a handle on the identity components of the special fibers of the “abstract”
Néron model over R′ of the abelian variety Pic0

XK′/K
′ over K ′? A key idea, which goes back

to work of Raynaud, is to construct the Néron model of Pic0
XK′/K

′ in another manner, more

closely related to the geometry of regular proper R′-models X ′ of XK′ . In §7 we will discuss
the definition of and representability results for the functor Pic0

X ′/R′ as a separated, smooth,
finite type R′-group scheme. This lies very deep, for reasons explained in §7.

Once the scheme Pic0
X ′/R′ is in hand, its generic fiber is Pic0

X ′
K′/K

′ = Pic0
XK′/K

′ and its fiber

at any closed point s′ ∈ SpecR′ is the Picard variety Pic0
X ′

s′/k(s′) of the semistable curve X ′
s′

over k(s′). The wonderful fact is that this is visibly intrinsic to X ′
s′ , so we can try to study its

properties using the geometry of X ′
s′ . More generally, we can study the Picard variety of any

semistable proper (and geometrically connected) curve C over a field F , and it will turn out
that Pic0

C/F is always semi-abelian (with abelian and toric parts related to the irreducible

components and singularities of C). Hence, Pic0
X ′/R′ will be a semi-abelian scheme over

R′. That will settle the semistable reduction theorem (conditional on the robust theory of
Picard functors as just outlined) provided that the natural map Pic0

X ′/R′ → N(Pic0
XK′/K

′)

is an open immersion (then necessarily recovering the identity component on fibers, so the
Néron model has semiabelian fibral identity components, as desired). This open immersion
property follows from the following useful result (applied over the local rings of R′ at its
maximal ideals):

Theorem 4.4. Let G be a separated R-group scheme of finite type such that its open relative
identity component G 0 (i.e., the complement of the union of the non-identity components in
the special fiber) is semi-abelian, and assume that its generic fiber A is an abelian variety.
The natural map G → N(A) is an open immersion.

In particular, if A is a semi-abelian R-scheme and its generic fiber A is an abelian variety
then the natural map A → N(A)0 is an isomorphism.

Before we prove Theorem 4.4, let’s put the result in context by discussing its application to
base change of Néron models. Consider a local extension R→ R′ of discrete valuation rings,
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inducing an extension K → K ′ on fraction fields. For any abelian variety A over K the R′-
group N(A)R′ is smooth and separated with generic fiber AK′ , so by the universal property
of Néron models there is a unique R′-group map N(A)R′ → N(AK′). This is the base change
morphism for Néron models relative toR→ R′. There is an induced mapN(A)0

R′ → N(AK′)
0

between relative identity components. (Note that (N(A)R′)
0 = (N(A)0)R′ because of the

geometric connectedness in Lemma 2.5, so the notation N(A)0
R′ is unambiguous.) There is

also an induced map

π0(N(A)ks) = N(A)ks/N(A)0
ks
→ N(AK′)k′s/N(AK′)

0
k′s

= π0(N(AK′)k′s)

between the geometric component groups, and this is visibly injective if the base change
morphism between identity components is an isomorphism. (Note that the component groups
are unaffected by replacing ks with k.)

The base change morphism and its induced effect on relative identity components and
geometric component groups give a natural meaning to the questions: does the Néron model
commute with base change? How about its identity component or component group? The
phenomenon of bad reduction that is potentially good shows that all of these questions have
a negative answer in general. However, in the semistable case things work out very nicely
for the identity component:

Corollary 4.5. If A has semistable reduction, then the natural map N(A)0
R′ → N(AK′)

0 is
an isomorphism.

Proof. Let A = N(A)0, so AR′ is a semi-abelian R′-scheme with generic fiber AK′ . By
Theorem 4.4 the natural map AR′ → N(AK′) is an isomorphism onto N(AK′)

0. This is
exactly the map we wanted to prove to be an isomorphism. �

To summarize, the identity component is “preserved” under base change once we are in
the semistable case. Hence, under any further base change all that can happen is that the
component group of the special fiber may “grow”. More specifically, if we extend the place v
on K to a place vs fixed separable closure Ks (or what comes to the same, replace R with its
henselization), then as K ′ varies through the finite extensions of K contained in Ks and we
equip K ′ with the restriction v′ of vs (and let R′ be the corresponding discrete valuation ring)
then the component groups π0(N(AK′)k) form a directed system with injective transition
maps (due to Theorem 4.4, where there are no connectedness hypotheses on the special fiber
of G !). Thus, we can ask about the structure of the direct limit.

Example 4.6. Consider an elliptic curve A = E with split multiplicative reduction over
a complete discrete valuation ring R with uniformizer π. The relationship between Néron
models and minimal regular proper models of elliptic curves implies that the minimal regular
proper model E of E over R is an n-gon of P1

k’s arranged in a loop, where n = ord(qE) =
− ord(j), and the étale local equation on E at each singularity of the special fiber is given
by xy = π. The R-smooth locus of the proper R-flat E is the Néron model of E, and its
special fiber is Gm × (Z/nZ) as a k-group. In particular, π0(N(E)k) = Z/nZ.

Now consider a finite separable base change K ′/K with ramification degree e, so on ER′
the étale local equation at the singularities of the special fiber is xy = u′π′e for some u′ ∈ R′×
and uniformizer π′ of R′. This is non-regular if e > 1. A blow-up calculation (which is local



12 BRIAN CONRAD

for the étale topology!) shows that blowing up ER′ at a singularity in the special fiber creates
a new projective line linking the two passing through the chosen singularity, and if e = 2
then it is regular whereas if e > 2 then at one of the new singularities the local equation is
xy = u′π′e−2 while at the other it is regular. Thus, after [e/2] blow-ups over each singularity
on ER′ we reach a regular scheme, and this has special fiber that is a loop of P1

k′ ’s: we have
inserted e− 1 new lines at each of the n original singularities, so the number of lines now is
n+ n(e− 1) = ne. The geometry of a loop of projective lines implies that it is the minimal
regular proper model of its generic fiber, so we have reached the Néron model of EK′ (which
also has split multiplicative reduction).

The map N(E)R′ → N(EK′) does not extend to a morphism from ER′ to the minimal
regular proper model of EK′ when e > 1 (as otherwise by properness and dominance it
would be surjective, contradicting the number of projective lines in the two special fibers).
By uniqueness, this map of Néron models must be the inclusion into the complement of the
exceptional locus of the blow-up, so the induced map on component groups is the natural
map Z/nZ → Z/(ne)Z corresponding to multiplication by e; equivalently, it is the natural
inclusion (1/n)Z/Z→ (1/ne)Z/Z. Passing to the limit, we get Q/Z.

In view of the preceding example, it is not surprising that Serre conjectured in general
that for A with semistable reduction, the limit of the component groups π0(N(AK′)) is
Hom(X(Tk),Q/Z) where T is the maximal torus in the semi-abelian N(A)0

k. (Of course,
by the semistable reduction theorem the same is true without assuming semistable reduc-
tion, by using the maximal torus in the “common” identity components N(AK′)

0
k

for K ′/K
sufficiently large.) This conjecture was proved by Grothendieck in [SGA7, Exp. IX, 11.9].
By far the hardest part of the proof is to control the p-part of the component group when
char(k) = p > 0; for this, Grothendieck uses very sophisticated group scheme constructions.

The moral of the story is that once we reached the semistable case, the component group
continues to grow a lot, just as in the case of elliptic curves.

The preceding considerations were all conditional on Theorem 4.4, so we end this section
by proving the theorem. This will require a number of new ideas and constructions that
will be useful in our further study of properties of semistable reduction, so the effort is
worthwhile. Let N = N(AK). The canonical map f : G → N is an isomorphism between
K-fibers, and we note that since N is R-flat it is irreducible. In particular, N is connected
even though Nk may be disconnected. Also note that N is normal, since it is R-smooth.
Thus, both G and N are integral R-schemes. The essential step is to prove that fk has
finite kernel, so fk has finite fibers and hence f is quasi-finite. (This makes essential use of
the semi-abelian hypothesis. For example, the map [p]E on an elliptic curve with additive
reduction in residue characteristic p > 0 reduces to the zero map on the special fiber of the
Néron model.)

Let’s grant the quasi-finiteness of f and see how to conclude that f is an open immersion.
What is the general nature of a quasi-finite map? If we begin with a finite map and remove a
closed subset then we get a quasi-finite separated map. Remarkably, they essentially always
arise this way:
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Theorem 4.7 (Zariski’s Main Theorem). If h : X → S is a quasi-finite and separated map
between noetherian schemes, then it factors as an open immersion j : X ↪→ X into a finite
S-scheme.

This result is [EGA, IV3, 8.12.6] (or see [EGA, IV4, 18.12.13] for Deligne’s ultimate gener-
alization without noetherian hypotheses), and it relies on virtually everything that precedes
it in EGA IV. In Raynaud’s book on henselian rings, he gives a more direct proof. Even in
the case that S is the spectrum of a discrete valuation ring, this result is not obvious.

We now apply Zariski’s Main Theorem to the map f , arriving at a factorization

G
j //

f   A
AA

AA
AA

Y

��
N

where j is an open immersion and Y is N -finite. We may replace Y with the schematic
closure of G , so Y is irreducible and OY is a subsheaf of j∗(OG ). In particular, Y is also
reduced, hence integral, and it is R-flat too (since R is a discrete valuation ring, so flatness
is the same as being torsion-free). Since fK is an isomorphism and jK is an open immersion
into the integral YK , it follows that jK is an isomorphism. Thus, Y → N is a finite surjective
map between integral schemes and it is an isomorphism on K-fibers. But N is normal (even
regular), since it is smooth over R, so this map must be an isomorphism. It follows that f is
an open immersion! Hence, we just have to prove that f is quasi-finite, or equivalently that
the k-homomorphism fk is quasi-finite.

Remark 4.8. This same argument shows that a birational proper map between normal quasi-
projective varieties over a field cannot be quasi-finite if it is not an isomorphism. That is,
some fiber must have positive dimension. This was the viewpoint through which Zariski
thought about his “Main Theorem”. See Mumford’s Red Book for an illuminating discussion
of various results called “Zariski’s Main Theorem” and how they are related.

It remains to prove that the closed subgroup scheme H := ker fk in Gk is finite. Since
Gk/G 0

k is k-finite, it is equivalent to prove that H ∩ G 0
k is finite. But G 0

k is semi-abelian, so
by Corollary 3.3 it suffices to prove that H[`] = 0 for some prime `. In other words, we aim
to prove that the natural map

Gk[`]→ N [`]

is a closed immersion for some prime `. It is harmless to make a base change to a strict
henselization Rsh, so now R is henselian and k = ks.

Choose ` 6= char(k), so Gk[`] is a finite étale k-scheme and thus is a constant group (as
k = ks). Hence, our task (with the choice of ` just made) is equivalent to proving that
G (k)[`]→ N [`](k) is injective. The multiplication maps ` : G → G and ` : N → N between
smooth separated R-groups of finite type are étale on fibers (as ` 6= char(k)), so their kernels
G [`] and N [`] are quasi-finite étale R-groups.
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Consider the commutative diagram

G [`](K) N [`](K)

G [`](R)

OO

//

��

N [`](R)

��
G [`](k) // N [`](k)

in which the top horizontal equality is due to the equality of generic fibers GK = NK (via
fK), the upper vertical maps are injective due to the separatedness of G and N over R, and
the bottom horizonal map is what we wish to be injective. It follows from commutativity
that the middle horizontal map is injective, so we’ll be done provided that the lower vertical
maps are equalities. In other words, we are reduced to proving:

Lemma 4.9. Let X be a quasi-finite separated étale scheme over a henselian local ring R.
The natural map X(R)→ X(k) is bijective.

To prove this lemma, as a warm-up we consider the case when X is finite étale, and then
we reduce the general case to this case. In the R-finite case, we invoke a basic fact from the
theory of henselian local rings: a finite R-scheme is a disjoint union of finitely many finite
local R-schemes. This is [EGA, IV4, 18.5.11, 18.5.13], and is probably proved in a more
direct way in Raynaud’s book on henselian local rings; I don’t remember. (For complete
local noetherian R this is the familiar fact [Mat, 8.15] that every module-finite algebra over
a complete local noetherian ring is a product of finitely many such local algebras. That
proof involves lifting the primitive idempotents from the special fiber, which is an instance
of Hensel’s Lemma in the upstairs algebra relative to the étale equation t2 − t = 0.) Hence,
in the finite étale case

X =
∐

SpecRi

for local finite étale algebras R → Ri. Letting ki denote the corresponding residue field,
we have Xk =

∐
Spec ki. The set X(R) corresponds to those Ri equal to R (since the

existence of an R-algebra section Ri → R to an étale R-algebra forces a ring-theoretic
splitting Ri = R×R′i, and hence by locality of Ri we must have R′i = 0).

We conclude (for X finite étale over R) that the map X(R)→ X(k) is bijective provided
that Ri = R if and only if ki = k. When R is a complete discrete valuation ring, this is the
classical classification of finite unramified extensions in terms of the residue field extension.
In general, the theory of henselian local rings ensures that the functor R′  k′ from local
finite étale R-algebras to finite separable extensions of k is an equivalence of categories. In
particular, if ki = k then Ri = R.

How can we bootstrap from the finite étale case to the general case? For this we invoke
an important consequence of Zariski’s Main Theorem:

Theorem 4.10 (Structure theorem for quasi-finite morphisms). Let X be quasi-finite and
separated over a henselian local ring R. There is a unique decomposition X = Xf

∐
Xη

where Xf is R-finite and Xη has empty special fiber.
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The formation of the “finite part” Xf is functorial in X and commutes with products, so
it is an R-subgroup when X is an R-group.

Before deducing this structure theorem from Zariski’s Main Theorem, we make some
remarks. The relevance of this structure theorem is that by connectedness of SpecR we
have Xη(R) = ∅, so X(R) = Xf(R). Since Xf is R-étale when X is (as Xf is an open
subscheme of X), the structure theorem does indeed complete the reduction to the settled
finite étale case.

The structure theorem for quasi-finite morphisms is a very deep fact, even when R is a
discrete valuation ring. Here is an illustration of its meaning in an elementary (perhaps too
elementary?) example:

Example 4.11. Let R be a (henselian) discrete valuation ring and X ⊆ (Z/nZ)R be the open
R-subgroup obtained by removing the nonzero points from the special fiber. Then Xf is
the zero section and Xη consists of the nonzero K-points on the generic fiber. (This is a
weak example, since it works without the henselian condition on R. To see the necessity of a
henselian hypothesis, consider the localization of Z[

√
2] at one of the two primes over 7. That

is a quasi-finite étale algebra over the non-henselian local Z(7) and it does not decompose as
in the structure theorem.)

This weak example also shows that Xη is generally not functorial in X: consider the zero
map of X as an R-group.

Finally, we probe the structure theorem for quasi-finite morphisms.

Proof. Granting the existence of the proposed decomposition of X, let’s show that the finite
part is unique, functorial, and compatible with products (and we’ll also see why Xη is not
compatible with products). To establish the uniqueness and functoriality of Xf , we again use
(as we did above) the non-obvious fact (which is elementary for complete local noetherian
base rings) that a finite scheme over a henselian local algebra is a disjoint union of finitely
many local schemes Xi = SpecRi. Consider an R-morphism X → Y between quasi-finite
separated R-schemes. To prove that Xf lands in Yf we may replace X with each connected
component Xi of Xf to reduce to the case when X is R-finite and local. In particular, X is
connected, so it lands in either Yf or Yη. It cannot land in Yη since then its unique closed
point would have nowhere to go (as Yη has empty special fiber). This proves the uniqueness
(taking Y = X with perhaps a different decomposition, and X → Y to be the identity map),
as well as the functoriality.

The compatibility with products is a calculation: if Y is another quasi-finite separated
R-scheme then

X × Y = (Xf

∐
Xη)× (Yf

∐
Yη)

= (Xf × Yf)
∐

(Xf × Yη
∐

Xη × Yf

∐
Xη × Yη).

By inspection, the three final terms in this disjoint union have empty special fiber whereas
Xf × Yf is R-finite, so by uniqueness this must be the decomposition of X × Y according to
the structure theorem. In particular, (X × Y )f = Xf × Yf .

Finally we come to the heart of the matter, which is to construct the desired decomposition
of X. By Zariski’s Main Theorem, X admits an open immersion into a finite R-scheme X.
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Since R is henselian, X =
∐

SpecRi for finite local R-algebras Ri. Thus, X =
∐
Xi for the

open subschemes Xi = X ∩ SpecRi in X. Since Ri is local, for each i either Xi = SpecRi

or Xi has empty special fiber (and not both!). Take Xf to be the disjoint union of the Xi

for which Xi = SpecRi, and take Xη to be the disjoint union of the Xi with empty special
fiber. This completes the proof of Theorem 4.4. �

5. Applications of the semistable reduction theorem

We now grant the semistable reduction theorem (for abelian varieties) as a “black box”,
much as everyone treated the existence of Néron models for many years, and we will deduce
from it many interesting results. So we fix an abelian variety A of dimension g > 0 over the
fraction field K of a discrete valuation ring R with residue field k.

Our initial discussion will proceed under the assumption that A has semistable reduction;
i.e., its Néron model A has semi-abelian identity component A 0

k in its special fiber. In
particular, we will not actually make logical use of the semistable reduction theorem right
away. But it will come up later.

By Theorem 3.1 there is an exact sequence of k-groups

0→ T → A 0
k → B → 0

with T a torus and B an abelian variety. Define t = dimT and a = dimB, so g = a + t.
Define Φ = Ak/A 0

k ; this is a finite étale k-group.
Since the dual abelian variety A′ is K-isogenous to A, it also has semistable reduction

(Proposition 4.1) and a choice of K-isogeny A′ → A induces an isogeny A ′0
k → A 0

k and thus
isogenies T ′ → T and B′ → B between toric and abelian parts (Proposition 2.8 applied to
k-fibers). In particular, the numerical parameters t′ and a′ for A′ coincide with the ones for
A: t′ = t and a′ = a.

Remark 5.1. It is natural to wonder if there is a canonical duality relationship between B′

and B, as well as between the Galois lattices X(T ′ks
) and X(Tks). The answer is affirmative,

and is developed in SGA7, but the justification is very lengthy; it involves a digression into
the theory of bi-extensions. We will have no need for these refined facts, so we say nothing
more on the matter.

The filtration on A 0
k via its toric and abelian parts does not lift to A . However, we

will now show how to use the structure theorem for quasi-finite morphisms to carry out
such lifting at the level of torsion subgroups when R is henselian (e.g., complete). This will
have striking and important consequences for the structure of the Tate modules of A as
Galois modules, vastly generalizing the familiar Galois-module structure of Tate curves (the
ur-example of semistable reduction).

Fix an integer N ≥ 1. (We allow the possibility that char(k)|N , since we want to permit
N to be a power of p when K is a p-adic field.) Consider the commutative diagram

0 // T

[N ]

��

// A 0
k

[N ]
��

// B

[N ]

��

// 0

0 // T // A 0
k

// B // 0
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The rows are exact sequences in the abelian category of sheaves for the fppf topology on the
category of k-schemes (or even just k-schemes of finite type), and the left vertical map is an
epimorphism (as it is an isogeny, since T is a torus), so we conclude via the snake lemma
that the natural left exact sequence of finite commutative k-group schemes

(5.1) 0→ T [N ]→ A 0
k [N ]→ B[N ]→ 0

is a short exact sequence (since it is equivalent to short exactness in the sense of fppf abelian
sheaves). This proves:

Lemma 5.2. For N ≥ 1, the finite k-group A 0
k [N ] has order N t+2a.

We now make several observations about the terms in (5.1). The left term T [N ] has étale
Cartier dual (as we may check over k, where T [N ] becomes a power of µN). The middle
term is an open subgroup of Ak[N ], and the étale quotient Ak[N ]/A 0

k [N ] is contained in
Φ[N ] ⊆ Φ, so its order is bounded independently of N . This will be very useful when we
pass to limits over increasing N (in the multiplicative sense).

Assume R is henselian, so by the structure theorem for quasi-finite morphisms

A [N ] = A [N ]f
∐

A [N ]η

with A [N ]f finite over R and having special fiber A [N ]k = Ak[N ]. Observe that A [N ] is a
flat R-group since [N ] : A → A is flat due to the fibral flatness criterion and the fact that
[N ]k is flat (thanks to its surjectivity on the semi-abelian A 0

k ). Hence, A [N ]f is a finite flat
R-group. The order of this R-group is not a nice function of N , since its special fiber Ak[N ]
may be a bit bigger than the group A 0

k [N ] of order N t+2a: it is influenced by Φ[N ] too.

Remark 5.3. If char(k) - N then the Galois module A [N ]f(Ks) ⊆ A[N ](Ks) is exactly the
unramified submodule (i.e., the Kun-points). To see this we may make scalar extension to
Rsh (as that is compatible with the formation of the Néron model) so that k = ks and finite
étale R-schemes are constant (i.e., a disjoint union of copies of SpecR). Since A [N ]f is finite
étale (by the hypothesis N ∈ R×), our problem is to prove that A [N ]f(K) = A [N ](K). By
the Néron mapping property, it is equivalent to check that A [N ]f(R) = A [N ](R). But this
is immediate from the very definition of the “finite part” (since SpecR is connected)!

Consider the unique open finite R-subgroups

A [N ]t ⊆ A [N ]0f ⊆ A [N ]f

which are defined to be the respective lifts of the open and closed k-subgroups T [N ] and
A 0
k [N ] inside of Ak[N ]. (Here we use the decomposition of a finite R-scheme into its lo-

cal parts to see that k-subgroups of the special fiber uniquely lift to open and closed R-
subgroups.) The finite flat R-group A [N ]t has étale Cartier dual, since its special fiber
T [N ] has that property. Despite the notation, A [N ]t and A [N ]0f are not intrinsic to A [N ];
they rely on the ambient A . We are going to use these finite flat R-groups with N increasing
through powers of a prime ` in order to get a handle on the `-adic Tate module of A when
` 6= char(K) and the `-divisible group of A when ` = char(K).

Clearly the orders of A [N ]t and A [N ]0f are N t and N t+2a respectively. The following is
then almost immediate from the definitions (and the details are left to the reader; keep in
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mind that #Φ is finite, so Remark 5.3 yields an analogous result using the inverse limit of
the A [`n]0f (Ks)’s):

Lemma 5.4. For any prime `, the directed systems {A [`n]t} and {A [`n]0f } are `-divisible
groups over R of heights t and t + 2a. Viewing their generic fibers inside of the `-divisible
group of AK, if ` 6= char(K) then these yield Gal(Ks/K)-stable saturated Z`-submodules

T`(A)t ⊆ T`(A)f ⊆ T`(A).

If ` 6= char(k) then T`(A)f = T`(A)IK is the inertial fixed part.

In the saturated filtration of T`(A) by its “toric part” and “finite part” for ` 6= char(K),
observe that the toric part has Z`-rank t and the finite part has corank 2g − (2t + a) = t.
This becomes interesting when it is combined with the duality of abelian varieties. For the
dual A′ of A and a prime ` 6= char(K), we also have a toric part T`(A

′)t and a finite part
T`(A

′)f . Consider the perfect Weil pairing

T`(A)× T`(A
′)→ Z`(1).

The finite part T`(A)f is Z`-saturated with corank t in T`(A), so its annihilator in T`(A
′) is a

canonical saturated Z`-submodule of rank t. It is only natural to guess that this annihilator
must be the toric part T`(A

′)t. This is confirmed by the following result of Grothendieck
which is used in Faltings’ paper:

Theorem 5.5 (Orthogonality theorem, semistable case). Under the Weil pairing as above,
T`(A)f and T`(A

′)t are exact annihilators of each other. In particular, T`(A)/T`(A)f is
Cartier dual to T`(A

′)t and hence has trivial IK-action (as A ′[N ]t has étale Cartier dual for
all N ≥ 1).

Remark 5.6. An interesting consequence of this theorem arises for ` 6= char(K) when we
describe the action of Gal(Ks/K) on T`(A) by choosing a basis whose initial members lie in
T`(A)f . By Remark 5.3 and the final part of the orthogonality theorem, we get the matrix
block description of the Galois action as ( ρ` ∗

0 1 ) where ρ` arises from the generic fiber of an
`-divisible group over R. In particular, if ` 6= char(k) then ρ` is unramified, so for such `
the IK-action is “unipotent of height ≤ 2”: (σ − 1)2 = 0 for all σ ∈ IK . This is a vast
generalization of the description of Tate modules of Tate curves.

The proof of the orthogonality theorem relies on Tate’s theorem on p-divisible groups
in case ` = char(k) 6= char(K). The interested reader who accepts Tate’s theorem in the
equicharacteristic case (which was proved by deJong) can readily adapt the statement and
our proof of the orthogonality theorem to the case ` = char(k) = char(K) > 0 by using
`-divisible groups in place of `-adic Tate modules. In [SGA7, Exp. IX, 2.4, 5.2] Grothendieck
does this, and he also gives a version of the orthogonality theorem for ` 6= p without semi-
stability; we have no need for that and hence do not discuss it. Grothendieck’s approach to
proving the orthogonality theorem even for ` 6= p in the semistable case is via his elaborate
theory of bi-extensions, which we definitely do not want to get into. So we will give a different
proof, inspired by Deligne’s Appendix to [SGA7, Exp. I], though still ultimately relying on
Tate’s theorem in case ` = char(k) as Grothendieck did.
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Proof. In view of the the Z`-saturatedness and rank properties, it is equivalent to prove the
weaker assertion that T`(A)f and T`(A

′)t annihilate each other under the `-adic Weil pairing.
To treat the cases ` = char(k) and ` 6= char(k) in a uniform manner, we will generally

express the ideas in terms of `-divisible groups (which work well over K and R, for any `)
rather than with `-adic Tate modules (which only work over K, especially when allowing
` = char(k)). Let Γ = {A [`n]0f } and Γ′ = {A ′[`n]t} be the `-divisible groups over R whose
generic fibers respectively define T`(A)f and T`(A

′)t. The Z`(1)-valued pairing between these
can be expressed as a homomorphism from one to the Cartier dual of the other. That is,
it is encoded in terms of a map of `-divisible groups f : ΓK → D(Γ′)K over K; here, D(·)
denotes Cartier duality. By Tate’s theorem (which applies since ` 6= char(K), though it is
trivial if ` 6= char(k)), f arises from a homomorphism Γ→ D(Γ′) between `-divisible groups
over R. We will prove that the only homomorphism between these `-divisible groups over R
is the zero map, which will complete the proof.

By construction, Γ′ lifts the Cartier dual of T ′[`∞] and Γ lifts A 0
k [`∞]. We saw in Mike’s

lecture on p-divisible groups that the reduction map HomR(G′, G) → Homk(G
′
k, Gk) is in-

jective for any `-divisible groups G and G′ over R (this is trivial if ` 6= char(k)), so we are
reduced to proving the vanishing of Homk(A 0

k [`∞],D(T ′[`∞])). At this point we focus on the
case that k is finite, which is all that is needed for Faltings’ paper. The problem becomes
that of proving:

Lemma 5.7. Let k be a finite field, G a semi-abelian variety over k, and T ′ a k-torus. For
any prime `, Homk(G[`∞],D(T ′[`∞])) = 0.

To prove this lemma we shall use a very powerful trick called “weight-chasing”, which is
rather effective at exploiting geometry over finite fields to deduce results in more general
settings. The case of R with arbitrary residue field can still be reduced to Lemma 5.7, at the
expense of considering local henselian integrally closed domains R with higher dimension.
To be precise (since the theory of Néron models certainly does not work over a higher-
dimensional normal base), when k is general we can use direct limit techniques from [EGA,
IV3, §8ff.] to descend the relative identity components of the Néron models to semiabelian
schemes over the henselization at a maximal ideal of an integrally closed finite type Z-
subalgebra of R. We then use Tate’s theorem over such a normal noetherian local domain
and the faithfulness of the specialization functor on `-divisible groups (which was proved in
Mike’s notes over any local noetherian base) to reduce the problem again to Lemma 5.7.

To prove Lemma 5.7, let T be the maximal torus of G and B = G/T the abelian part
(over k). We then have an exact sequence of `-divisible groups

1→ T [`∞]→ G[`∞]→ B[`∞]→ 1,

so it suffices to prove that any map from the outer terms to D(T ′[`∞]) must vanish.
Making a finite extension on k is harmless, so we may assume that T and T ′ are k-split.

Hence, their `-divisible groups are powers of µ`∞ , so we are reduced to proving the vanishing
of Homk(µ`∞ ,Q`/Z`) and Homk(B[`∞],Q`/Z`). For the first of these, we separately treat
the cases ` 6= p := char(k) and ` = p. If ` 6= p then µ`∞ is étale so we can convert the
problem into the language of `-adic Tate modules viewed as Galois modules for the Galois
group Gk of k: the assertion is that HomZ`[Gk](Z`(1),Z`) = 0. This is obvious, since the



20 BRIAN CONRAD

`-adic cyclotomic character of Gk is nontrivial. If instead ` = p then µ`n is an infinitesimal
k-group for all n, so it is clear that Homk(µ`∞ ,Q`/Z`) = 0.

Next consider Homk(B[`∞],Q`/Z`); this is where “weights” enter in a substantial way.
First assume ` 6= p, so we can convert the problem into the language of `-adic Tate modules:
does HomZ`[Gk](T`(B),Z`) vanish? Indeed it does, since the Riemann Hypothesis for abelian
varieties over finite fields implies that the Frobenius action on T`(B) does not admit 1 as
an eigenvalue. (In fancier terms, the eigenvalues are Weil q-numbers of weight 1/2, whereas
1 is a Weil q-number of weight 0; here, q = #k). If ` = p then we convert the problem
into the language of contravariant Dieudonné modules instead, and argue the same way: we
have to prove that there are no nonzero W (k)-linear maps from W (k) to the Dieudonné
module of B[p∞] that are compatible with the action of the absolute Frobenius operators.
Even better, there are no such maps that are compatible with the W (k)-linear q-Frobenius
operators (q = #k). This is because the Riemann Hypothesis implies that the W (k)-linear
q-Frobenius on the Dieudonné module of B[p∞] does not have 1 as an eigenvalue (over
W (k)). �

Here is Grothendieck’s inertial semistable reduction criterion (and we remind the reader
that throughout this section we are accepting the semistable reduction theorem for abelian
varieties as a black box; we will use it in the proof below):

Theorem 5.8. Let A be an abelian variety over K, and choose a prime ` 6= char(k). Fix a
place of Ks extending the one on K arising from R, and let IK ⊆ GK := Gal(Ks/K) denote
the resulting inertia subgroup. Then A has semistable reduction if and only if the IK-action
on V`(A) is unipotent.

The condition of unipotence of the IK-action can be defined in either the pointwise sense
(each σ ∈ IK acts as a unipotent automorphism) or the group-theoretic sense (the action of
IK can be strictly upper-triangularized). To prove that these definitions are equivalent, the
problem is to show that the pointwise condition implies the group-theoretic one. Under the
pointwise condition, the Zariski-closure U of the image of IK in GL(V`(A)) has all elements
with characteristic polynomial (X − 1)2g (as this holds for elements from IK). Hence, U
is a unipotent Q`-group in the sense of Jordan decomposition of its geometric points. In
characteristic 0 such groups are always connected, so by [Bo, 15.5(ii)] we can strictly upper
triangularize U over Q`.

Proof. The implication “⇒” was deduced above from the orthogonality theorem (where we
got the stronger conclusion (σ − 1)2 = 0 for all σ ∈ IK). For the converse, we may replace
R with Rsh so that IK = GK and hence the GK-action is unipotent. By the semistable
reduction theorem (!), there is a finite separable extension K ′/K inside of Ks such that the
Néron model A ′ of AK′ over the local integral closure R′ of R in K ′ has special fiber with
semi-abelian identity component. Thus, by Theorem 3.1 there is a short exact sequence

0→ T ′ → A ′0
k′ → B′ → 0

of group varieties over the residue field k′ of R′, where T ′ is a torus and B′ is an abelian
variety.
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The base change morphism A 0
R′ → A ′0 between the relative identity components of the

Néron models is mysterious at the outset (since we do not yet know that A has semistable
reduction). We will use the trick of descent of torsion points to descend T ′ (up to isogeny) to
a k-torus in A 0

k such that A 0
k /T is an abelian variety. To do the descent through the possibly

ramified extension K ′/K, we have to exploit the unipotence hypothesis for the GK-action in
a clever way. The role of unipotence is to prove:

Lemma 5.9. The inclusion V`(A)GK′ ⊆ V`(A)GK is an equality.

Proof. For any g ∈ GK , some power gn lies in GK′ with n > 0. Thus, it suffices to prove
rather generally that if g is a unipotent automorphism of a finite-dimensional vector space
V over a field of characteristic 0 then g − 1 and gn − 1 have the same kernel.

Writing g = 1 +N with nilpotent N , we have

gn = 1 + nN +N2(· · · ) = 1 + nN(1 +N(· · · ))
where the terms in (·) are linear combinations of powers of N . Thus, gn−1 = nN(1+N(· · · ))
where 1 +N(· · · ) is invertible. Since n acts invertibly (as we are in characteristic 0), we are
done. �

The lemma implies that A[`n](K) = A[`n](K ′) for all n ≥ 1, so by the Néron mapping
property we have A [`n](R) = A ′[`n](R′) for all n ≥ 1. Since ` 6= char(k) and k = ks, all
finite flat commutative group schemes over R′ of `-power order are constant. Also, even
though A 0

k is not yet known to be semiabelian, the endomorphism of multiplication by ` is
étale, so ` : A → A over R is étale. Hence, all A [`n]’s are quasi-finite étale over the strictly
henselian R and thus A [`n]f makes sense as a finite constant R-subgroup of A (though we
have not defined a notion of “toric part” for it). We can likewise make sense of A [`n]0f ,
though it will not be of any use to us.

It follows that A ′[`n]t and A ′[`n]0f (viewed as finite constant R′-groups) descend into the
finite constant R-group A [`n]f (as all R-points of A [`n] factor through the finite part!).
Passing to the special fiber, inside of the mysterious Ak we have produced two constant
`-divisible subgroups Γt ⊆ Γ such that the special fiber Ak′ → A ′

k′ of the base change
morphism carries Γt isomorphically onto T ′[`∞] and carries Γ isomorphically onto A ′0

k′ [`
∞].

Let T ⊂ A 0
k denote the identity component of the Zariski closure in Ak of the points

in Γt(k) ⊂ Ak(k). (We do not yet know that this is a torus; it is just an abstract smooth
connected k-subgroup of A 0

k .) The formation of T commutes with extension on k, so by
density reasons over k′ the map Ak′ → A ′

k′ carries Tk′ into T ′. But the image of Tk′ in T ′

contains T ′[`∞], so Tk′ maps onto T ′. It follows that dimT ≥ dimT ′, with equality if and
only if Tk′ � T ′ is an isogeny, in which case T must be a torus (by Proposition 2.16 applied
over k).

Consider the constant `-divisible group Γ in Ak. By finiteness of the component group
of Ak, Γ is contained in A 0

k . Under the special fiber f : (A 0
k )k′ → A ′0

k′ of the base change
morphism, Γk′ is carried isomorphically onto A ′0

k′ [`
∞], which is Zariski-dense in the semi-

abelian A ′0
k′ . Hence, f is surjective. But we have seen that f(Tk′) = T ′, so the induced map

f : (A 0
k /T )k′ → A ′0

k′/T
′ is surjective (with target an abelian variety). Since

dim(A 0
k /T )k′ = dim A 0

k − dimT = g − dimT ≤ g − dimT ′ = dim A ′0
k′/T

′,
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it follows that f must be an isogeny and dimT = dimT ′. We conclude that T is a torus and
A 0
k /T is an abelian variety. �

6. Applications of Grothendieck’s inertial criterion

We now illustrate the power of the inertial criterion for semistable reduction in Theorem
5.8 (whose proof was conditional on the semistable reduction theorem for abelian varieties,
which remains to be proved in the special case of Jacobians). First, we show that semistable
reduction enjoys many of the familiar properties of good reduction, by virtually the same
proofs. Semistable reduction is insensitive to isogenies: this is rather elementary, as we
saw in Proposition 4.1. The situation for exact sequences is deeper, since Néron models
have poor behavior with respect to exact sequence of abelian varieties (apart from situations
such as mixed characteristic (0, p) with e < p − 1, to which Raynaud’s work on finite flat
group schemes can be applied). But Grothendieck’s inertial criterion effortlessly settles such
problems:

Proposition 6.1. If 0 → A′ → A → A′′ → 0 is a short exact sequence of abelian varieties
over K then A has semistable reduction if and only if A′ and A′′ do.

Proof. Consider the Galois-equivariant exact sequence of V`’s for a prime ` 6= char(k). Since
unipotence of an automorphism of a finite-dimensional vector space amounts to the charac-
teristic polynomial have 1 as its only root, it can be checked on the successive quotients of
a flag stable under the automorphism. �

Example 6.2. If A is an abelian variety over K and it is K-isogenous to
∏
Ai for abelian

varieties Ai over K, then A is semistable if and only if all Ai are semistable. Indeed,
since semistability is insensitive to isogenies we can assume A =

∏
Ai, and then repeated

applications of the proposition do the job.

Next we give an application to good reduction in the CM case, generalizing the classical
case of CM elliptic curves. Recall that for an abelian variety X of dimension g over a field
F , End0

F (X) is a semisimple Q-algebra of dimension at most (2g)2, and the commutative
semisimple Q-subalgebras have Q-dimension at most 2g. When equality holds for some
such subalgebra L =

∏
Li (with fields Li) we say that X has sufficiently many complex

multiplications, and we call X a CM abelian variety over F . (In the literature, the distinction
between satisfying this condition over F or over some extension is not always made clear.
It certainly makes a difference; e.g., elliptic curves over Q cannot support an action by an
imaginary quadratic field on their tangent line over Q, but there are plenty of such elliptic
curves that acquire CM over an extension field.) It is true but nontrivial over general F that
in the CM case, the fields Li can be arranged to all be CM fields. We will not need this fact.

Proposition 6.3. An abelian variety that acquires sufficiently many complex multiplications
over an extension of K becomes good at all places of any finite separable extension K ′/K
where it is everywhere semistable.

By considering quadratic twists of elliptic curves, we see that having sufficiently many
complex multiplications over K does not imply good reduction over K.
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Proof. It is a general fact due to Chow that for an extensionK ′ ofKs, the map EndKs(AKs)→
EndK′(AK′) is bijective; see [C2, Thm. 3.19] for a proof via descent theory. Thus, if A ac-
quires sufficiently many complex multiplications over some extension of K then it does so
over Ks and hence over a finite separable extension of K. Since the formation of the rela-
tive identity component of the Néron model commutes with finite base change on K in the
semistable case (Corollary 4.5), semistable reduction that is potentially good must already
be good (since we know from Sam’s lecture that if the identity component of the special
fiber of the Néron model is an abelian variety, then the Néron model is in fact an abelian
scheme). It remains to show that if A of dimension g > 0 with sufficiently many complex
multiplications has semistable reduction then it has good reduction.

Choose L =
∏
Li ⊆ End0

K(A) with fields Li such that [L : Q] = 2g. The primitive
idempotents in L define an isogeny decomposition A ∼

∏
Ai such that Li ⊆ End0

K(Ai), so
[Li : Q] ≤ 2 dimAi for all i. But summing over i gives the equality [L : Q] = 2 dimA, so
in fact each Ai has sufficiently many complex multiplications over K using the field Li. It
suffices to treat each Ai in place of A (they are all semistable, by Example 6.2), so we may
and do assume that L is a field.

Let A be the Néron model, and let T be the maximal torus in A 0
k . It suffices to prove

T = 0. There is a natural ring homomorphism

End0
K(A) = Q⊗Z EndK(A)→ Q⊗Z EndR(A )→ Q⊗Z Endk(T ) ⊆ EndQ(X(Tks)

∗
Q),

so if T 6= 0 then we get a representation of the number field L of degree 2g on a nonzero
Q-vector space of dimension dimT ≤ g. This is absurd, so T = 0. �

Here is a refinement of Proposition 4.1.

Proposition 6.4. Let A and B be abelian varieties over K with semistable reduction. The
natural map HomK(A,B)→ Homk(A 0

k ,B
0
k) is injective.

Proof. By Proposition 4.1, it is harmless to change A and B by an isogeny. By Example 6.2,
we can reduce to the case when A and B are K-simple. If A and B are not K-isogenous
then HomK(A,B) = 0 and there is nothing to do, so we may assume they are isogenous.
Hence, we can even assume B = A. The semi-abelian hypothesis implies that Endk(A 0

k )
is torsion-free as an abelian group, so it is equivalent to check injectivity of the Q-algebra
homomorphism End0

K(A)→ End0
k(A

0
k ) (i.e., injectivity after tensoring with Q). But by K-

simplicity, End0
K(A) is a division algebra. Hence, it has no nonzero proper two-sided ideals,

so we get the desired injectivity. �

Proposition 6.5. Pick N ≥ 3 not divisible by char(k). Then A acquires semistable reduction
at all places of the finite Galois splitting field K(A[N ])/K of A[N ].

Proof. By replacing K with K(A[N ]) and R with any of the localizations (at a maximal
ideal) of its R-finite integral closure in K(A[N ]), we may reduce to the case when A[N ] is
K-split (i.e., has trivial Galois action). The aim is to prove that A has semistable reduction,
so we can replace R with its henselization. Since N is divisible by 4 or an odd prime, we
may replace N with such a divisor to arrange that N = ` is an odd prime or N = `2 with
` = 2. Either way, the `-adic logarithm and exponential define inverse isomorphisms between
1 +NZ` and NZ`, so 1 +NZ` contains no nontrivial roots of unity.
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Consider the action on T`(A) by an element σ ∈ IK . By Grothendieck’s criterion, it
suffices to prove that the action by σ is unipotent. By the semistable reduction theorem and
the easier direction of Grothendieck’s criterion (i.e., the unipotence of the inertial action in
the semistable case), for some n > 0 the action of σn is unipotent. But σ acts trivially on
A[N ], so the action of σ is given by a matrix 1 + NM with M ∈ Mat2g(Z`). Hence, the
eigenvalues of σ have the form 1 +Nλ for eigenvalues λ of M . Any such λ lies in Z`, so the
eigenvalues of σ lie in 1 +NZ`. But σn is unipotent, so these eigenvalues are roots of unity.
Since 1 + NZ` is torsion-free as a multiplicative group, it follows that all eigenvalues of σ
are equal to 1, which is to say that σ acts unipotently. �

The preceding result is quite striking, for the following reason. Consider an abelian variety
A over the fraction field K of a Dedekind domain R, and choose N ∈ {12, 15, 20} not divisible
by char(K). For every maximal ideal of R, there is a factor of N distinct from its residue
characteristic and at least 3. Hence, over K(A[N ]) semistable reduction is attained at all
places, yet Gal(K(A[N ])/K) is a subgroup of GL2g(Z/NZ), so [K(A[N ]) : K] is bounded
in terms of g alone (and N , which is an absolute constant). This is very interesting, since
K(A[N ])/K is unramified away from the finite set S of bad places for A as well as the places
dividing N (of which there can be only finitely many, since N 6= 0 in K).

In terms of g, S, and the absolute constant N we have produced a finite Galois extension
K ′/K of bounded degree unramified away from S and N over which A acquires semistable
reduction at all places. When K is a global field there are only finitely many such extensions
of K, so this proves that if K is a global field and S a non-empty finite set of places containing
the archimedean places then for any g > 0 there is a finite Galois extension K ′/K depending
only on S and g such that every g-dimensional abelian variety A over K with good reduction
outside A acquires semistable reduction at all non-archimedean places of K ′. This uniform
global result is crucial in Faltings’ paper, since it leads to:

Corollary 6.6. For any number field K, non-empty finite set S of places of K containing
the archimedean places, and positive integer g, let Shaf(K,S, g) denote Shafarevich’s con-
jecture that the set of isomorphism classes of g-dimensional abelian varieties over K with
good reduction outside S is finite. Let Shafsst(K,S, g) denote the analogous result with the
additional requirement that the reduction type at all non-archimedean v ∈ S is semistable.

The conjecture Shaf(K,S, g) is a consequence of the conjecture Shafsst(K
′, S ′, g) for some

finite Galois extension K ′/K and the full preimage S ′ of S on K ′. It is also sufficient to
restrict attention to everywhere semistable abelian varieties over K ′ that admit a principal
polarization at the cost of replacing g with 8g.

Proof. In view of the preceding discussion, for the sufficiency of Shafsst(K
′, S ′, g) (setting

aside the principal polarization aspect for dimension 8g) it suffices to show that for a finite
Galois extension k′/k of fields and an abelian variety A over k, there are only finitely many
isomorphism classes of abelian varieties B over k such that Bk′ ' Ak′ . This will rest on two
general results, the proofs of which will be discussed in the spring. The first result we need
is that an abelian variety X over a field F admits only finitely many polarizations of a given
square degree (over F ), up to the action of AutF (X). The second result we need is that
an abelian variety X over a field F admits only finitely many direct factors (over F ), up
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to abstract F -isomorphism. These results are respectively [Mi1, 18.1] and [Mi1, 18.7], and
their proofs rest on a deep general finiteness theorem in the theory of arithmetic subgroups
of algebraic groups over Q (vastly generalizing the classical fact that there are finitely many
SLn(Z)-equivalence classes of quadratic forms in n variables over Z with a fixed nonzero
discriminant d ∈ Z). In next week’s lecture we’ll address these aspects of [Mi1, §18].

Let’s now apply these two results. For an abelian variety B over k that descends A′, it
seems hopeless to construct a polarization of B over k with degree bounded independently
of B. Instead, we apply Zarhin’s trick [Mi1, 16.12] to the abelian variety (B × B∨)4 (that
descends (A′ × A′∨)4): this abelian variety over k admits a principal polarization φ. As we
just noted above, the k-isomorphism class of (B × B∨)4 determines B up to finitely many
possibilities (up to k-isomorphism) and as we vary through all k′-isomorphisms (B×B∨)4

k′ '
(A′×A′∨)4 (of which there is at least one!) we can arrange that φk′ is carried to one of finitely
many principal polarizations φ′ on (A′ × A′∨)4. In other words, upon renaming (A′ × A′∨)4

as A′ we can equip A′ with a principal polarization φ′ and only need to check that the pair
(A′, φ′) admits just finitely many k-descents (up to k-isomorphism).

If there are no k-descents then there is nothing to do. Suppose there is such a descent
(A, φ). By standard cocycle formalism for descent (as explained in Serre’s “Galois coho-
mology” book), the set of k-descents of (A′, φ′) up to k-isomorphism is identified with the
pointed set H1(Gal(k′/k),Aut(Ak′ , φk′)) (where Aut(Ak′ , φk′) is a Gal(k′/k)-set in the ev-
ident manner, using the k-structure (A, φ) on the pair (Ak′ , φk′) = (A′, φ′) over k′). But
this pointed set is finite since Gal(k′/k) is finite and the automorphism group of a polarized
abelian variety over a field is always finite. �

Corollary 6.6 justifies Faltings’ restriction to everywhere semistable abelian varieties in his
proof of the Shafarevich conjecture for abelian varieties over number fields, and it is likewise
harmless to consider only those abelian varieties that admit a principal polarization over
the ground field. In particular, to prove the conjecture over a specific number field, this
reduction step requires passing to a larger number field (and much larger dimension!)

Here is a useful uniformity result in the local case:

Proposition 6.7. Assume R is strictly henselian. Let K ′ and K ′′ be finite Galois extensions
of K inside of Ks over which A becomes semistable. Then the same holds for A over K ′∩K ′′.
In particular, there is a finite Galois extension KA/K over which A becomes semistable and
that lies in all other such finite Galois extensions of K.

We call KA/K as the field of semistable reduction for A over K. Note that this concept
requires that R is strictly henselian (so the Galois group coincides with the inertia group).
It seems unlikely that such a minimal field exists without assuming R is strictly henselian.

Proof. Let GK = Gal(Ks/K), and similarly for K ′ and K ′′. Pick a prime ` 6= char(k).
Since R is strictly henselian, so likewise for its local integral closures in K ′ and K ′′, the
semistability over K ′ implies that the GK′-action on V = V`(A) is unipotent. Form the
maximal subspace on which GK′ acts trivially, then look at the GK′-action on the quotient
of V by that, and continue. This is a “minimal flag” F • on whose successive quotients the
GK′-action is trivial. The normality of GK′ in GK (due to K ′/K being Galois) implies that
GK preserves F •. Since semistability holds over K ′′, on each of the successive quotients of
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F • the GK′′-action is unipotent. In this way we can build a GK-stable flag of V on whose
successive quotients both GK′ and GK′′ act trivially. Hence, the group GK′∩K′′ generated by
GK′ and GK′′ has unipotent action on V , so A becomes semistable over K ′ ∩K ′′. �

Finally, we take up the question of universally bounding (in terms of g) the amount of
ramification required to attain semistable reduction. For the purpose of ramification bounds
we lose nothing by passing to a strictly henselian base (i.e., making the inertia group equal
to Galois group), and in that setting we can exploit the existence of the field of semistable
reduction provided by Proposition 6.7 to prove:

Theorem 6.8. Assume R is strictly henselian, and let A be an abelian variety over K with
dimension g > 0.

(1) The field of semistable reduction KA/K has degree dividing an absolute constant N(g)
whose only primes factors are p ≤ 2g + 1. Explicitly, we may take

N(g) = 23g+ord2(g!) ·
∏

3≤p≤2g+1

p[2g/(p−1)]+
P

d≤2g/(p−1) ordp(d).

In particular, semistable reduction is attained over a tamely ramified extension except
possibly when the residue characteristic lies in the interval [2, 2g + 1].

(2) Let M(g) denote the least common multiple of the integers lcm(ei) as {ei} varies
over all partitions of 2g. (For example, M(1) = 2 and M(2) = 12.) If the residue
characteristic lies outside the interval [2, 2g+ 1] then semistable reduction is attained
over an extension of degree dividing

Ntame(g) = 22+ord2(M(g)) ·
∏

3≤p≤2g+1,(p−1)|M(g)

p1+ordp(M(g)),

and when g is a power of 2 we can even use Ntame(g)/2.

The computation of N(g) involves computing group orders without regard to subgroup
structure, whereas Ntame(g) takes into account the orders of elements in Sp2g(Z/`Z) (or
really just in SL2g(Z/`Z)). For example, N(1) = 24 but Ntame(1)/2 = 12, and N(2) = 27335
but Ntame(2)/2 = 2332. For g = 1 this is consistent with the fact that away from residue
characteristics 2 and 3 (the primes in the interval [2, 2g + 1] for g = 1), the proof of the
semistable reduction theorem for elliptic curves in [Si] yields good reduction over a degree-12
extension.

Proof. Note that if the residual field extension attached to KA/K is not separable then
char(k) must divide [KA : K]. Hence, the tame ramification assertion is a formal consequence
of the knowledge of the prime factors of N(g).

To establish the existence and prime factors ofN(g), fix a polarization of A overK and pick
an odd prime ` 6= char(k) not dividing the degree of the polarization. Thus, the Weil pairing
between T`(A) and T`(A

′) (with A′ the dual abelian variety) becomes a Galois-equivariant
Z`(1)-valued symplectic form on T`(A). The `-adic cyclotomic character is unramified, so
the Galois action on A[`] lands in the subgroup Sp2g(Z/`Z) ⊂ SL2g(Z/`Z).

By Proposition 6.5, K(A[`])/K is a finite Galois extension over whichA acquires semistable
reduction, so KA is contained in this field. Hence, [KA : K] divides [K(A[`]) : K] for all but
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finitely many `, and hence divides #Sp2g(Z/`Z) for all but finitely many `. It is classical
that

#Sp2g(Z/`Z) = `g
2 ·

g∏
a=1

(`2a − 1).

Thus, the order of Sp2g(Z/`Z) is divisible by a positive integer d for all but finitely many `
precisely when the polynomial

f(x) = xg
2

g∏
a=1

(x2a − 1) ∈ Z[x]

vanishes as a function on Z/dZ, in which case d|f(`) for all large ` by Chebotarev. Hence,
we can take N(g) to be the gcd of the numbers

∏g
a=1(`2a − 1) as ` varieties through all

large primes, provided we show that this gcd is insensitive to dropping finitely many ` from
consideration (i.e., it does not grow). The only primes p which divide all such products
for all sufficiently large ` (beyond any bound) are those p such that for all large ` we have
`2a ≡ 1 mod p for some 1 ≤ a ≤ g (depending on p). By taking ` to represent a generator
of (Z/pZ)× it follows that the order p − 1 of the generator divides 2a for some 1 ≤ a ≤ g.
Hence, p ≤ 2g + 1 for any prime p dividing f(`) for all large primes `.

Now fix p ≤ 2g + 1, and initially take p > 2 (so (Z/prZ)× is nontrivial and cyclic for any
r ≥ 1). For each 1 ≤ a ≤ g such that (p − 1)|2a (e.g., a = (p − 1)/2 always works), let
ra,p ≥ 0 be maximal such that pra,p(p − 1)|2a (or equivalently pra,p |(a/((p − 1)/2))). Thus,
pra,p+1|(`2a − 1) for all large `. Choose among the arbitrarily large primes ` any for which
` represents a generator of (Z/pra,p+2Z)×, so `2a 6≡ 1 mod pra,p+2 since the p-part pra,p+1 of
ϕ(pra,p+2) does not divide 2a. Hence, as ` varies through all large primes (beyond any desired
lower bound), pra,p+1 always divides `2a − 1 but infinitely often pra,p+2 does not.

More specifically, if r(p) = max1≤a≤g ra,p and we choose an arbitrarily large prime ` that
represents a generator of (Z/pr(p)+2Z)× (so ` represents a generator of (Z/pra,p+2Z)× for all
1 ≤ a ≤ g) then for every 1 ≤ a ≤ g we have that `2a − 1 is not divisible by pra,p+2. But we
have seen that pra,p+1|(`2a − 1) for all large `. Thus, it follows that

(6.1) pg+
P

1≤a≤g ra,p|
g∏
a=1

(`2a − 1)

for all large primes ` yet we have produced infinitely many ` for which the known divisibility
pra,p+1|(`2a − 1) is optimal for all 1 ≤ a ≤ g, so (6.1) cannot be improved for those `. In
other words, as we vary ` through all primes beyond any desired lower bound, the greatest
common divisor of the numbers

∏
a=1(`2a − 1) has odd part∏

3≤p≤2g+1

∏
d≤2g/(p−1)

p1+rd(p−1)/2,p =
∏

3≤p≤2g+1

p[2g/(p−1)]+
P

d≤2g/(p−1) ordp(d).

Finally, we consider the 2-part. As we vary over all large `, `2a − 1 is always divisible by
8. Hence, we always get a factor of 23g and it remains to determine the maximal power of 2
that divides

F (`) :=

g∏
a=1

`2a − 1

8
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for all large primes `. For 1 ≤ a ≤ g, let ra = ord2(a), so ra is the maximal r ≥ 0 such
that the ath-power map kills the cyclic group (1 + 8Z2)/(1 + 23+rZ2) of order 2r, with
1 + 8Z2 = (Z×2 )2. We can choose a primitive generator of this cyclic group and pick a square
root of it in 1 + 4Z2, which in turn is represented modulo 23+rZ2 by infinitely many primes.
For such primes ` we have that (`2a − 1)/8 is not divisible by 2ra+1, whereas for all large `
we have that (`2a − 1)/8 is divisible by 2ra . Hence, for all large primes ` the value F (`) is
divisible by 2

P
1≤a≤g ra = 2ord2(g!) but for r := max1≤a≤g ra and ` such that `2 is is a generator

of (1 + 8Z2)/(1 + 24+rZ2) no higher power of 2 divides F (`). This completes the proof of the
proposed formula for N(g).

Now consider cases when the residue characteristic lies outside [2, 2g+1], so in the preced-
ing Galois representation analysis we know that the Galois group of KA/K not only embeds
into Sp2g(Z/`Z) for all large `, but it even has cyclic image (by cyclicity of tame inertia,
and the assumption that R is strictly henselian). Thus, rather than computing the greatest
common divisor of the order of the entire group as ` varies, we should instead consider the
orders of individual elements in these groups. Since Z/`Z is a perfect field, for any element
γ ∈ Sp2g(Z/`Z) the Jordan decomposition γ = γssγu as a product of commuting semisimple
and unipotent elements is rational over Z/`Z. The order of γu is a power of ` whereas the
order of γss is relatively prime to `. Thus, the order of γ is the product of the orders of γss

and γu. The Galois group Gal(KA/K) is a quotient of Gal(K(A[`])/K), which is a cyclic
subgroup of Sp2g(Z/`Z), and so by also ensuring ` > 2g + 1 (so it does not divide the order
of Gal(KA/K)) we guarantee that [KA : K] divides the order of the semisimple part of a
generator of Gal(K(A[`])/K).

To summarize, in these “tame” cases [KA : K] divides the order of a semisimple element
γ of Sp2g(Z/`Z) for all large `. Such an element generates a commutative semisimple sub-
algebra of Mat2g(Z/`Z), which must be a direct product of finite fields. Hence, inside of
GL2g(Z/`Z) the element γ lies in (the norm-1 subgroup of) a subgroup of the form

∏
F×`ei

where
∑
ei ≤ 2g for some positive integers ei. Thus, for all large ` the order of γ divides

the least common multiple L`,{ei} of the integers `ei − 1 for some ei such that
∑
ei ≤ 2g.

This least common multiple is unaffected by inserting extra terms ei = 1, so we may restrict
attention to tuples (ei) of positive integers for which

∑
ei = 2g. For fixed large `, the lcm of

the integers L`,{ei} as {ei} varies through all partitions of 2g provides a multiplicative upper
bound on the order of γ. A multiplicative upper bound on this least common multiple is
`lcm(ei) − 1. Hence, if M(g) denotes the least common multiple of the integers lcm(ei) as
{ei} varies through the partitions of 2g then [KA : K] divides the least common multiple the
integers `M(g) − 1 for all large primes `.

Suppose [KA : K] =
∏

p≤2g+1 p
bp , so the M(g)th-power map kills (Z/pbpZ)× when p is odd

and kills (Z/2b2−1Z)× if p = 2. Hence, if bp ≥ 1 then pbp−1(p − 1)|M(g) when p > 2 (by
cyclicity) and 2b2−1|M(g) when p = 2 and b2 ≥ 1. In other words, if bp ≥ 1 and (p− 1)|M(g)
then bp ≤ 1 + ordp(M(g)) if p is odd and bp ≥ 2 + ord2(M(g)) if p = 2. This gives the
divisibility

[KA : K]|22+ord2(M(g)) ·
∏

3≤p≤2g+1,(p−1)|M(g)

p1+ordp(M(g)).
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Finally, we save a factor of 2 on the 2-part of this upper bound when g = 2r−1 with r ≥ 1
by using that γ lies in SL2g rather than just GL2g. Consider a partition {ei} of 2g = 2r

as above. If this is not the trivial partition e1 = 2r, then all ei have 2-part at most 2r−1,
so if such a partition is what intervenes in the study of γ in the mod-` representation then
we can replace M(g) with M(g)/2 in the mod-` analysis. If instead the trivial partition
e1 = 2r = 2g intervenes then γ generates a single finite field F`2g and the norm-1 condition
saves a factor of the 2-part of `− 1 on our bound for the order. This always saves at least a
factor of 2, so again we can replace M(g) with M(g)/2 in the mod-` analysis. �

7. Picard functors and proof of semistable reduction theorem

Now we return to the topic left unfinished after the discussion following Proposition 4.3:
to complete the proof of the semistable reduction theorem for abelian varieties by explaining
how to treat the special case when A is the Jacobian of a smooth proper and geometrically
connected curve X over K (which we can assume has genus > 0; i.e., A 6= 0).

The main order of business is to discuss the theory of Picard functors, as that provides
the framework for Raynaud’s results which compute the identity component of the special
fiber of the Néron model of the Jacobian of X when X has semistable reduction. (Raynaud’s
work actually goes far beyond the semistable case.) The theory of Picard functors is not
specific to curves, so we begin by working somewhat more generally and later will specialize
to curves. An elegant overview of both the general theory and the case of curves is given in
[BLR, Ch. 8–9].

The initial setup we wish to consider is a proper flat surjective map f : X → S of
finite presentation such that the geometric fibers are connected and reduced. (The reader
is welcome to assume that S is locally noetherian, as that case contains all of the essential
ideas and is entirely sufficient for our needs. One can replace “finite presentation” with the
equivalent “finite type” in the locally noetherian case.)

Let’s first explain how to produce natural examples. The following lemma shows how to
control the geometric connectedness condition in many cases:

Lemma 7.1. Let f : X → S be a proper flat surjective map to a noetherian scheme S, and
assume that f has geometrically connected and smooth generic fibers. Then all fibers are
geometrically connected.

Proof. We may and do assume that S is reduced and irreducible (by base change to irre-
ducible components of S, equipped with the reduced structure). For a non-generic point
s ∈ S there is a discrete valuation on the function field of S that dominates OS,s [EGA,
II, 7.1.7], so by base change to such a ring we can assume that S = SpecR for a discrete
valuation ring R. Let K = Frac(R).

By R-flatness of X and smoothness and geometric connectedness of the generic fiber, the
R-finite H0(X,OX) injects into H0(XK ,OXK

) = K. Thus, R = H0(X,OX) by the normality
of R. That is, X → SpecR is its own Stein factorization. But Stein factorizations always
have geometrically connected fibers [EGA, III1, 4.3.4]. �

It follows from this lemma that if R is a discrete valuation ring with fraction field K and
if X is a proper flat model of a smooth and geometrically connected curve over K then X
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has geometrically connected special fiber. If X has semistable special fiber (which we can
always attain after a finite separable extension on K, by the semistable reduction theorem
for curves) then it fits into the initial setup described above.

Now we return to the consideration of a map f : X → S that is proper, flat, surjective and
finitely presented with connected and reduced geometric fibers. Note that these assumptions
are preserved by base change.

Lemma 7.2. Under the above hypotheses on f , the natural map OS → f∗OX is an isomor-
phism.

Proof. By direct limit arguments, one can reduce to the locally noetherian case (if the reader
wasn’t already assume S to be locally noetherian). We claim that f∗OX is an invertible OS-
module. Once this is proved, we will be done since rather generally if a map of rings A→ B
makes B an invertible A-module then A → B is an isomorphism (as the element 1 ∈ B is
nonzero in all fiber algebras of SpecB → SpecA, and hence is an A-module generator by
Nakayama’s Lemma).

To prove the invertibility of f∗OX , we recall the following special case of Grothendieck’s
theory of base change for cohomology: if F is an S-flat coherent OX-module and the natural
map (f∗F )s⊗Os k(s)→ H0(Xs,Fs) is surjective for all s ∈ S (where Fs denotes the pullback
of F along Xs → X) then this map is an isomorphism for all s and f∗F is locally free as an
OS-module (with rank at s equal to the k(s)-dimension of H0(Xs,Fs)). This theorem applies
to F = OX (which is S-flat since f is flat), so it suffices to show that k(s) → H0(Xs,OXs)
is an isomorphism for all s ∈ S.

In other words, we want the finite k(s)-algebra H0(Xs,OXs) to be 1-dimensional as a vector
space. But the formation of this H0 commutes with extension of the ground field, and for
an algebraically closed extension k′/k(s) the resulting geometric fiber over k′ is a non-empty
proper reduced connected k′-scheme. Such a scheme has algebra of global functions that is
nonzero, k′-finite, and reduced, hence a finite product of copies of the algebraically closed
k′. But then this algebra must be k′, as otherwise it would have nontrivial idempotents,
contradicting the geometric connectedness of Xs. �

One of the difficulties with representing a functor classifying isomorphism classes of line
bundles is that line bundles have too many automorphisms (which creates difficulties for
globalization of constructions). This can be removed by imposing “rigidification along a
section” (if there is a section!). The following proposition makes this precise.

Proposition 7.3. Let L be an invertible sheaf on X. The natural map O(S)× → AutOX
(L )

is an isomorphism. If there exists a section e ∈ X(S) and a trivialization i : OS ' e∗OX

then the only automorphism of the pair (L , i) (i.e., OX-linear automorphism ϕ of L such
that e∗(ϕ) ◦ i = i) is the identity.

Proof. An automorphism of L is multiplication by a global unit on X. But f∗OX = OS, so
applying H0(S, ·) implies that the natural map OS(S) → OX(X) is an isomorphism. Since
X → S is surjective, it follows that O×S (S) → O×X(X) is an isomorphism. This establishes
the asserted description of automorphisms of L .

Now consider an automorphism of a pair (L , i). The underlying automorphism of L
must be scaling by the pullback f ∗(u) for some unit u on S, and the effect on i is scaling
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by e∗(f ∗(u)) = (f ◦ e)∗(u) = u (since f ◦ e = 1S, due to e being a section to f). Hence,
preservation of i forces u = 1, so the automorphism of L is the identity. �

Define the functor PX/S on the category of S-schemes via PX/S(S ′) = Pic(XS′), where
XS′ := X ×S S ′. (The reader who is making noetherian hypotheses should restrict S ′ to
be locally noetherian. We won’t comment about this sort of issue again.) The functor
PX/S is contravariant in S ′ via pullback. Unfortunately, it generally has no chance to be
representable: there are problems with gluing, or in other words this functor violates the
sheaf-like properties that representable functors satisfy.

Example 7.4. Suppose that S admits a nontrivial line bundle L0 and we define L = f ∗(L0)
on X. Then L becomes trivial locally over S, so if U 7→ PX/S(U) were to be a sheaf on S
(as it would have to be if PX/S were representable, due to gluing of morphisms) then this
would force L to be trivial, which is to say L ' OX . But the natural map L0 → f∗f

∗L0

is an isomorphism (by Lemma 7.2 applied locally over S where L0 trivializes) and hence
L0 ' f∗OX ' OS, a contradiction.

Grothendieck’s fix to the failure of sheaf-like properties for PX/S is to sheafify:

Definition 7.5. The relative Picard functor PicX/S is the sheafification of PX/S relative to
the fppf topology on S-schemes.

Example 7.6. By definition, for any S-scheme S ′ (e.g., a single geometric point over S),
the restriction of PicX/S to the category of S ′-schemes is PicXS′/S

′ . Likewise, if Y is an
S-scheme, then the restriction of the functor HomS(·, Y ) to the category of S ′-schemes is
represented by the S ′-scheme YS′ = Y ×S S ′ (due to the definition of fiber products). Hence,
if there is a representing scheme PicX/S then (PicX/S)S′ represents PicXS′/S

′ . In other words,
the formation of PicX/S naturally commutes with base change on S ′ when it exists.

The definition of the relative Picard functor is much too abstract; that is, elements of
PicX/S(S ′) don’t have a concrete meaning. There is a special case when we can interpret
the meaning of such elements:

Example 7.7. Suppose S ′ = Spec(k) for an algebraically closed field k. Let s : Spec k =
S ′ → S be the structural morphism, and Xs the resulting pullback XS′ . Then PicX/S(S ′) =
PicXk/k(k) and I claim that the natural map of groups Pic(Xk)→ PicXk/k(k) is an isomor-
phism. (Beware that this is generally false when k is not algebraically closed; it is related
to the fact that the Jacobian of a curve without rational points may not arise from a line
bundle on the curve over the ground field.)

To see this, consider the fppf-sheafification process that constructs the relative Picard
functor. The key point is that an fppf-cover of Spec k (or equivalently, any non-empty finite
type k-scheme) always admits a section, since k = k. Hence, such covers can always be
“refined” to a cover of Spec k by the identity map. The sheafification process only requires
the consideration of a cofinal system of covers, so for the computation of the k-points of this
abstract fppf-sheaf we don’t change anything in the original group Pic(Xk)!

Subject to an extra condition, we can describe the “points” of the relative Picard functor in
concrete terms, as follows. Assume that there exists e ∈ X(S). Define the e-rigidified Picard
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functor PicX/S,e on the category of S-schemes by declaring PicX/S,e(S
′) to be the group of

isomorphism classes of pairs (L , i) where L is a line bundle on XS′ and i : OS′ ' e∗S′(L )
is an isomorphism. This is a group via tensor product and dual, with trivial object (OX , i)
for the trivialization i via 1, and it is a contravariant functor via base change. Also, by
Proposition 7.3, the objects classified by the e-rigidified Picard functor have no nontrivial
automorphisms. This underlies the proof of:

Proposition 7.8. The forgetful map PicX/S,e → PicX/S that forgets the rigidification i is
an isomorphism. In particular, when X(S) is non-empty, PicX/S is representable if and only
if there exists a universal e-rigidified line bundle (for a choice of e ∈ X(S)).

The elegance of Grothendieck’s more abstract notion of relative Picard functor PicX/S
is that it makes no reference to a non-canonical choice of e, nor does it even require the
existence of such an e. Descent methods sometimes allow one to reduce the representability
problem for this functor to cases when some e exists, in which case the concrete interpretation
provides a better handle on the problem. The ability to avoid assuming the existence of e is
important in applications, since we want to consider Jacobians of curves that may not have
any rational points!

Proof. By definition of PicX/S as an fppf sheafification, it is a sheaf for the fppf topology.
But by fppf descent theory for quasi-coherent sheaves (see [BLR, Ch. 6]), PicX/S,e is also
such a sheaf since it classifies isomorphism classes of rigid objects. Hence, to prove the
isomorphism property for the functors we can work fppf-locally.

To prove injectivity, consider a pair (L , i) on XS′ such that L on XS′ becomes isomorphic
to the trivial line bundle fppf-locally on S ′ (i.e., (L , i) is carried to the trivial element in
the fppf-sheafified target). We want to prove that the pair (L , i) is isomorphic to the trivial
pair (consisting of OXS′

with trivializing section 1 along eS′). By descent theory and the
rigidity, it suffices to construct such an isomorphism fppf-locally over S ′. Hence, we may
assume that L = OXS′

. Then the isomorphism i : e∗S′(L ) ' OS′ is identified with a unit u
on S ′, so the pair (L , i) is isomorphic to the trivial pair via multiplication by 1/u on L .

Now we turn to surjectivity. For any S-scheme S ′ and ξ ∈ PicX/S(S ′), by working fppf-
locally over S ′ we can arrange that ξ arises from a line bundle L on XS′ . The pullback
e∗S′(L ) is an invertible sheaf on S ′, so Zariski-locally it admits a rigidification i. Thus, fppf-
locally on S, ξ arises from a pair (L , i). This proves that our injective map of fppf-sheaf
functors is “locally surjective” too, and hence is an isomorphism. �

Under some strong fibral hypothesis (which are not satisfied for most semistable curves),
Grothendieck proved the following general result as an application of his theory of Hilbert
schemes:

Theorem 7.9 (Grothendieck). If X → S is projective and flat with geometrically integral
fibers then PicX/S is represented by a scheme

∐
Φ PicΦ

X/S, where Φ ranges through the poly-

nomials in Q[t] taking Z-values on all t ∈ Z and PicΦ
X/S is a quasi-projective S-scheme

that represents the subfunctor of classes whose restriction Ls on geometric fibers satisfies
χXs(Ls(n)) = Φ(n) for n ∈ Z. Here, χXs(N ) :=

∑
j(−1)j dim Hj(Xs,N ).
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Note that representability by a disjoint union of quasi-projective schemes implies that
the functor is separated (i.e., satisfies the valuative criterion for separatedness). There
is a famous example of Mumford [BLR, p. 210] which illustrates how essential the fibral
geometric integrality condition is in Grothendieck’s theorem: without it the functor can fail
to be separated! Mumford’s example is very concrete: the degenerating projective conic
U2 +V 2 = tW 2 over R[[t]] (or over Q[[t]]). This has integral fibers, but the special fiber is not
geometrically irreducible (so Grothendieck’s theorem does not apply, as it had better not).

Example 7.10. Suppose that S = Spec k for a field k, and that X is a smooth curve, say with
genus g. Grothendeck’s geometric integrality hypothesis holds, so we obtain a Picard scheme
that is a disjoint union of quasi-projective k-schemes. In particular, the identity component
Pic0

X/k is a finite type k-group scheme. Functorial criteria (using that degree-2 coherent
cohomology vanishes on the 1-dimensional X) ensure that PicX/k is smooth. Computing
with points valued in the dual numbers k-linearly identifies the tangent space at the identity
with H1(X,OX), so this smooth group is g-dimensional. Any group scheme over a field is
separated (as the diagonal is a base change of the identity section, and rational points are
always closed), and we claim that Pic0

X/k is proper (hence an abelian variety).
To verify the properness, we can use the valuative criterion, but we prefer to use another

method which will give us more information. In view of the separatedness, it suffices to
exhibit a proper k-scheme mapping onto Pic0

X/k. We may increase the ground field to be
algebraically closed, so we can choose e ∈ X(k). Hence, Example 7.7 and Proposition 7.8
thereby provide a concrete meaning for PicX/k in terms of line bundles. In particular, there
is a universal line bundle over X × PicX/k (rigidified along e× 1).

Consider the natural map Xg → PicX/k defined functorially by (x1, . . . , xg) 7→ ⊗jO(xj−e).
This visibly carries (e, . . . , e) to the origin, so by connectedness it lands in Pic0

X/k. By local
constancy of the fibral degree of a line bundle in proper flat families of curves, the universal
line bundle over X × Pic0

X/k,e has degree 0 on all fibers over the connected Pic0
X/k,e. But

the Riemann–Roch theorem implies that every degree-0 line bundle on X is represented
by a degree-0 divisor of the form

∑g
j=1(xj − e). This implies two things: the map Xg →

Pic0
X/k is surjective (so Pic0

X/k is an abelian variety) and the geometric points of Pic0
X/k

correspond exactly to degree-0 line bundles. This is how the theory of Jacobians emerges
from Grothendieck’s work on Picard functors.

Example 7.11. In the special case that S = Spec k for a field k (so X is a proper k-scheme
that is geometrically connected and geometrically reduced), it was proved shortly after
Grothendieck by Murre and Oort that PicX/k is always represented by a k-group scheme
(generally not smooth when dimX > 1 if char(k) > 0). This goes beyond Grothendieck’s
result, since geometric integrality is not assumed (and we do need to avoid such hypotheses,
for applications to semistable curves).

The reader is referred to [BLR, 9.2/9–13] for an elegant general discussion of the structure
of Pic0

X/k for proper curves over fields.

An essential new viewpoint was introduced by Artin: he created the theory of algebraic
spaces, which are certain functors that are “close enough” to being representable by schemes
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that one can set up the usual notions of algebraic geometry for them (Zariski topology, irre-
ducibility, fiber products, properness, flatness, smoothness, étaleness, etc.) even though they
may not be representable. Algebraic spaces are not locally ringed spaces. The viewpoint is
rather to develop a “geometry” of certain functors which are almost represented by schemes.
Most of EGA carries over to algebraic spaces, with some extra care in several places, and
the theory of quotients for algebraic spaces is far more robust than more schemes (making
them especially well-suited for the study of moduli problems).

Failure of separatedness is quite commonplace for algebraic spaces, in contrast with
schemes. Artin developed remarkable local techniques for proving that various interest-
ing functors on schemes are algebraic spaces, and there are conditions which suffice to prove
that an algebraic space is represented by a scheme. The situation is similar to that of the
theory of distributions in analysis (as a replacement for functions, alongside theorems such
as elliptic regularity that guarantee that certain distributions are ordinary functions).

A “defect” of the theory of algebraic spaces is that it is very hard to control quasi-
compactness hypotheses. So when working over a field, one often has to work with algebraic
spaces only known to be locally of finite type rather than finite type. It is a general fact
that algebraic spaces groups locally of finite type over a field are necessarily (represented by)
schemes, and the identity component is necessarily finite type by Lemma 2.5. The following
result of Artin therefore recovers as a very special case the result of Murre and Oort in
Example 7.11.

Theorem 7.12 (Artin). Under the above running hypothesis, PicX/S is an algebraic space;
it is denoted PicX/S.

Using facts about Picard schemes of curves over fields (mainly that their component groups
are torsion-free), it follows from [SGA6, XIII, Thm. 4.7(i), (iii)] that in Artin’s theorem the
subfunctor

Pic0
X/S : S ′  {ξ ∈ PicX/S(S ′) | ξs′ ∈ Pic0

Xs′/k(s′) for all s′ ∈ S ′}

is represented by an open algebraic subspace Pic0
X/S ⊆ PicX/S that is of finite type over S.

Its formation is easily checked to commute with any base change on S, due to Example 7.6.
Now assume dim(Xs) = 1 for all s ∈ S. Cohomological vanishing results for coherent

cohomology on curves (beyond degree-1 cohomology) imply the functorial smoothness cri-
terion for PicX/S, so this algebraic space is smooth. We conclude that for such “S-curves”

X, Pic0
X/S exists as a finite type smooth algebraic space group over S. An important result

of Raynaud asserts that this algebraic space is sometimes a separated scheme (see [BLR,
9.4/2,3] for a discussion and references). We record a special case of Raynaud’s theorem,
sufficient for our needs (in view of the semistable reduction theorem for curves).

Theorem 7.13 (Raynaud). Let X be a proper flat semistable curve over S = SpecR for
a discrete valuation ring R, with X regular and the generic fiber smooth. Then Pic0

X/S is a
separated scheme.

This is fantastic: under the hypotheses of Raynaud’s theorem (which can always be sat-
isfied after a mild base change, by the semistable reduction theorem for curves of positive
genus and its relation with the theory of minimal regular proper models), Pic0

X/S is a smooth
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separated S-group scheme of finite type. Hence, if its special fiber is a semi-abelian variety
then it is a semi-abelian scheme and so by Theorem 4.4 it would be the relative identity
component of the Néron model of its generic fiber! In particular, we will have completed the
proof the the semistable reduction theorem for Jacobians (which, as we have seen, implies
the general case). Since the formation of Pic0

X/S commutes with any base change (Example
7.6), such as passage to (geometric) fibers over S it remains to apply the following result
(see [BLR, 9.2/8] for a proof):

Proposition 7.14. Let X be a proper and geometrically connected semistable curve over a
field k. The k-group Pic0

X/k is a semi-abelian variety.

In fact, the geometric fiber (Pic0
X/k)k = Pic0

Xk/k
fits into a short exact sequence of k-groups

0→ T → Pic0
Xk/k

→
∏
i

Pic0eXi/k
→ 0

where {Xi} is the set of irreducible components of Xk, X̃i is the smooth normalization of Xi,
and T is a torus whose character group is H1(Γ,Z) for the dual graph Γ of Xk.

Let us recall the meaning of the dual graph Γ. Its vertices correspond to the Xi, and
its edges correspond to the singularities; two vertices of an edge corresponding to the Xi

containing the two formal branches through the associated singularity (such formal branches
may lie on the same component, in which case the edge is a loop in the graph). For example,
if X is the nodal cubic then Γ is a graph with one vertex and one loop, whereas if X consists
of two lines crossing transversally at a point then Γ is an edge with two vertices.
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