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Appendix 2

Etale eohomology and duality in number fields

by THoMAS ZINK

In this Appendix we give a proof of Tars’s global Duality Theorem using the étale
cohomology. The proof is based on the Duality Theorem of ARTIN and Verpimg
given in [M].

Let X be the spectrum of the ring of integers of a number field K. The Duality
Theorem given in [M] states that, for X totally imaginary and a constructible sheaf
F on X, there is a perfect pairing

H"(X, F) X Exty®"(F, Gy x) — HYX, Gy x) = Q/Z.

In the case where X is not totally imaginary, we define the modified étale cohomology
groups A(X, F),r ¢ Z (see 3.1.). The perfect pairing given above remains valid for
any K if one replaces the usual étale cohomology by the modified one (see 3.4.).
We show further how Tatn’s original theorem follows from the perfect pairing for
the modified étale cohomology. The reader of the Appendix should be familiar with
the étale cohomology and should know the contents of [M]. T want to thank H. J.

Frrzner for useful conversations and for his help during the preparation of the
manuscript.

1. Etale topology of algebraic number fields

Let K be a number field and D the ring of integers of K. In this section we Initially
list for convenience of the reader some definitions and properties of Abelian sheaves
for the étale topology on X = Spec D. Then we extend the category of Abelian

sheaves by considering sheaves which formally have fibres at the real Archimedean
points of K.

1.1. Recall that for an arbitrary scheme X, Ety denotes the category whose objects
are étale morphisms p: U — X and whose morphisms are X-morphisms. .%; denotes
the category of Abelian sheaves on Ety for the &tale topology, i.e. the topology
generated by surjective families of étale morphisms. Via the Yoneda embedding,
Abelian group schemes over X define objects of .

It M is an Abelian group, the scheme | | X is in a canonical way an Abelian group
meM °
scheme over X. If no confusion is possible, we denote this scheme simply by M.
An Abelian sheaf which is representable by a group scheme of that type is called to be
constant.
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A sheaf F on X is called to be locally constant if there exists a covering p;: U; — X,
1 € I, in Ety, such that p;*F is constant.

Let L be a field and @ = Gal(L,,,/L) the Galois group of its separable algebraic
closure. For X = Spec L, %y is equivalent to the category of continuous G-modules.
A sheaf is (locally) constant if (an open subgroup of) G acts trivially on the corre-
sponding G--module.

1.2. Let us again assume X = Spec D, D the ring of integers of K. Let j,: U — X
be an open subscheme of X and 45: 8 — X its complement. Let ¥ be an Abelian sheaf
on X. We get a canonical morphism

1.2.1&. (pS: ZS*F —_— is*jy*jU*Fo

Associating to any sheaf F the triple (is*F, 5,*F, ¢s), we obtain a functor from &y
to the category of triples (Fy, F,, ¢) where F, is an Abelian sheaf on S, F, an Abelian
sheaf on U, and ¢: F, — i5¥jy+F, is a morphism. The decomposition lemma [GT],
Chapter III, 2.5., states that this functor is an equivalence of categories. We wish to
describe this more precisely in our special case.

Let y:  — X be the general point of X, i.e., 7 = Spec K, 77 = Spec K its algebraic
closure and G = Gal(K/K) the Galois group. Similarly, we define for a closed point
i —X, G = Gal(m)/k(x)) as the (lalois group of the residue class field k(z).
For each closed point x € X, we fix also a decomposition group D, — @. D, is unique
up to conjugation and isomorphic to the Galois group of the completion K, of the
field K at the point «. Tf I, < D, denotes the inertial group of z, then D, /I, = Q..

The general fibre ¥, = y*F of an Abelian sheaf F on X may be identified with a
continuous G-module and the fibre F, = i,*F at a closed point x with a continuous
G,-module, see 1.1.

If we apply these considerations to § == {#}, the morphism 1.2.1a takes the follow-
ing form-

1.2.1b. @, Fy — F 1=

@, is called the specialization map.
We can now restate the decomposition lemma in the form needed.

1.2.2. Lemma. Let 8 = {y, ..., z,} be a finite set of closed points of X and U = X \\ 8.
The functor that associates the tuple

(Fay vos Fopy Fyy @p Fp > F 15, o 0 Fy — T fon)

to an Abelian sheaf F € Sy is an equivalence of the category &y with the category of
tuples (M, -..s My, N, @y, ..., @g,) where M; is'a continuous G, -module, N an Abelian
sheaf on U, and @;: M; — N, is a G, -homomorphism.

1.2.3. Definition. An Abelian sheaf F is called constructible, if its fibres F,, z ¢ X,

are finite G,-modules and if it is locally constant on a non-empty open subscheme
of X.
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If F is locally constant in a neighbourhood of some point z, I, acts trivially on F, .
and g,: F, — F I is an isomorphism.

From 1.2.1a one can deduce:

The category of constructible Abelian sheaves is equivalent to the category of
systems of Galois modules of the following type: For each point z € X, there is a finite
continuous G,-module F,. For each closed point % € X, there is a morphism of G-
modules ¢,: F, —» F. "= p,is an isomorphism except for a finite number of points.

Note that, for each finite G-module M, I,, x € X, acts trivially on M except for a
finite number of points.

1.3. Let X be the union of all closed points of X and the real Archimedean points
of K supplied with the Zariski topology (i.e., a set is open iff it is either empty or the
complement of a finite set). Denote the real Archimedean points of K by v, ..., v,.
These points are also called the infinite points of X. Let 7y, ..., 5, be fixed extensions
to- the algebraic closure K of K. We denote by I,, the decomposition group of 7,
I,, is isomorphic to Z/2Z. We formally define @,, = {1}. If U is an open subscheme
of X, we denote by U the union of the closed points of U and the infinite points.

Let U be an arbitrary open subset of X. Denote by #, ..., 3, its infinite points
and set U =0 n X.

1.3.1. Definition. An Abelian sheaf F on T is a tuple
(Fgl, ey F~58, F, (pgli F‘171 ——>F17[171 ceny (pﬁsl Fas —> Fnlﬁs),
where the F; are Abelian groups, F is an Abelian sheaf on U, and the @y, are homo-

morphisms of groups.

We denote the Abelian category of Abelian sheaves on {7 by . We call F;, the
fibre at the point ©;. The fibres F, for z € U are also denoted by F,.

The sheaf F is called constructible it F is constructible and if a1l F~q~,,, 1=1,...,s, are
finite Abelian groups.

1.3.2. For each %; we denote by &5, & copy of the category of Abelian groups. There
are various functors relating the categories %, S5 and Fy,:

. %
n B

7 G
Lo —— L5 +2— ;..
Tx iﬁk

—_
Recall the definitions [GT], Chapter III, 2.:

JiF = (0,.., 0, F, 0> Ffu, ..., 0 — F 1),

*F =F,

J ! = (F,7 7., F'%, F,idp 15, ..., idy Iga),

i F =F;,

U5 F 5, = (0,..,0, Fs,...,0,0 >0, Fy—0,..,0-50),
i, F = Ker p;,

9 Haberland, Galois Cohomology
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Any functm is left adjoint to the one below it except for jx and 4z. The functors

J1s 7%, 0%, 4, are exact and hence the functors 5%, 5, 4, ¢' preserve mJectlve objects.

Let J € Py and Jy € S5, k=1,...,s be injective objects. It follows that

jx J @ Ll t5,4J5, I8 an injective object of #5. The reader easily verifies that any
i=1

injective object in ¥ is of this type. If we are dealing with several open sets of X,
we add to j and ¢ the subscript U.

1.3.3. One can also interpret #z as the category of Abelian sheaves over a suitable
Grothendieck topology. We initially remark that one can interpret @, ..., 7, as a
subset of the real valued points U(R) = Hom(Spec R, U) of U. Denote this subset
by U.. We are going to define the category Ets. For this we introduce a category

(Sch) whose objects are pairs (¥, M) where ¥ runs over the category of schemes and

M is a subset of Y(R). A morphism 7 of (¥, M;) to (¥, M,) in (Sch) is & morphism
7 of schemes of Y, to ¥, which maps M, to M,. We call a morphism étale, an open
ummersion or a closed tmmersion if the morphism of the underlying schemes has the
corresponding property. We can identify U with (U, {z’;], - vs}) (Sch) has fibre
products. The objects of Ets are étale morphisms WEs 0 in (Sch) and the mor-
phisms in Etg are the obvious ones. We also denote the object % simply by W if
no confusion is possible. A family of morphisms #;: W; — U, 4 € I, is called a covering
if the family #;: W; — U, i € I, is a covering in Ety; and if U #;(R) (W) = U,

Denote by T, a copy of the punctual topos, i.e., the topology which has the finite
sets as the underlying category and surjective families of f morphisms as the coverings.
Let j5 : Et — Ety be the functor which associates to W the scheme W and 15, Etg
—T5.k =1, ..., s, the functor which associates to W the inverse image of ¥ under
the map W, — U . If no confusion is possible, we denote j5 simply by j.

Let & be the category of Abelian sheaves on Et;. We want to prove that & is
equivalent with the category introduced in 1.3.1. Evidently the category %,
of Abelian sheaves on T, is equivalent with the category defined in 1.3.2. From the
morphisms of topologies jz, 73, we get functors

%
j* 1‘17’6
Fv —% T L 7 S,
y J ) Yy
~ N

From [GT], Chapter IIT, 2.4., we see that our assertion is equivalent to the following :

(i) Ty 3+ are fully faithful.

(it) An Abelian sheaf F € ¥ is of the form [ i, My, where My, € &5,

iff j*F = 0.

(ii1) The functor 4y jy is given by F > F .

We have immediately j F(W) = F(W) and i, Mz (W) = Hom (ig,(7), Mg,).

Furthermore, if W = &, we have j*F (W) = F (W). From this it is not hard to see (i).
For (ii) assume j¥F —= 0. Let U, be the object (U, #;) and set My, = F(U}). Let be

(W, w e W(R) > (U, %)) € Btz and (V; - U),c; a covering in Ety. Then (V;, 0)

— (U, #;) together with (W, w) — (U, #;) is a covering and from the axioms for sheaves
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we get that F(W, w) — F (U, ;) = My, is an isomorphism. By covering any W by
objects of the form (W, w), we get that F is of the type| | 5,4 M5,. Since the inverse
is obvious, (ii) is proved.

(iii) A sheaf on T7, is uniquely determined by its value at the set of one element

{fg}. By definition iz Jx F({#,}) = lim F(W), where (W, w) € Bty and w € W(R) is
mapped to . (L)

The limit may be inte

rpreted as the value of ¥ at a maximal extension of K
which is unramified at 7. Since K% is such an extension, we get i3 j, F({7,}) = F 15
1.3.4. Decomposition lemma. Let 77 — U be an open subset and S

tts complement. The category of Abelian sheaves on U is equrvalent to th
tuples

= {81, .e0, 8y}
e category of

(Esl’ o6 ES"’ E’ Esl = E']IEI’ 030g ‘Esn - Enlsn)s

where E is an Abelian sheaf on T, E, are G,

-modules and B, — E " are homomor-
phisms of G -modules.

This follows from 1.2.2. and 1.3.1.

2. Cohomology

The aim of this Pparagraph is to develop the necessary cohomology theory of Abelian

sheaves over an open subset ' of X. We do not apply the general cohomology theory
of topos if we can cope without it. )

We will use the samie notations asin 1.3.

2.1. Definition. HYT, F) is the group HYU, F) Xfﬂ F~,,71 Xpy - Xp, F;, where the
fibre product is taken with respect to the canonical morphism H(U, IL') ~— F, and
with respect to the specialisation maps g,: 5, — F,. If we interpret f as a sheaf
on Etg, we have H(U, F ) = F(0). Obviously, HYT, —) is a left exact functor, and

we denote by Hz({7, —) P = 0, its derived functors.

Exactly in the same way as in [GT], Chapter IT1, 2.10., we define local cohomology
groups with support in an infinite point .

2.2, H; (U, F) = Reig

where Rpi,,ikF denote the derived functors of z;,'k

We define the local cohomology groups w.
setting H 2T, F) = H2(U, F). ;
 Let V=0 be an open subset and § its complement. By means of the decompo-

sition lemma 1.3.4 and [GT], Chapter I1I, 2.9., one derives the local cohomology
sequence

ith support in a finite point z ¢ U by

9%
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22.1. - — | |HHO, Fy—>H@,F)— H({,Fl;) —---.

T wxes

It we set ¥ — U \ U, we have H{(V, F|3) = Hi(U, F). Hence the sequence 2.2.1.
reduces the computation of Hi({J, F) in the Grothendieck group to the computation
of usual cohomology groups and local cohomology groups with support in infinite
points.

The following lemma completes the considerations.

2.3. Lemma. We have the following isomorphisms:
(U, F) = Ker g5,
H3,(U, F) = Coker g;,,
HL (O, F) = H-YI;, F,), i=2.
Here the right-hand side of the last isomorphism is the group cohomology.

Proof. We use the axiomatical characterization of the derived functor and have to
show that the right-hand sides of the isomorphisms of 2.3. form a J-functor,

H‘%L(ﬁ, ﬁ) = Ker P55
and
Coker g5, = H (I, F,) =0, i

%
“L\‘)

for an injective sheaf F. Let
0>F -FF'">0

be an exact sequence of Abelian sheaves on U. Using the exact sequence for group
cohomology, we get a commutative diagram with exact lines
» 7Y » 0

0 — F%h ﬁgk
l"’/wc ' l"’vlc ‘L‘P‘I/Jllc
0 — HI;, F)) - H(I;, F) - HYI;,, F))) — H\I;, F,) ) — -

v

If we take the Ker-Coker sequence, we get that we are dealing with a d-functor.
H;.(0, F) = Ker ¢;, is obvious from the definition. Again from the definitions

one checks that Coker gz, = 0 for an injective sheaf. Since (i7 M), = 0 for M € F;,,

it remains to show that, for an injective sheaf ¥ on U, it holds H?(Iy, F)=0.

Consider the category € of objects ¥V £+ U € Ety, such that V is connected, its

function field is contained in K and fixed under the action of I5,. We have lim V
= Ve®
— Spec K% Since the étale cohomology commutes with direct limits ([GT], Chapter

111, 3.9.) and coincides with the Tate cohomology over the spectrum of a field, we get

lim H2(V, py*F) = H?(I3,, F,).
ey

Since py* preserves flasque sheaves, the limit on the left-hand side is zero for p = 1.
That proves our assertion.
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2.4. Corollary. If the order of F, is prime to 2, we have
H(U, Fy = H(U, F), i=2.

Since H?(I3,, F,) = 0 for p = 1, this follows from the local cohomology sequence.
2.5. As an example we compute the cohomology groups of the multiplicative group
over U. Our computation is based on that given in [M]. From now on we consider
open subsets U of X which contain all infinite points of X.

Note that the fixed valuation 7; defines an embedding 7;: K — C, which is unique

up to conjugation. Let us denote by K "v: the elements of K which are mapped into
R. under 7;. Obviously K fvi <= K'vi.

2.5.1. Definition. The multiplicative group @, 7 is the tuple
(K *osy ooy K *or, G, U, Ko  KB*Posy ooy K %0 < K*0r).

Recall that we have functors yy«: &, — %y and jp«: Py — Fg. Let yge = jgepys
be the composite functor. From the definitions one gets readily

j/ﬁ*Gm,n = (K*I‘“l, euey I_{*I‘UT, ’}/U*Gm,n, idf{*[vl, ceey idT{*Iw) o
From [GT], Chapter IV, 1.4., or [M], one deduces an exact sequence

xelU [

252, 0> G = y5eGn, — L1 ipnZ @ Ll iyu Z[2Z — 0.
=1

We first compute the cohomology of y5«Gy,,. By use of the local class field theory,
we have quU*Gm,,, = 0,9 = 1, [M], 2.1. In complete analogy to the proof of Lemma
2.3, one checks

Rpjﬁ*G o u i‘vj*Hp(I'vj, Gm,n): p > 0-
j=1

Using the spectral sequence for the composite functor Vi We get
r
pr[—,*Gm,n =Ll %,H?(I,, K*), p=1.
j=1
We consider now the Cartan-Leray spectral sequence, for the functor yz«
Bt = Hp(ﬁ’ quﬁ*Gm,n) = HP(n, Gm,n)-

Since for ¢ = 1 R%g+Gy,,, is concentrated in the real Archimedean primes, we get
E,»1 = 0, for p > 0 and ¢ > 0. Hence, we have an exact sequence

2.5.3. 0—HYT, va*Gm.,) = H (1, Gp,,) — @ HY(I,, K*)
j=1

= Hz(ﬁ’ yﬁ*Gm ) — H3(n, Gm,n) - @ Hz(lvj’ I?*)
=1

+1

— H3(U, Y5*Gm.y) — H3(n, Gn )+
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Recall that by HmeeRT’s Theorem 90 H(y, G,,,) =0, H\I,, K¥) = 0. Tt follows
from the class field theory that we obtain an exact sequence

254. 0> Hy, G,,,) > @ Br(K,) ™ @/Z 0
v

where the direct sumis taken over all points v of the number field K and Br(K,)
denotes the Brauer group of the completion of K with respect to v (cf. [CF], Chapter
VII). The last arrow in the second line of 2.5.3. may be identified with the map

25.5.  Hy, Gy,) —@® Br(K,,).
=1

From 2.5.4. we get an exact sequence

25.6. 0 HU, yge, Gy,,) — @ Br(K,) =+ @/Z — 0.

r€X

Finally we remark that 2.5.5. is surjective, and that by class field theory, H 3, G, )
= 0 ([CF], Chapter VII, 11.4.). We summarize our results.

2.5.7. Lemma. HY(U, va+Qn,,) = K*,
Hl(ﬁ’ yl_]*Gm,n) =0,
0 — H2(U, Y5+Gm,,) > P Q/Z — Q|Z — 0 is exact,

rEX
H3T, Yg*Gm,,) = 0.
As in [M], 2.3. we have

. 0, p+0,2,
He(U, | Z D114, Z2Z) = =
( v ®j=1 ws ) erl?r Q/Z, p =2.

We now apply H?(U, —) to the exact sequence 2.5.2.
258. 0—HU,G,5 —K* > |Z ® U Z)2Z -~ BT, G, 7) - 0.
zeT i=1

HU, G,, ;) are the elements of K which are units at all points of U and which
are positive at the infinite points v,, ..., »,. We denote this group by Df_ .

Let « € K*. We denote by «,, the real number which is the image of « under
the embedding defined by v;. The map K* — | | Z/2Z is given by

i=1

o —> (SgR &y, ..., SN &, ).

By the approximation lemma ([CF], Chapter TI, 6.1.) this map is surjective. Denote
its kernel by K.*. The map

K—-UZ@UZ}2zZ

ze i=1
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from 2.5.8. induces a map K, * LN I | Z. Then

zET

H\U, Gpz) = LI Z|b(K.*).

2eU

We call this group the restricted Picard group of U and denote it by PictU.
Since now the computation of H¢(T, Gm.g) for ¢ = 2, 3 is a trivial diagram chasing,
we give only the result.

2.5.9. Proposition. For U == X, we have
HT, Gy 5) = Dy . HYU, G, ) = PictU,
0 — HYU, Gp5) — P /Z >@/Z=»0,

we X\U
H¥U, G, 5) = 0.
For U = X, we have
HYX, G, 3) = D.,* H\(X, Gu,x) = PictX,
HXX,G, 3 =0, H¥X, Gnz) — QJZ.

2.6. Our aim is to prove the following theorem.

Theorem. Let U be an open subscheme of X. Let F be a constructible sheaf on U,
then H?(U, F) are finite Abelian groups and He(T, F) — 0, p =4

Of course, in the case where K is totally imaginary or if the order of F, is not
divisible by 2 this theorem follows from [SGA 4], Chapter X, 6.1.
We begin with the proof of two technical lemmas.

2.6.1. Let V=3 T be an object of Etz. Assume that a finite group @ acts on this
object. We say that 7 is an wnramified Galois covering with the Galois group @ if
the following conditions are satisfied:

(i) the underlying map of schemes %: ¥V — U with the canonical G-action
is an unramified Galois covering,
(i1) @ acts on V, without fixed points,

(1ii) the space of orbits V /G is mapped bijectively to U ,.
This is the same as an principal homogeneous G-space over U in the topology of
Etg. '

Let M be a finite G-set. @ acts on the scheme | | V by acting on ¥ and M. We

meM -
denote the quotient of this action by V x s M. The set Vo, x ¢ M may be identified

with a subset of (V x ¢ M) (R). Let ¥ x s M be the resulting object of Etz. The
functor from the category of finite G-sets to Et; which associates V Xe¢ M to M
gives a Hochschild-Serre sequence ([GT], Chapter III, 4.7.).

Lemma. Let F be an Abelian sheaf on U. Then there exists a spectral sequence

(@, H(V, 7¥F)) = Hr+(T, F).
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2.6.2. Lemma (effaceability). Lef F be a constructible sheaf on U and ¢ € H?(U, F,
p = 1, a cohomology class. There exists an injection F — F' of F into a constructible
sheaf F', such that H*(U, F) — H?(U, F') kills c.

Proof. Since H? commutes with direet limits, we have to show that the injective
hull T of F is the direct limit of its constructible subsheaves. We know that Iis
a direct sum of sheaves of the kind j;» I and 7,.+I,. Hence, we conclude by [SGA 4],
Chapter IX, 2.7.2.

Proof of the theorem. Recall that two sheaves are called punctually equivalent
if its difference in the Grothendieck group of all sheaves lies in the subgroup gene-
rated by punctual sheaves, i.e., sheaves concentrated to a finite number of points.
Clearly, we may replace in the proof F by a punctually equivalent one. To prove
that the cohomology is finite, it suffices by 2.2.1. and 2.2. to show that H?(U, F)
is finite, which is obvious from [M]. For the second statement of the theorem, we
need still another lemma.

2.6.3. Lemma. Let F be a sheaf on U. Assume that the residue class characteristics
of U are prime to the order n of F,, and that F, is unramified as a G,-module at all
points of U, i.e., I, acts trivially on F,, for all x € U. Then H3TU, F) = 0.

Proof. First of all, by the usual argument, we can assume n = p to be a prime
and p - F, = 0. Since we can replace F' by a punctual equivalent one, we may assume
p-F =0 and F to be isomorphic to the direct image of F,. Then F is locally con-
stant since F, is unramified. The proof will be given by induction on dimgz,zF,.
Let G, = G, be a p-Sylow group. Since F, is a Z[/pZ-vector space, there is an element
z € F, fixed under the action of G,. Let H — @G, be the stabilizer of z. Since the
action of Gn on F,7 is unramified at the points of U, there exists an unramified Galois
covering V =+ U with Galois group G = G, [H of order prime to p.

Let us first treat the case p = 2. In this case ¥ "= U is also unramified since
the I,, have order 2 and hence can not be contained in G. Therefore we can apply
the Hochschild-Serre sequence

Ho\G, BT, 2*F)) = BT, F).

This sequence degenerates because the order of & is prime to p. Hence HYV, n*F)¢
= H(U,F ), and we are reduced to prove our assertion for a*F. Since z is fixed by H,
and F is locally constant, we find an exact sequence of sheaves on V

0—Z)2Z - a*F - F' — 0.

By induction we reduce to the case F = Z/2Z. Since the residue characteristics
of V are prime to p, we may apply the Kummer sequence

07 Z2Z - Gy — Guy 0

where j, is the extension by zero (see 1.3.2.). Now the statement follows from 2.5.9).
. If p == 2 the proof is completely analog, but one has to start from the Hochschild-
Serre sequence for @: V — U taking into account 2.4.
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Let us return to the proof of the theorem. Let 'V < U be an open subscheme.
We have the local cohomology sequence

L HAT, F)—HU, F) > H{V, F) > U BT, F).
2EU\V 2EU\V
It follows from [M] that H, (U, F) =0, ¢ = 4. Therefore, we may replace U by
any open subscheme V. Let p = 4. From the effaceability and finiteness of the

cohomology, we find an injection F —— I into a constructible sheaf I, such that
the map H?(U, F) — H?(U, I) is zero. Let F' be the cokernel of «. From the cohomo-
logy sequence we get a surjection H\TU, ')y - H»(U, F). Applying induction on
p, we may assume p = 4. By shrinking U we may arrange that F’ satisties the hypo-
theses of Lemma 2.6.3. Hence the proof of the theorem is complete.

As a corollary we obtain part (c) of TATE’s theorem (see these notes).

Corollary. Let S be a not necessarily finite set of points of X which contains the
infinite points. Denote by K the maximal algebraic extension of K which is unramified
outside S and by Qs its Galois group. Let M be a Gs-module whose order is prime to
the residue characteristics of points not lying in S. There is a canonical isomorphism

HP (G, )—>|_|HP(LJ‘,M) for p=3.

Proof. Let € be the category of all étale maps V — X, such that V is connected
and its function field lies in Kg. We evidently have hm V = Spec Ks. Let F = yg. M

where yz» is the functor ¥, — 5. For each sufflclently small V € €, the restriction
F| satisfies the hypotheses of Lemma 2.6.3 and consequently H?(V, F|7) =0,
p = 3. From the local cohomology sequence for ¥ and the infinite points, we get
isomorphisms

Hp('V’ F|V) %UHP(IW’ M), p g 3

i=1

Finally we conclude by passing to the direct limit over all V.

3. Artin-Verdier duality
3.1. Modified étale cohomology

We consider an open subscheme U of X and an Abelian sheaf F on U.

3.1.1. Definition. The modified sheaf I is the sheaf on U given by the tuple
(HolZy, ), - Ho(Ly,, F,), T,
N:Hyl,, F,) — HI,, F), ..., N: Hyl,, F,) - HI,, F,)).

Here H,(I,,, —) denotes the covariants under the action of I,, and N is the norm
map.
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3.1.2 Lemma. F > F is a right exact functor which preserves injective objects.

Proof. The right exactness follows from that of H,. Assume that F is an injective
sheaf. Then its direct image j,F on U is injective. Hence H?(TU, j, F) =0, p = 1,
and by Lemma 2.3 H?(I,, F,) =0, p = 1. Since the cohomology of I,, is cyclic,
it follows that all modified cohomology groups H?(I,, F,) are zero ([CF], Chapter
1V). Hence, the norm map is an isomorphism, and we conclude that j,F = ¥,
which proves the lemma.

3.1.3. Let 0 — F' — F — F”" — 0 be an exact sequence of Abelian sheaves on U.

Using the exact sequence for homology of I,,, we get an exact sequence

3031 — Ui H2(,,, F,) > L iy H*1,, F,”)
k=1 )

k=1
>F > F > F" 0.
Consider the exact sequences
0>K—F —>F”—>O,
0>L—>F K -—0.

The sheaf L is concentrated in- the infinite points. Consequently, H?(U,L) =0
for p = 1. From the cohomology sequences we get exact sequences '

0 — HU, L) -~ HYU, ') > HYU, K) — 0,
U, F'y =~ HWU,K), p=1,
0 — HYU, K) - HU, F) — HYU, 1
And finally from 3.1.3.1.

\
g
B
@\)
v

9@}? Itk,F)—>(—DH I,,k,Fn)_>H0(

i
31
\

<

3.1.4. Definition. For p € Z we set
HXTU, F), p=0,

A»(U, F) = égp_i([vk’ F), p<0.
k=1 7

The A?(U, F) are called the modified étale‘ cohomology growups.

Fitting together the above exact sequiences, we get a long exact sequence
3.14.1. ---—H?(U, F) - H?(U, F) - A?(U, I’y > A?(U, F') — ---, pe Z.
3.1.5. With help of Lemma 2.3, one checks easily that for v ¢ U,

HpAU, Py =HrY1,,F,), p=0.

We define therefore the local cohomology groups as follows.
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Definition.
Hp2U, F), =0,veU,,
(U, ) — Av( » »
H" Y, F), p<O.

Let S be a finite subset of U, and let S be the union of § with all infinite points.

Denote by V = U\ S the complement, then we have an exact sequence (see
2.2.1.)

3.1.5.1. - > UHXU, F)— H?(U, F) — H?(V, F|,)

se§

- HP(U, F) — ...

s€§

With the convention that H?(V, F|,) = H2(U, F) = 0, for p <0 and s €8, the
sequence makes sense also for p < 0.

3.1.6. Let L be a finite extension of K, and V the integral closure of U in L. We
have a finite morphism f: ¥ — U. For any Abelian sheaf F on V, we have canonical
isomorphisms

3.1.6.1. H?(V,F) = H?U,{.F), pecZ.

Proot. Let 6§ = Spec L be the general point of V. Then G, is a subgroup of G,
We form the induced module IndggFg. Since the functor Indgf] is adjoint to the

restriction functor which regards a @,-module as a G;-module, we have a canonical
isomorphism

nd§F, = (f,F),

We study more closely the structure of IndggF(,. Let w be a real Archimedean point
of K. Denote by #y, ..., v, all Archimedean points of L which lie over w. Assume
that v, ..., v, are the real ones. We choose fixed extensions ¥y, ..., Uy and take W = 7,.
Furthermore, we choose o; ¢ @,, such that 7,6; = ;. Let 7, ..., 7, be the generators
of the decomposition groups I;, I;,. Evidently, we have o;! 7,0; = 7; and

LREPIE -

t ¢ .
G, = ( Geoi—:‘) U ( U G’oai—lrl‘:‘) ;
i=1 i=r+41

Consequently, the induced module may be written as

=~

¢
oy D L (0;F, D 7103F,).

i=1 j=r+1

IndggFo =)

fI

¥

7
The action of 7; on Indgf;Fg may -be described as follows. For § = r - 1, it acts
by interchanging ¢;Fy and 7,6;F,, and, for j < r, it acts on ¢;F, by the defining
equation =05y = o;7;y, for y € F,,.
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Since we have chosen I; = I, one gets readily

T t
HO(I, Indg0F,) = LI HYI;,, Fy) D LI F,,
i=1 -

t=rt+1

T t
Ho(Iz, IndgiFy) = L Hy(I5, Fy) @ LI F,,
f=1

t=r41
t
where the norm map induces the identity on [ | F,.
i=r+1

Since we know that HY(V, F) — HY(U, {,F) ((GT], Chapter I11, 4.11.), one checks
readily from 2. and 3.1.4. that

HYV, F) = BYU, {,F).

Because f, is exact in our case and preserves injective modules and because of
3.1.2. it follows that, for p = 0, exact effaceable -functors stand on both sides of
3.1.6.1. This proves our assertion for p = 0. For p < 0, we are dealing only with
a group theoretic question and we can argue by the lemma of SHAPIRO. :

3.2. We are now ready to proof the central result of this Appendix. From Definition
2.5.1 the reader checks without difficulty Gy, 7 = @, ;. Because of 2.5.9. we get
further a canonical isomorphism H3(X, G, x) = @/Z. To simplify the notation,
we make the convention that Ext_r(—, —) is zero, for negative 7.

Theorem (Artin-Verdierduality). Let F be a constructible sheaf on X. The Yoneda
pasring
3.21. H'(X, F)XExtz"(F, Gy x) > HYX, GCpx) = Q)Z, rcZ,

s perfect.

If K is totally imaginary, the modified cohomology coincides with the usual
étale cohomology. In this case the theorem is just 2.4. of [M].

3.2.2. Lemma. For each constructible sheaf F, the canonical morphism
3.2.2.1. " H?(X, Hom x(F, Gn)) — Ext,?(F, G,,)
s an isomorphism, for p = 4.

Proof. We treat first the case where ¥ is concentrated in a closed point z € X.
That means, ¥ may be written in the form i,.N, where 4y % — X is the inclusion.
Since 4, is exact and left adjoint to 7,', we get a spectral sequence

Ext?(N, R%,'G,) = Extz?(F, G,,).

Since further by [M], 1.2., R%,'@,, = Z and R%,'G,, = 0, ¢ == 1, this sequence reduces
to isomorphisms

ExtyP-Y(N, Z) = Extz?(F, G,).
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By thelocal duality theorem (see [M], 1., Remark d), Ext, >}, Z) is dual to F3-7(G,,, N)
and hence zero, for P = 4. Since Hom(F, G) is zero in our case, we get the assertion
for punctual sheaves.

Let again F be any constructible sheaf. Choose an open set U in X, such that
the restriction F|y; is locally constant and has the order prime to the residue class
characteristics of U. Let j: U — X be the inclusion. Since the cokernel of the injec-
tion j Fly — F is concentrated to a finite number of points, it suffices to prove
our assertion for §,F|;. Since j, and j* are adjoint and exact, we get

Extx?(j\Fly, Gy x) = Exty?(Fly, Gry), pe Z.

Since the local Ext groups Exty?(F|y, Gp,y) vanish for p > 0 (see [M]) we obtain
Exty?(F|y, Gn,v) = H?(U, Hom(F|y, G,v))-

Since finally local cohomology is zero in dimension greater than 3, we deduce
HY(U, Hom(Fly, G, p)) = H?(X, Hom(j F|y, Guo)) »=4.

This proves the lemma.

3.2.3. Corollary. There is a canonical isomorphism

.
Exty?(F, Gp,x) = L HY(I,,, F,*), p =4,
i=1

where F,* — Hom(F,, Gp,,) is the dual Galois module.

Proof. This follows readily from 3.2.2., 2.6., the local cohomology sequence
and 2.3. 5

Remark. Let .#;, be the category of I,-modules. The functor F i F, from &5
to &, is exact and preserves injective modules and gives therefore rise to a map

Exty?(F, @) ~ Bxtoy(F,, Gp,,) = H?(I,, F,*).
This provides the canonical map of 3.2.3.

Proof of the theorem. We consider first the case » < 0. By the Corollary 3.2.3
and Definition 3.1.4, it suffices to prove that the cup-product induces a perfect
Ppairing

B22(1,, F) X B2(I,,, F,*) - HX(I,, G, ) > A¥X, G ).

If the order of ¥, is not divisible by 2, the groups are zero and the assertion is obvious.
Hence by descent we may assume F' — Z)2Z. Let 6 H¥I,, Z) be a generator. We
know that the cup-product with & induces, for any I,-module M, an isomorphism

H?(L,, M) - HP(I,, M).
It follows that our assertion is equivalent to the assertion that

A2(1,, F) x HYI,, F*) — A1, G

7",7])
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is a perfect pairing, for p == 0, 1 and F, == Z/2Z. This is a trivial verification. Our
proof in the case r << 0 is therefore complete.

By replacing the usual étale cohomology by the modified one in the general machi-
nery developed in [M], 3., we could finish our proof. We go a slightly different
way by proving the following lemma. Since our theorem is proved in [M] for K
totally imaginary, this will complete the proof. '

Lemma. Asswme that our theorem is true for K totally imaginary. Asswme further-
more that the pairing 3.2.1. is perfect for any K, for any constructible F and r << 7,.
Then the pairing is perfect for r = r,.

Proof. A consideration similar to that in the proof of 3.2.2. shows that our theo-
rem is true for sheaves with support in a finite number of closed points. Choose a
finite extension L of K which is totally imaginary. Let ¥ be the spectrum of the ring
of integers of L and z: ¥ — X the projection. Consider the map

F — m a*F.

We get two exact sequences

324. O0—->H-—>F-—+FE-0,
0—E —»>ma*F - G — 0.

Since H has finite support, the theorem is true for H. Hence it is sufficient to show
that 3.2.1. is perfect, for F = F and r =r,. For an Abelian group M, let
M = Homg(M, @/Z) be its Pontryagin dual. The pairing 3.2.1. gives a map

m'(F): H"(X, F) — Bxty>"(F, G x) .

Hence from 3.2.4. we get a commutative diagram with exact lines (compare with
[M], 3.)

3.25. H 'YX, ma*F) - HYX, () —>
i
Y
EXtX4_TU(7Z*7T*F’ Gm,X) 2 EXtX JO(G: Gm,X) —>

—HA™X,E) —~ H™X, na*F) — H™X,G)
LmroiE) Lo Jmr@)
— Exty* (B, Gy, x) — Exty(m st F, Gy x) = Exty®"(G, G, x)

By 3.1.6., we have H"(X,nn*F) = H"(Y,z*F) and, by the norm theorem
M1, 2.7.,

EXth_,r(ﬂ*n*F’ Gm,X) = EXty3_T(7T*F, Gm,Y)'

Since we assume that our theorem is true for Y, we get that the first and the fourth
vertical arrow in 3.2.5. are isomorphisms. The second arrow is an isomorphism
by induction. Hence m™(¥) and consequently m™(F) are injective. Applying this
result to G, we see that m™(@) is injective. An easy diagram chasing yields now that
m™(E) is an isomorphism. This proves the lemma and completes the proof of the
theorem.
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3.3. The purpose of this section is to show that Theorem 3.2 is essentially equivalent
to TATE’S global Duality Theorem (see [T], Theorem 3.1, or these notes Theorem 1).
Let U be an open set of X and let § — X\ U be its complement. We denote

by Gs the fundamental group ;(U) of U. This is the Galois group of the maximal
extension of K which is unramified outside .

3.3.1. Proposition. Let F be o locally constant sheaf on U. Assume that the order
of F is prime to the residue class characteristics of U. There is canonical isomorphism
H¥Gs, F,) = H(U, F).

Proof. The Hochschild-Serre sequence ([GT], Chapter III, 4.7.)
H”(G’S, lim HyW, F[W)) = H"(U, F).
Wit

reads

Here W runs over all unramified connected Galois coverings W of . Evidently
it suffices to prove

: 0, ¢>0,
lim H(W, F|,) —
lim H4(W, Fly) {F by

1
Note that this is trivial, for g =0.

Considering only sufficiently great coverings W, we may assume that F lw = Z[nZ,
and that the function field L of W contains the n-th roots of unity and is

totally
maginary. Hence we can use the Kummer sequence

0= Z/nZ - G 3y " Gy gy — 0.
Using 2.5.9. we may write the cohomology sequence as follows
0— HY W, ZInZ) — D,* s Dy* — HYW, Z/nZ) — Pic W "+ Pic w
— H¥W, Z|nZ) - HA(W, G, ) —> HA(W, Gu.w) = HY W, Z|nZ) — 0

where Dy* denotes the elements of I, which are units at all points of W,

From 2.6.3. we know that Ho(W, Z/nZ) = 0, for P = 3. It remains to show that
lim H»(W, Z|nZ) = 0, for p=1,2
i

Let L be the Hilbert class field of L and let W’ be the integral closure of W in

L’. By the principal ideal theorem of the class field theory, the map Pic W — Pic W’
is trivial. Hence, we get lim Pic W = 0.
W

Furthermore, we get lim Dy*/Dy*n — (, Indeed, if @ is an element of Dy*, then
W

the equation #* — & — 0 defines a Galois extension "’
along W and in which a is an n-th power.

We denote, for an Abelian group M, by ,M the kernel of multiplication by 7.
The only thing that remains to be shown is

of L which is unramified

lim ,HAW, G, ) — 0.
w




144 Appendix 2

Again from 2.5.9., we get an exact sequence
qeSw
Here 8y, denotes the set of finite points of L not lying in W. Recall that the first
arrow is the composition of the following maps
nHz(W’ Gm,W) =2 ,,HZ(G, Gm,@) = @ nH2(-Zq ' Lq’ Lq) = (‘B n(Q/Z)
geSw geSw
Here 6 denotes the general point of W, L, the completion of L at g and H2(L, | L, L¥
the Galois cohomology group
HX(Gal(L, | Ly), L*) = Br(IL,).
Obviously, it suffices to show that
lim @ H2(L, | Ly, L*) = 0.
VqESW
Let £ | L be an extension which is unramified along W. Let further ¢’ be a point
over g. By use of the local class field theory ([CF], Chapter VI, 1.2.), there is & commu-
tative diagram

HHE, | Ly Ly = L 2/7
l @ |[Eq : Lql
HAE, | By, BY) ™ i Z/Z

Our assertion follows if we can construct an extension F | L, which is unramified
along W and the local degrees [E, : L,] of which, for q € Sy, ¢' | g, are all divisible
by n. Let again L’ | L be the Hilbert class field. In L’ all ideals ¢ ¢ S become

principal, say generated by f,. Evidently, it suffices to take £ — L’(]/E)q6 Sy

We are now ready to prove that TATE’s long exact sequence for finite ramification
(see these notes Theorem 1) follows from the Duality Theorem 3.4.

Let ¥, be a G,-module. For a point s of X, we denote by Hi(K,, F ,) the group
H{D,, F ) if s is a finite point and the group Hi(I,, F ,) 1 s is an infinite pomt (see 1.2.
and 1.3. )

3.3.2. Proposition. Let M be a finite Gs-module. Assume that the order of M is prime
to the residue class characteristics of U. Then there exists an exact sequence

3.3.2.1. 0 - HYGs, M) — | | H%Ks, M) — H*Gs, M*)" — HY(Gs, M)
se§
— L] HY(K,, M) — HY(Gs, M*)" — HXGs, M) — | | HX(K,, M)
s€8 s€8
- HY(Gs, M*)” — 0.
Recall that we denote by M* = Hom(M, G,,) the dual Galois module and by ~
the Pontryagin dual.

Proof. Since Gy is the fundamental group of U, M defines a locally constant sheaf
F on U. Denote by j: U — X the inclusion. As in the proof of 3.2.2., we have
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isomorphisms
EXtXp(j!F> Gm,X) = EXtUp(F’ Gm,U) = Hp( U’ Hﬂ (F> Gm,U))-

We denote the sheaf Hom(¥, G,, ;) by F*. This sheatf is locally constant since the
residue class characteristics of U are prime to the order of F. The general fibre of
F* is M*. Applying 3.3.1. to F, we get an isomorphism

EXtXp(j!F, Gm,X) = Hp(Gs, M*) .
The local cohomology sequence 3.1.3.1. in our situation reads

3.3.2.3. — LI HAX,}F) > H?X, j,F) - HYU, F) - | Hp*(X, j,F).

s€§ s€8

We want to show that this sequence may be identified with 3.3.2.1. By 3.3.1. we
have HP(U, F) = H?((s, M). Further, by the Duality Theorem, we have

- HY(X, jiF) = Exty>2(\F, Gy x)” = H>2(Gs, M*)".

Hence, it remains to interpret the local cohomology groups H?(X, j,F). If s is a point
at infinity it is obvious from 3.1.5. that

Hp(X, jiF) = A»YI, M) = HY(K,, ).

Let s € 8 be a finite point, and denote by X, 2+ X the henselization of X in s. By
excision [M], 1., we have H,(X, j,F) = HP(X,, *j,F). The last cohomology group
can be computed from the local cohomology sequence and [GT], Chapter ITI, 4.9.
(for that see [M], 1., Remark e). We get

Hsp(X, 7!F) = Hp_l(Ds’ M) = Hp_l(Ks’ M)
It remains only to check the zeros in 3.3.2.1. The last zero follows from the fact
that by the corollary to 2.6. the map
H3Gs, M) - | H(K,, M)
3€8\8
is an isomorphism. The first zero follows by Pontryagin duality. This completes
the proof of 3.3.2.
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