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1 Minimal Models of Surfaces

1.1 Notation and setup

Let K be a global function field of characteristic p, with finite field of constants k
(the algebraic closure of Fp in K) of size q, so K is the function field k(V ) of a
unique smooth, proper, geometrically connected curve V over k.

Let XK be a smooth proper geometrically connected curve over K, with genus
g > 0. The Jacobian J = Pic0XK/K

ofXK is an abelian variety overK with dimension
g > 0.

The goal is to interpret the BSD conjecture for J in terms of the geometry of a
smooth projective surface X over k equipped with a proper flat map X → V having
generic fiber XK as given. The key point is to express the conjecture in terms of
such an X without reference to the fibration. That such an X exists at all is already
a real theorem, so we begin by discussing (without proofs) the story of “nice” proper
flat models for curves.

1.2 Existence of proper regular models

We have X ⊂ Pn
K ⊂ Pn

V = Pn
k × V . Suppose we take the Zariski closure X of XK

in Pn
V . Then X is flat and proper over V , and a surface over k. The k-scheme X

could be pretty nasty, but we can make it nicer by considering the normalization
X̃ → X . Then X̃ is a normal projective surface over k, and normality implies that
there are no singularities in codimension 1, so X̃ has only finitely many singular
points. (Recall that since k is perfect, regularity is the same as smoothness over k
for a finite type k-scheme, and the non-smooth locus is closed.)

Remark 1.1. A proper map V -scheme with generic fiber that is a geometrically
connected and regular curve (so all fibers are of pure dimension 1 by flatness and are
∗Notes by Tony Feng
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1 MINIMAL MODELS OF SURFACES

Figure 1: The fibered surface X.

geometrically connected by consideration of Stein factorization) is called a fibered
surface over V .

Can we improve X to be k-smooth (equivalently, regular)? The answer is yes,
thanks to the following theorem.

Theorem 1.2 (Lipman). For 2-dimensional excellent integral noetherian schemes
Y, there exists a canonical resolution of singularities

Remark 1.3. The hypothesis of excellence guarantees certain nice properties, like
the finiteness of normalization, the openness of the regular locus, preservation of
normality and reducedness under completion of local rings, etc.

More precisely, one can describe an iterative process and Lipman’s theorem says
that it produces a resolution. The process is described as follows. Let Y0 := Y.
The first step is to normalize, so all the codimension one points are regular. The
non-regular locus is closed and has no codimension one points, so by excellence it is
just a finite collection of closed points. Then you set Y1 to be the blowup at these
non-regular points. We then define Y2 in terms of Y1 exactly as we defined Y1 in
terms of Y0, and so on.

[Reference: Artin’s article in the book Arithmetic Geometry (on Faltings’ proof
of the Mordell Conjecture).]

In this way, we eventually obtain a surface X → V such that X is smooth
(over k) with generic fiber XK . This is very useful, as geometry is a lot nicer on
smooth projective surfaces; e.g., intersection theory is available. (The surfaces we
consider are projective by design, but actually any smooth proper surface over a field
is automatically projective: it suffices to consider algebraically closed ground fields,
and that case is handled early in Badescu’s beautiful book “Algebraic Surfaces”.)
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1 MINIMAL MODELS OF SURFACES

Figure 2: Blowup at a singular point.

1.3 The minimal regular proper model

The fibered surface X we have built is not canonical in terms of its generic fiber
XK . Given one such X, we can make many more by blowing up at closed points
x0 ∈ X. If you want to understand Blx0(X) near the x0 fiber (such as for regularity

Figure 3: Another regular proper model, obtained by blowing up at a point.

properties), it suffices to compute after base change along the localization morphism
Spec OX,x0 → X, or even after further base change to the completion of that lo-
cal ring (since regularity can be checked on completed local rings upstairs). Since
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1 MINIMAL MODELS OF SURFACES

blowing up commutes with flat base change, the fibered product is the blow-up of
Spec (R) at its closed point, with R equal to the local ring at x0 (or its completion).

Exercise 1.4. IfR is an n-dimensional regular local ring, then Blm(Spec R)→ Spec R
has m-fiber Pn−1

k and is regular (where k = R/m). You can check this at the level
of open affine charts of blowup.

Definition 1.5. We say that X ′ dominates X (as V -models of XK) if there exists a
map f : X ′ → X over V and inducing the identity on XK

X
f //

  

X

~~
V

Note that given any two models X1, X2 for XK over V , there is third model
dominating both. You can just take X to be the closure of (X1)K ∼= XK

∼= (X2)K
in X1 ×V X2 and then the resolution of X dominates X1, X2:

X

~~   
X1

  

X2

~~
V

Is there a minimal such model? All regular fibered surfaces X → V admit
a reasonable intersection theory in their fibers (see Chinburg’s article on minimal
models in Arithmetic Geometry), and if E is an irreducible (and reduced) component
in a fiberXv such that H1(E,OE) = 0 and E.E = −1 (intersection number computed
relative to the k(v)-finite field H0(E,OE), rather than relative to k(v)) then by some
non-trivial work E can be blown down preserving regularity (i.e., X ' Bly0(Y ) for
a regular fibered surface Y → V and closed point y0 ∈ Y with E as the exceptional
fiber; such (Y, y0) over V is uniquely determined by (X,E) if it exists). We call
such an E a “−1-curve”. The Castelnuovo criterion is that the minimal fibrations
over V are precisely those without a −1-curve in its fibers. (This all works with V
replaced by any connected Dedekind scheme.) Consequently, in finitely many steps
we always reach a minimal regular fibered surface over V starting with some regular
fibration having the specified generic fiber. But with this approach it is not at all
clear if the minimal regular fibration thereby obtained is uniquely determined by its
generic fiber, since the construction depends on an initial choice of regular fibration
X → V having the given generic fiber.

Before we address the uniqueness aspect, let’s mention a related notion of mini-
mality in the resolution process itself. For a fibered surface Y over a Dedekind base,
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1 MINIMAL MODELS OF SURFACES

consider a regular resolution Y ′ → Y. It is an immediate consequence of counting
the number of irreducible components in the (finitely many) positive-dimensional
fibers and systematic application of Castelnuovo’s criterion mentioned above (con-
tract a −1-curve that appears in a fiber over Y, and continue until none remain) that
there always exists a minimal such resolution relative to domination through proper
birational maps. But it is not at all obvious that there can’t be several minimal res-
olutions, pairwise non-isomorphic over Y. The problem of uniqueness for a minimal
resolution of Y is determining if a given minimal resolution may actually be domi-
nated by all resolutions of Y. Such uniqueness always holds, and the proof rests on
the Factorization Theorem that describes all proper birational maps between regular
surfaces as a composition of contractions of −1-curves (equivalently, of blow-ups at
closed points); references for uniqueness include Theorem 2.2.2 of my paper “J1(p)
has connected fibers” with Edixhoven and Stein and Theorem 9.3.32 of Qing Liu’s
book. The minimal regular resolution of Y is denoted Yreg.

Let’s now see why it is tempting to guess that Yreg is the output of the process
in Lipman’s theorem applied to Y, and why the reasoning can fail precisely due
to non-reducedness in fibers. Consider regular surfaces Y ′ equipped with a proper
birational map π : Y ′ → Y, so π uniquely factors through the normalization Ỹ via
some π̃ : Y ′ → Ỹ. Our problem is to determine if π̃ factors through the blowup of Ỹ
at the non-regular points. The map π̃ cannot be quasifinite over a non-regular point
ξ ∈ Ỹ, because if it were then by semi-continuity of fiber dimension and properness
(and Zariski’s Main Theorem) π̃ would be finite over a neighborhood of ξ, hence
an isomorphism near there by normality of Ỹ, a contradiction since Y ′ is regular.
Thus, consideration of Stein factorization implies that the topological fiber |π̃−1(ξ)|
is a connected union of 1-dimensional irreducible components, so by regularity of Y ′
that topological fiber with its reduced structure is Cartier. This suggests that the
universal property of Blξ(Ỹ)→ Ỹ may provide the desired factorization for π̃.

However, the scheme-theoretic fiber π̃−1(ξ) might be non-reduced and hence per-
haps not Cartier in Y ′, so there is no evident reason why π̃ must factor through
the blow-up of Ỹ at ξ. The the mapping property of blow-ups is very weak, so the
failure of the scheme π̃−1(ξ) to be Cartier in Y ′ doesn’t imply there cannot be such
a factorization. In fact, Exercise 3.27(a) in 8.3.4 of Qing Liu’s book asks the reader
to prove that such a factorization always exists (so Lipman’s resolution is always the
minimal one). Alas, an explicit counterexample to exactly that possibility is given in
Exercise 9.3.7 of the same book. In that latter Exercise, Y over a discrete valuation
ring is normal with one non-regular point and its blow-up Y1 at that point is normal
with one non-regular point. The special fiber of Y1 has an additional component
(with multiplicity 2) beyond the strict transform of the special fiber of Y. Upon
blowing up Y1 at its non-regular point and normalizing we get Y2 whose special
fiber has an additional component (a genus-1 curve with multiplicity 1) beyond the
strict transforms of the irreducible components in the special fiber of Y1, and Y2
is regular (i.e., it is the “Lipman resolution”). But the strict transform E in Y2 of
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the multiplicity-2 component from Y1 turns out to be a −1-curve! Hence, we can
contract Y2 at E to get a new regular resolution of Y, and that one has no −1-curves
in fibers over Y, so it is Yreg.

Remark 1.6. According to Remark 3.34 in §9.3 of Qing Liu’s book, Lipman’s reso-
lution for a normal fibered surface Y is minimal when the non-regular points of Y
are of a very mild type called rational singularities (but no reference is given for a
proof; it might be related to Theorem 9.4.15 of that book via Exercise 9.4.7, but I
do not know if rational singularities always fit into the setting of that Theorem).

In the context of fibered surfaces over V , just equipped with a given generic
fiber XK but no “base surface” Y with generic fiber XK over which everything
is done, the preceding notion of minimality for regular resolutions is not relevant.
But remarkably, if we just fix the generic fiber XK as above then in the sense of
“domination” there is a unique smallest such regular proper flat model:

Theorem 1.7 (Lichtenbaum-Shafarevich). Among all regular fibrations X → V
extending XK , there exists a unique minimal one (we need g(XK) > 0 here).

Proof. Reference: Qing Liu’s book, Theorem 9.3.8 (contraction), 9.3.21 (minimal).
Also see Theorem 3.1 in Chinburg’s article in Arithmetic Geometry (Faltings).

The moral is that there is a “best” proper regular model X for XK , and it is
characterized by the absence of −1-curves in its fibers over V . Note that there is
also a separate notion of “minimal surface” over k, which is a stronger notion than
relative minimality (with respect to a V -fibration). If X is a regular fibered surface
over V and it is minimal as an abstract surface over k then it is certainly minimal
over V , but generally the converse is false.

We shall write Xmin → V denote the minimal regular proper model of our fixed
initial curve XK over K with positive genus.

1.4 Properties and examples of the minimal regular proper model

Functoriality

It is a tautology (from the definition of “domination” among models for XK over
V ) that Xmin is functorial with respect to isomorphisms in XK . (This is why you
can’t have such a model in genus 0, essentially because AutR(P1

R) = PGL2(R) (
PGL2(K) = AutK(P1

K) for discrete valuation rings R with fraction field K.)

Example 1.8. The minimal regular proper model Xmin is not functorial with re-
spect to finite maps in the generic fiber. Consider the natural finite “forgetful” map
X1(p) → X0(p) for modular curves over Q with p ≥ 11 (so genera are positive),
and let X1(p) and X0(p) be their minimal regular proper models over Z(p). (We
do not claim that these have any moduli-theoretic significance.) The scheme X0(p)
happens to be the minimal regular resolution of the coarse moduli scheme over Z(p)
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Figure 4: The special fiber of X0(p) when p ≡ 1 mod 12.

(and in fact it is the output of Lipman’s process applied to that coarse scheme); if
p ≡ 1 mod 12 then its mod-p fiber consists of of two irreducible components cross-
ing at supersingular geometric points, as shown above. The significance of the case
p ≡ 1 mod 12 is that elliptic curves with extra geometric automorphisms are then not
supersingular (j = 1728 is governed by the class of p ∈ (Z/4Z)× = {±1} and j = 0
is governed by the class of p ∈ (Z/3Z)× = {±1}). In general, the geometry of the
irreducible components, depending on p mod 12, is illustrated in §1 of Chapter II of
Mazur’s “Eisenstein ideal” paper (with additional components related to j = 0, 1728
when supersingular in characteristic p).

In contrast, the minimal regular resolution over Z(p) for the coarse moduli scheme
X1(p) always has a “−1-curve” in its mod-p fiber (not in its fibers over the coarse
scheme), and as one successively contracts these there continue to arise yet more −1-
curves, until ultimately the special fiber consists of a single irreducible component!
That is, the minimal regular proper model X1(p) over Z(p) for X1(p)Q has irreducible
special fiber, so there cannot be a map X1(p)→ X0(p) extending the evident forgetful
map between their Q-fibers (it would have to be surjective by properness). Amus-
ingly, by using the valuative criterion to handle codimension-1 points (e.g., generic
points in the mod-p fiber) we know that there is such a map away from a non-empty
finite set of closed points on X1(p), but I do not know the points are at which that
map is not defined. The geometry of the mod-p fiber of the minimal regular reso-
lution over Z(p) of X1(p)/H for every subgroup H ⊂ (Z/pZ)×/〈−1〉 is worked out
in my paper “J1(p) has connected fibers” with Edixhoven and Stein, and the pos-
sibilities depend on both p mod 12 and #H mod 6 (sanity check: the case X0(p) is
#H = (p−1)/2, in which case #H mod 6 is determined by p mod 12); pictures with
intersection-theoretic data for general H are given in §5.2 of that paper.
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1 MINIMAL MODELS OF SURFACES

We conclude our general discussion of fibered surfaces by focusing on the case
g = 1 with K = Frac(R) for a discrete valuation ring R and X(K) 6= ∅, so X = E
is an elliptic curve over K. In this case there is a confusing abundance of notions of
“good integral model”. Let’s explain how they are related to each other.

Let E be the minimal regular proper model for E over R. By the valuative
criterion for properness, any rational point on the generic fiber extends to a section
to the fibration. For any regular fibered surface over a Dedekind base, a section
always passes through the relative smooth locus (exercise). (In particular, the special
fiber has smooth points). Thus, the maximal R-smooth open subscheme Esm has
non-empty special fiber (containing the extension of the identity section). In fact,
it is equal to the Néron model N(E) of E over R. On the other hand, we can also

Figure 5: A section passes through the smooth locus.

consider a minimal Weierstrass modelWmin ⊂ P2
R (see my notes on “Minimal models

of elliptic curves” for a discussion of how to think about the conceptual meaning of
Weierstrass models without equations, and proofs of everything that I am about to
say). It turns out that for any two Weierstrass models W and W ′ of E, there is an
inclusion

H0(W ′
sm
,Ω1

W ′sm/R) ⊂ H0(W sm,Ω1
W sm/R)

as R-lines inside H0(E,Ω1
E/K) if and only if ord(∆W ′) ≥ ord(∆W ). Informally, the

link between larger H0(W sm,Ω1
W sm/R) and smaller ord(∆) is due to the product

∆ω⊗12 ∈ H0(E,Ω1
E/K) being the same for all Weierstrass models of E over K, with

∆ and ω taken from a common such model.
Hence, the minimal Weierstass model Wmin has an intrinsic geometric meaning

unrelated to playing with equations: it is maximal with respect to the R-line of
global 1-forms over its R-smooth locus, viewed inside the K-line of global 1-forms
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2 THE ARTIN-TATE CONJECTURE

on E. Building on this viewpoint, one gets a conceptual proof of the uniqueness of
Wmin (without equation-manipulations) and a rather non-obvious geometric charac-
terization of minimality for a Weierstrass model: W is minimal if and only if it has
rational singularities.

In the proof of Lipman’s theorem one shows that for rational singularities on a
normal surface, the blow-up of a non-regular point is normal and has only rational
singularities. Thus, Lipman’s process in such cases only involves blow-ups (i.e., no
normalizations need to be computed). It follows that Lipman’s resolution of Wmin

is computed entirely via blow-ups. But in such cases Lipman’s resolution is also the
minimal resolution (Wmin)reg, according to Remark 1.6. This is great, due to:

Proposition 1.9. We have (Wmin)reg = E ⊃ Esm = N(E).

The upshot is that one can compute E (and hence N(E)) directly from Wmin

without needing to compute a normalization! That renders plausible the aim to
compute E directly from an arbitrary Weierstrass model W via blow-ups, without
normalization steps. Tate’s algorithm achieves this (assuming the residue field is
perfect when it has characteristic 2 or 3), using artful blow-ups along codimension-1
subschemes in some steps. (The algorithm is usually described in the language of
coordinate changes. But to justify the correctness of the information asserted to
emerge from the calculations with coordinate changes, one has to link them to the
geometry of integral models via blow-ups.)

2 The Artin-Tate Conjecture

2.1 The dictionary

Now let’s go back to BSD. Let X → V be a regular fibration with generic fiber XK ;
it could be taken to be the minimal one, or not. One can ask if we can rephrase
BSD in terms of the geometry of X (especially with the minimal model Xmin, or
any such X if one is more optimistic).

The goal is to recast BSD as a conjecture about X/k (with no reference to the
fibration structure over V !); then one could imagine fibering the same X over a given
V (such as V = P1

k) in different ways, getting wildly different generic fibers (perhaps
with different genera) and then hope to see that BSD for their respective Jacobians
are equivalent to each other.

Here are some informal correspondences, not meant to be literal “equalities”, and
to be elaborated upon later in the lecture. (See Ulmer’s article Curves and Jacobians
over function fields for an extensive discussion of how the different parts of the BSD
and Artin–Tate conjectures “correspond” in a precise manner, some aspects of which
will be addressed in upcoming lectures possibly under simplifying hypotheses on the
fibers Xv that are avoided in Ulmer’s article but permit a more direct link between
structures on both sides.)
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2 THE ARTIN-TATE CONJECTURE

BSD(J)↔ AT(X).

• In this recasting,
L(s, J/K)↔ ζX/k(q

−s)

(the link is clear at Euler factors away from bad fibers Xv).

• Next, we can interpret the order of vanishing:

ords=1 L(s, J/K)↔ multiplicity of q−1 as a pole of ζX/k .

• What about the height pairing?

The group J(K) = Pic0X/K(K) ⊂ Pic(X) with the height pairing “corresponds”
to the Néron-Severi group NS(X) = PicX/k(k)/Pic0X/k(k). Let’s see how this
notion NS(X) is related to the geometric Néron–Severi group NS(Xk) given by
the group of geometric points of the étale component group PicX/k/Pic0X/k.

Usually rational points of Picard schemes don’t mean anything, but the Brauer
group of a finite field is trivial, so PicX/k(k) = Pic(X). The group Pic0X/k(k) is
finite, and a quotient among rational points is generally not the set of rational
points of the quotient due to an obstruction in H1 of what we quotient by. But
Lang’s Theorem ensures H1(k,Pic0X/k) = 1, so NS(X) = (PicX/k /Pic0X/k)(k) is
the group of Galois-fixed points in NS(Xk). On NS(X) we have the intersection
pairing of divisors on the smooth projective surface X.

• Finally, the Tate-Shafarevich group corresponds to the Brauer group (to be
defined!):

X(J)↔ Br(X).

Once we formulate AT(X/k), one can ask if it is independent of choice of X for
its given function field over k. Any two regular projective surfaces with the same
function field are related through a finite sequence of blow-ups and blow-downs
at closed points, due to the Factorization Theorem that describes all dominating
morphisms between regular projective surfaces (as discussed in Chinburg’s article
on minimal models in Arithmetic Geometry in the case of fibered surfaces, the main
case of interest to us). Hence, the main task is to study the effect on AT(X/k) when
blowing up at closed points.

2.2 The Brauer Group

Definition 2.1. Let S be a scheme. Then we define the cohomological Brauer group
of S to be Br(S) := H2

ét(S,Gm).
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2 THE ARTIN-TATE CONJECTURE

Example 2.2. Let S = Spec F for F a field. If A is a central simple algebra of
rank n2, then A is classified by [A] ∈ H1(F,PGLn). Indeed, it is a theorem that
AFs

∼= Matn(Fs) whose automorphism group is PGLn(Fs) by the Skolem-Noether
Theorem.

From the exact sequence

1→ Gm → GLn → PGLn → 1

we get a boundary map H1(F,PGLn)
δ−→ H2(F,Gm). This is injective, and exhausts

H2(F,Gm) as n grows.
In the scheme setting, one has the notion of “Azumaya algebra” of rank n2, which

is (roughly speaking) a sheaf of twisted matrix algebras. There is also a notion of
“Brauer equivalence” generalizing the equivalence relation used when defining the
Brauer group of a field, and there is a map from the set of equivalence classes of
Azumaya algebras modulo Brauer equivalence into Br(S) via a relative version of
the connecting maps mentioned above

The Brauer group is very hard to get your hands on. For instance, the C̆ech
cohomology only injects in general: Ȟ2(S,Gm) ↪→ H2

ét(S,Gm).
One might hope to show that the natural map from the Brauer group of a rea-

sonably nice scheme X (at least a regular curve or surface, not necessarily proper)
injects into that of its function field and is characterized within that latter Brauer
group by geometric conditions (e.g., “unramifiedness” along divisors, etc.).
Remark 2.3. Grothendieck studies Brauer groups of curves and surfaces in “Group
de Brauer III” (building on his two previous papers I and II that studied Azumaya
algebras, their deformation theory, and motivations from topology). One of his main
results, elaborating on work of Artin that inspired the Artin–Tate conjecture, is that
for a regular proper fibration f : X → V with generic fiberXK , X(J) and Br(X) are
closed related provided that Xsm

v 6= ∅ for all v; this hypothesis ensures (by deep work
of Raynaud that is surveyed in Chapter 9 of “Néron Models”) that the Néron model
J of J coincides with the V -group scheme Pic

[0]
X/V of line bundles fiberwise of degree

0 and that J 0 = Pic0X/V is the V -group scheme of line bundles with degree 0 on each
irreducible component of each geometric fiber. These links between Picard schemes
and Néron models are relevant because X(J) = Im (H1(V,J 0) → H1(V,J )) and
the low-degree parts of the Leray spectral sequence

Hi(Vét,R
jf∗(Gm))⇒ Hi+j

ét (V,Gm)

involve Br(X) and R1f∗(Gm) = PicX/V ; Francois will discuss these relationships in
his lecture.

Conjecture 2.4 (Artin). Let Y be proper over Z. Then Br(Y ) is finite.

Brauer groups, although very hard to analyze, are in some ways more hands-on
than Tate-Shafarevich groups in view of the theorem of Gabber (and independently,
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2 THE ARTIN-TATE CONJECTURE

de Jong) that Brauer classes on many schemes (e.g., all schemes quasi-projective
over an affine scheme) always arise from Azumaya algebras. For example, the recent
spectacular progress on the Tate conjecture for K3 surfaces (which also proved the
Artin–Tate conjecture below for all such surfaces over finite fields away from char-
acteristic 2) relies crucially on studying the geometry of moduli stacks related to
Azumaya algebras and generalizations thereof.

Some computations of Brauer groups

Let S be connected and Dedekind with generic point η and function field F = k(η).
How do you get your hands on the Brauer group? You can use the “divisor exact
sequence” (for the étale topology)

1→ Gm → η∗(Gm,η)→
⊕
s∈S0

is∗(Z)→ 0.

(We don’t really need the Dedekind assumption; you could try this taking s to vary
through the points of codimension 1 in any connected regular scheme S. Regularity
ensures surjectivity on the right when checking locally at points of high codimension
because all height 1 primes in a regular local ring are principal.)

Now let’s consider the associated long exact sequence.

. . .→
⊕
s∈S0

H1(s,Z)→ Br(S)→ H2(S, η∗Gm)→
⊕
s∈S0

H2(s,Z)→ . . .

In the Dedekind case H1(s,Z) is Galois cohomology of Z, which vanishes because
continuous homomorphisms from the Galois group to Z are trivial. Beware that this
step already runs into subtleties if we try to consider a regular surface S and the
divisor associated to the codimension-1 point s is not regular: a “split” nodal plane
cubic has a nontrivial Z-torsor.

On the other hand, H2(s,Z) = H1(s,Q/Z) = Hom(Gal(k(s)sep/k(s)),Q/Z) by
the long exact sequence

0→ Z→ Q→ Q/Z→ 0

and calculations as in the theory of local fields identify this latter group with the
Brauer group Br(F̂s) of the completion at s provided that k(s) is perfect (e.g., finite).
This identification is interesting because also H2(S, η∗Gm) = H2(η,Gm) = Br(F )
due to a Leray spectral sequence degeneration in low degree: Rjη∗Gm = 1 for all
j = 1, 2 when the residue fields of S at its closed points are perfect.

Unraveling these identifications, if all residue fields at closed points of S are
perfect then we get an exact sequence

0→ Br(S)→ Br(F )→
⊕
s∈S0

Br(F̂s)

where all maps are the natural ones. Applying this to S = V we get:
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Figure 6: A non-trivial Z-torsor of a nodal curve.

Corollary 2.5. The Brauer group Br(V ) of a smooth proper curve V over a finite
field is trivial.

Proof. The fundamental short exact sequence of class field theory.

Remark 2.6. In Brauer III, Grothendieck studies the Leray spectral sequence

H i(V,Rjf∗Gm) =⇒ H i+j(X,Gm).

and deduced that if all Xsm
v 6= ∅, then the spectral sequence provides an injection

Br(X) ↪→ X(J) with finite cylic cokernel whose size is govered by the gcd among
K-degrees of closed points on XK (i.e., the image of degK : Pic(X)→ Z).

2.3 Statement of the Artin-Tate Conjecture

Let X be a smooth proper geometrically connected surface over k (#k = q). By the
Lefschetz trace formula,

ζX/k =
P1(q

−s)P3(q
−s)

(1− q−s)P2(q−s)(1− q2−s)

where Pi(T ) = det(1− φT | H i
ét(Xk,Q`)) and φ is the geometric Frobenius in Galk.

By the Riemann Hypothesis (proved by Deligne in the early 1970’s), Pi has roots
that are algebraic integers which are q-Weil numbers of weight i, i.e. absolute value
qi/2 under all complex embeddings. Thus the roots of P2 in C lie on the circle
centered at 0 with radius q−2/2 = q−1.
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2 THE ARTIN-TATE CONJECTURE

For the numerator, Poincaré duality implies that P3(q
−s) = P1(q

1−s). Also,
P1(q

−s) is related to H1(Xk,Q`(1)) = T`(PicX/k). This is relatively tangible, so P2

is the “mystery piece”.
Let ρ(X) = rank NS(X); by a general theorem of Lang and Néron the Néron–

Severi group of projective varieties over algebraically closed fields are always finitely
generated, so the subgroup NS(X) ⊂ NS(Xk) is finitely generated.

Let α(x) = h0(Ω2
X/k)−(h1(OX)−dim Pic0X/k). The difference h

1(OX)−dim Pic0X/k
is always non-negative, and vanishes if and only if the Picard scheme of X over k is
smooth. (Mumford’s book “Lectures on curves on an algebraic surface” thoroughly
analyzes the phenomenon of non-smoothness of the Picard scheme for smooth pro-
jective surfaces over algebraically closed fields of positive characteristic.)

Conjecture 2.7 (Artin-Tate). Br(X) is finite and q−1 is a root of P2 with multi-
plicity ρ(X), and

P2(q
−s) ∼s→1

(
# Br(X) · | det(Di ·Dj)|
qα(X)(#NS(X)tor)2

)
(1− q1−s)ρ(X)

where {Di} is a basis for NS(X)/NS(X)tor.

The geometry of X gives a lot of interesting structure to this conjecture, as we
will see in upcoming lectures.
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