FINITENESS OF BRAUER AND III

FRANCOIS GREER

1. THE CLASSICAL BRAUER GROUP

We begin with a review of basic facts over a field, which came first historically.

Definition: Let k be a field. The Brauer group of k is given by the set
Br(k) = {finite-dimensional central simple algebras over k}/ ~

where A ~ A" if A® End(k") ~ A’ @ End(k") for some n > 1.

The relation ~ is transitive because End(k") ® End(k™) ~ End(k"t""). The
operation ® on algebras gives Br(k) a group structure, since A ® A°PP ~ End(A).
The latter is an equivalent definition of a (finite-dimensional) central simple algebra.
For any extension k'/k, there is a map Br(k) — Br(k’) given by base change.

The Artin-Wedderburn Theorem classifies all finite-dimensional simple k-algebras
as End(D™) for a unique finite-dimensional central division algebra D over k. If
k = k, then Br(k) = 1 since k has no non-trivial central division algebras D (as
k C k[z] is a nontrivial finite extension for any € D — k). But we can say much
more: for any field k, an element of Brauer can be trivialized after a finite separable
extension k’/k. Thus, if k = k* then Br(k) = {1}.

We can now interpret a central simple algebra as a twisted form of End (k™) over
k, with respect to the étale topology on Spec (k). This brings us to

Theorem: (Skolem-Noether) Every automorphism of A/k is inner.

In particular, the k-automorphism group of End(k™) is GL, (k)/k* = PGL, (k). By
descent, a central simple algebra A corresponds to an element of HY, (Spec k, PGLy,).
Consider the short exact sequence of algebraic groups

1-G,, »GL, »PGL, —1

which induces the long exact sequence
— H)(k,GL,) & HY (k, PGL,) > H2(k, Gp) —

A central simple algebra is isomorphic to End(k) if and only if its class lies in
the image of p. If we let n vary, the boundary maps ¢ induce an injective map
i: Br(k) — H%(k,G,,) = H?(k,kX). This turns out to be an isomorphism, by
explicitly constructing a central simple algebra from a Galois 2-coycle.

A more geometric interpretation of the Brauer group uses the fact that PGL,

represents the automorphism functor of P", so an element of H!(k,PGL,) is a

twisted form of P}, or more precisely, a k-scheme V' such that Vj» ~ P}, for some
1
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finite separable extension k’/k. Such varieties are called Severi—Brauer varieties;
see Lecture 7 for a discussion of real conics as Severi-Brauer varieties.

2. THE MODERN BRAUER GROUP

There is a topological analogue of the above construction, which leads naturally to
the common generalization to the Brauer group of a scheme.

Definition: Let X be a paracompact topological space, and Ox its sheaf of con-
tinuous C-valued functions. The Brauer group of X is given by the set

Br(X) = {Ox-algebras locally isomorphic to End(O%)}/ ~
where A ~ A" if A®End(€) ~ A’ @ End(&’) for £, &’ locally free.

The relation is transitive because End(€) ® End(€’) ~ End(€ ® £). Such Ox-
algebras A are called Azumaya algebras, and they satisfy A ® A°PP ~ End(A) via
the obvious map.

There is a Skolem—Noether theorem for these so-called Azumaya algebras A. By
descent, an Azumaya algebra A corresponds to an element of H'(X,PGL,(C)),
and A ~ End(€) if and only if its class comes from H'(X,GL,(C)). Thus, we have
an injection

Br(X) — H*(X,C*).

Note that the Brauer group is torsion because of the diagram

1 P SL, PGL, —— 1

and the fact that the connecting map § : H'(X,PGL,(C)) — H?(X,C*) factors
through H'(X,PGL,(C)) — H?(X, u,), which is torsion. This fact persists in all
definitions of the Brauer group.

Theorem (Serre): For X a finite CW-complez, Br(X) ~ H?(X,C*)ior-
Grothendieck generalized both of the previous constructions to the notion of Brauer
group for (X, Ox) a locally ringed space.

Definition: Let (R, m) be a local ring with residue field k. An Azumaya algebra
A over R is a free R-module such that A @ g A°PP ~ Endpr(A).

Remark: By Nakayama’s Lemma, A/R is Azumaya if and only if A/m is central
simple over k.

Definition: Let X be any scheme. An Azumaya algebra A over X is a quasi-
coherent sheaf of Ox-algebras that is locally free of finite rank as an Ox-module
such that A ® Ox , is an Azumaya algebra over Ox , for all x € X. Equivalently,
A ® k(x) is central simple over k(x) for all x.

Definition: The Brauer group of a scheme X is given by
Br(X) = {Azumaya algebras}/ ~ .
By Skolem—Noether, we again have an injection

Br(X) — H%(X,G,,)
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and the latter injects into H?(X, G,,), by the Cech-to-derived spectral sequence.
As above, we know that the Brauer group is torsion, since H?(X, ) is torsion.
Grothendieck studied when the map

Br(X) — H2(X,G)tor C HA (X, G,,) =: Br'(X)

is an isomorphism (the latter is called the cohomological Brauer group). They agree
in the étale local case by comparing Henselian local rings to their residue fields, but
global results are more difficult. It is worth noting that Br'(X) is torsion for X
regular, as we will see later.

Theorem (Grothendieck): Let X be a quasi-compact scheme, and let v €
H2(X,G,,). There exists an Azumaya algebra on U = X — Y whose class agrees
with y|y. Here, Y is a subscheme of codimension > 2, or > 3 when X is regular.

Thus, in the case of a regular surface (relevant for this talk), the Brauer group
is cohomological.

3. EXAMPLES AND FURTHER PROPERTIES

Theorem (Auslander-Brumer): Let R be a discrete valuation ring, K its field of
fractions, and k its residue field. Then we have a short exact sequence

0 — Br(R) — Br(K) — Hom(Gy,Q/Z) — 0

Corollary. If K is a non-archimedean local field, Br(K) ~ Q/Z.
Proof: We have Br(F,) = {0}, since finite division rings are fields, and

Hom (2 Q/z) ~ Q/Z.

Let X be a regular variety with function field K. For each irreducible divisor
D C X, we have a valuation vp on K, with valuation ring Rp. The Auslander-
Brumer Theorem in this case reads as an exact sequence

0— BT(RD) — BT(K) — HOHI(G']C(D)7 Q/Z) — 0.
Varying over all irreducible divisors D, we find

0 — Br(X) — Br(K) — @ Hom(Gy(p), Q/Z) — 0.
D

This implies that when X is a smooth proper and geometrically connected curve
over F then Br(X) is trivial, since the right map coincides with the one from global
class field theory:

0 — Br(K) — (P Br(K,) - Q/Z — 0.

Lastly, I should mention the fact that Br’(X) is a birational invariant for smooth
proper varieties in characteristic zero (or dimension < 2 in any characteristic).
Grothendieck proves this by explicitly computing the effect of blowing up, which is
sufficient by resolution of singularities.
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4. Br(X) VERSUS III(X)

Let us recall the set up from last lecture. Let K be the function field of a smooth
proper and geometrically connected curve C over Fy, and let X/K be a smooth
proper and geometrically connected curve over K. Then there is a regular proper
model f : X — C, which is far from unique. The goal of this section is to relate
the group Br(&) to the Tate-Shafarevich group of the Jacobian: II(Jx/x). We
assume that X has a K-point to simplify the argument.

To access Br(X) = H2 (X, G,,), we would like to use the Leray spectral sequence
that composes the derived functors of f, and I':
By = HE(C, RYf.G) = HET (X, Gon)-

But first, we discuss a vanishing result that simplifies the sequence substantially.
Theorem (Artin): R'f.G,, =0 when i > 2.

Proof: It suffices to show that the stalks H¢ (XOSC}‘,C’ G,,) vanish when i > 2. By
proper base change, we have an isomorphism

Hét(XOSC}jCa fren) =2 Heg (X(eys, phen)
which vanishes for ¢ > 3, since Xj (). is a curve. The Kummer sequence implies
that there is no ¢"-torsion inside Hét(‘)(ozl\yc, G,,) for i > 3. To finish up this case,
we need the general:

Lemma. Let Y/k be an irreducible regular Noetherian scheme. Then HZ (Y, G,y,)
is torsion for i > 1.

Proof: First, for any field K, a sheaf F' over Spec (K) has torsion higher coho-
mology. Next, consider the exact sequence

0 — G, = Ry — Divy — 0

where R3- denotes the sheaf of nonzero rational functions, and Divy is the sheaf of
Cartier divisors. The sheaf Ry = n.(G,) where n : Speck(Y) — Y is the inclusion
of the generic point. By the Leray spectral sequence, 1.(G,,) has torsion higher
cohomology.

Since Y is regular, we can describe Divy- in terms of Weil divisors:

@ Ly (Z)

where ¢ : Spec k(D) — Y is the inclusion, so the same argument applies. The long
exact sequence then gives us the desired statement about the G,, cohomology.

Returning to the proof of Artin’s Theorem, we must address the case where i = 2.
We know that Br(Aj)s) = 0, so it suffices to show that the base change map

BI‘(XO%’C) — BI‘(Xk(C)s)

is injective. If an Azumaya algebra becomes trivial upon restriction, we lift the
trivialization using deformation theory of algebras. First, we can lift it to all finite
Artinian extensions, and then use formal GAGA to lift to the completed local ring.
A result of Greenberg allows us to lift all the way to OS&C.
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Returning to the original problem, we can now write down the Leray spectral
sequence for f, placing all 0’s in the second row. This yields the long exact sequence

— H*(C,Gp) — H*(X,Gp) = H'(C, R [.Gy,) = H(C,Gy) = HY(X,Gy) —

Here, f,G,, = G,, because f is proper and smooth with geometrically connected
fibers. Recall that H?(C, G,,) = Br(C) = 0 because C' is a smooth curve over F,.
The map H?*(C,G,,) — H*(X,G,,) is given by pulling back through f. Since f
admits a section, this map is injective. Combining these observations, we obtain

Br(X) = H*(X,G,,) ~ H*(C,R' f.G,,).
What is the sheaf R! f,G,,? By definition, it is the sheafification of the functor
U H'Y(f7H(U), Gyn) = Pic(f~H(U)),

which is also the definition of the relative Picard functor, Picy,c. Since f is not
smooth, this functor is generally not represented by a separated scheme, but the
subfunctor Picg(’c parametrizing line bundles with degree 0 on every component of
every geometric fiber is representable by a separable scheme of finite type. The key
link between Br(&') and III(Jx,k) is given by

Theorem (Raynaud): We have Picg{/c ~ J° where J is the Neron model of
Ix/K-

Admitting this, we can analyze the finiteness of the two groups, as follows.
First, we claim that finiteness of Br(X) is equivalent to finiteness of H*(C, J°).

In the case where f is smooth, we have the short exact sequence
0 — Picy ¢ — Picx/c — Z — 0
which induces the long exact sequence
Picy/c(C) = Z — He(C,J") = Hey(C, Picx o) = Hy(C, Z) —

The leftmost map is surjective since f has a section. The rightmost cohomology
group vanishes because

HY(X,Z) = Hom(75"(C), Z) = 0.

If f has singular fibers, then Z is replaced by an extension supported over the bad
places. This is where the index and period enter the picture.

Next, we relate H(C, J°) to H'(C,J) via the short exact sequence

0T =T = Pis®s =0
IS

from Lecture 3, which induces the long exact sequence

Pe. - H(C,T) —» H(C,T) > H' (C, @js*<1>s)

seX sEX
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and the two groups on the outside are finite. Lastly, we use the description of III
due to Mazur given in Lecture 3 to deduce the desired equivalence. Any torsor for
Jx Kk admits a model over C, which is a torsor for 7. This gives us a map

W(Jx/x) < H'(C,J)
The original definition of IIT as the kernel of

HI(K, JX/K) — HHl(K'mJX/K)
v

can be restricted to the Neron model torsor space, giving a Cartesian square

HYC,J) —— H' (K, Jx/K)

| |

1, H(0,,J) —— I, H' (Ko, Jx/x)

The lower left group is finite, since it is supported at the bad places, and there
we use Lang’s Theorem on the Néron fiber. Thus, III(.J) is finite if and only if
HY(C,J) is finite.

5. PAIRING ON III

The key ingredient for the construction of the pairing is the “arithmetic Poincaré
duality” statement. In spirit, it says that a smooth variety X of dimension d over a
finite field k behaves like a closed (2d+1)-manifold with respect to étale cohomology
with torsion coefficients. It should not be confused with the usual Poincaré duality
statement for X7, which behaves like a closed 2d-manifold.

For p not dividing m, we have a non-degenerate cup product

HUX, p2m) x HZF X, S0 — H2H (X, p2h) 5 Z2/mZ

m

where the last map is the trace, and the pairing is compatible with varying m. In
the case of a regular proper surface, we have

HY (X, i) x H X, i) — Z/mZ

Furthermore, the Bockstein homomorphism 8, : H (X, i) — HTH (X, i) is a
derivation with respect to the cup product:

(6mz,y) + (=1)"(2, 0my) = dm (2, y).
Since H?(X, u%?) — H5(X, u?ﬁ) is isomorphic via the trace map to the natural
inclusion Z/mZ < Z/m?Z, we have

(,0my) + (Omz,y) =0

for z,y € H*(X, ).
From the long exact Kummer sequence on X, we have

0 — Pic(X)/(m) — H*(X, i) — Br(X) B Br(X) — H3(X, i) — H3*(X, Gp,)[m] — 0
Taking direct limits, this becomes

0 — NS(X)®Q/Z — H*(X, tios) — Br(X) =0
and taking inverse limits, it becomes

0 — lim Br(X)/(n) — H3(X,Tp) — TH3*(X,G,,) — 0
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In the limit, the arithmetic Poincaré pairing induces a non-degenerate pairing
between H?(X, o) and H3(X,Tu). It is a general fact that for a continuous
non-degenerate pairing between a discrete torsion group M and a pro-finite group
N, Myiy and Nio, annihilate each other. Applying this to M = H2(X7 loo) and
N = H?*(X,Tpu), we obtain a non-degenerate pairing

Br(X)/Br(X)diV X BI'(X)/BT(X)diV — C,Z/Z7

since Q/Z is divisible, and TH?*(X,G,,) is torsion-free. This pairing is skew-
symmetric by the Bockstein property.

This pairing resembles the Cassels-Tate pairing at first glance. Its skew-symmetry
implies that if Br(X) is finite, then its order is a square or twice a square. In
fact, Liu-Lorenzini-Raynaud proved that its order is always a square. This is done
by expressing any regular surface X has a fibration, after blowing up, recalling
that Br(X) is a birational invariant. Next, they use the explicit relation between
the orders of Brauer and Tate-Shafarevich, and the results of Poonon-Stoll on the
Cassels-Tate pairing. As far as I know, it is not known whether the pairing on
Br(X) is alternating.



