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Let A be an abelian variety over a number field K. For any abelian group M , let Mdiv denote the
subgroup of divisible elements (i.e., Mdiv :=

⋂
n>0 nM) and let Mnd := M/Mdiv (the maximal quotient of

M with no nonzero divisible elements). We’re going to define a pairing

〈·, ·〉A : X(A)×X(A∨)→ Q/Z

such that X(A)div annhilates X(A∨) and vice-versa with the roles of A and A∨ swapped, and the induced
pairing X(A)nd ×X(A∨)nd → Q/Z will be perfect in the sense that the annihilator of each side of the
pairing vanishes in the other side. (It is known that for each prime `, the `-primary part of X(A)nd is finite.)
Moreover, for any symmetric isogeny ϕ : A→ A∨ (e.g. a polarization or the negative of such) the resulting
self-pairing 〈·, ·〉ϕ = 〈·, ϕ(·)〉A on X(A) will be skew-symmetric.

Tate introduced 〈·, ·〉A in his 1962 ICM talk as a generalization of Cassels’ version in the case that A is
an elliptic curve. In Theorem 3.2 of his ICM talk, Tate announced that for each prime ` the induced pairing
between `-primary components X(A)[`∞] and X(A∨)[`∞] (each of which is an extension of a finite abelian
`-group by a divisible group of finite corank) makes the divisible part of each side annihilate the other side,
and moreover that the resulting pairing between the finite groups X(A)nd[`∞] and X(A∨)nd[`∞] is perfect.
Going further, in Theorem 3.3 of his ICM talk Tate announced that for a principal polarization f : A ' A∨,
the self-pairing 〈·, ·〉f on X(A) is alternating provided that f = φL for some ample line bundle L on A.
(In §1 we will review the notion of polarization and its relation to the “Mumford construction” φL ; any
polarization of AKs will arise from the Mumford construction associated to a line bundle on AKs but this is
generally not true on A.)

Near the end of §1 of Tate’s 1966 Bourbaki talk on a geometric analogue of BSD he asserted (without
reference or proof) the alternating property for 〈·, ·〉f for any principal polarization f , dropping the hypothesis
involving a line bundle L on A. The omission of that hypothesis was likely a typo by Tate, and 30 years
of mistaken folklore followed until in 1998 it was shown definitively by Poonen and Stoll that dropping
that hypothesis is erroneous: they built an obstruction inside X(A) to alternation relative to a principal
polarization and they built explicit examples in which their obstruction doesn’t vanish. As a teaser, one
such an example is the genus-g hyperelliptic curve over Q given by y2 = −(x2g+2 + x+ 1) for even g.

Note that if A admits a principal polarization ϕ then non-degeneracy of the skew-symmetric 〈·, ·〉ϕ
between `-primary parts of X(A)nd implies that the `-part of X(A)nd has square order for odd ` (whereas
for ` = 2 it tells us nothing of the sort, so if X(A) is finite then its overall order is a square or twice a
square, depending on the parity of the multiplicity of 2 as a factor of the order). Alternation implies the
2-part has size 2e for some even e, so in such cases the order (if finite) would be a square. But Poonen and
Stoll show that alternation can fail, even when X(A) has square order (they give an involved example where
this holds).

1 Reminders: Picard schemes and polarizations
Before we talk about the pairing itself and its properties, we have to discuss some set-up related to abelian
varieties and their polarizations. Though much of what we say below works in greater generality (especially,
over a more general base), we’ll just work over a field for simplicity. In particular, the definition(s) we shall
use for the Cassels–Tate pairing will not involve integral structures such as Néron models (or torsors over
them), in contrast with what was discussed in Lecture 3.
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1.1 Picard Schemes
See Chapter 9 of the book “FGA Explained” for a good exposition of the material below. Notational note:
in these notes we’ll use Roman font to denote functors and boldface to denote representing schemes. For
example, HilbX/k denotes a Hilbert functor (classifying flat families of closed subschemes of a projective
k-scheme X) and HilbX/k is the representing Hilbert scheme.

Let X be a geometrically integral projective k-scheme; note that for any k-scheme T , the structure map
fT : XT → T satisfies OT ' (fT )∗(OXT

) and hence likewise O×T ' (fT )∗(O
×
XT

). In other words, letting
f : X → Spec(k) denote the structure map, we can say “f∗(Gm,X) = Gm universally”.

We want to parametrize families of line bundles on X via a moduli scheme. A naïve try would be to
represent the functor T 7→ Pic(XT ) for varying k-schemes T . But this will fail to be a sheaf for two reaons:
the image of Pic(T ) in Pic(XT ) is generally nontrivial but becomes trivial Zariski-locally on T (so the functor
T 7→ Pic(XT ) is not a Zarsiki sheaf), and line bundles on XT are not sufficiently rigid to expect a global
“universal line bundle” to exist that can be classified using morphisms on the base.

To fix the first of these problems it is tempting to Zariski-sheafify, or as an intermediate stage to consider
the functor T 7→ Pic(XT )/Pic(T ). (The map Pic(T ) → Pic(XT ) is injective because the natural map
L → (fT )∗f

∗
T (L ) for any line bundle L on T , as we may check Zariski-locally on T to reduce to the case

L = OT .) It is not obvious if this quotient construction should be expected to have any reasonable sheaf
properties, as is necessary for representability (any representable functor is an fpqc sheaf). Define the relative
Picard functor PicX/k to be the étale-sheafification of T 7→ Pic(XT ), so this is also the étale-sheafication of
T 7→ Pic(XT )/Pic(T ). This is the same as the higher direct image sheaf R1(f∗)(Gm,X) for the étale topology
(since the Zariski-cohomology group H1(XT ,O

×
XT

) is unaffected by passing to the étale topology, due to the
link to C̆ech cohomology in degree 1 and étale descent theory for line bundles).

Theorem 1.1 (Grothendieck). The functor PicX/k is represented by a locally of finite type k-group scheme
PicX/k that is a countable disjoint union of quasi-projective k-schemes. The identity component Pic0

X/k is
projective when X is smooth.

The representability of PicX/k is deduced from the existence of Hilbert schemes. The properness of
Pic0

X/k for smooth X is a simple application of the valuative criterion for properness (using that XR is
regular for a discrete valuation ring R, as it is R-smooth; the regularity ensures that irreducible closed
subschemes of pure codimension 1 are Cartier; i.e., have an invertible ideal sheaf). This properness generally
fails otherwise. For example, if X is a nodal plane cubic then Pic0

X/k is a 1-dimensional torus.

Example 1.2. Suppose X is a smooth curve with genus g. In this case J := Pic0
X/k is a proper k-group

scheme whose tangent space coincides with

T0(PicX/k) = ker(PicX/k(k[ε])→ PicX/k(k)) = H1(X,OX),

so dim J ≤ g with equality provided that J is smooth. The infinitesimal deformation theory of line bundles
on a proper k-scheme is governed by coherent H2’s, and those vanish on curves. Thus, by the infinitesimal
smoothness criterion, PicX/k is smooth and hence J is smooth.

One problem when working with the relative Picard functor PicX/k is that the sheafification involved in
its definition makes it rather unclear what “concrete meaning” can be ascribed to its value on a k-scheme
T . Namely, there is a natural map Pic(XT )/Pic(T ) → PicX/k(T ) and we will see shortly that it is always
injective but surjectivity is unclear. Bijectivity will turn out to hold when X(k) 6= ∅, but if X(k) is empty
then there will be an obstruction in Br(k) to a k-rational point of the Picard scheme PicX/k to come from
a line bundle on X. In terms of divisors, the issue is that one might have a divisor class on Xks that is
Gal(ks/k)-invariant as a divisor class but contains no divisor that arises from one on X (due to a 2-cocycle
in Z2(Gal(ks/k), k×s ) that may fail to be a coboundary). In particular, if X is a smooth projective curve
with no rational point (as will be of much interest below) then it is not evident what concrete meaning can
be given to elements of J(k) for the Jacobian J = Pic0

X/k.
To make this issue more explicit, note that (as for any k-scheme) PicX/k(k) = PicX/k(ks)

Gal(ks/k).
Moreover, since PicX/k is a sheafification for the étale topology we know that Pic(Xks) ' PicX/k(ks). Thus,
an element of PicX/k(k) is a line bundle L on Xks that is isomorphic to all of its Gal(ks/k)-twists. In
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contrast, to descend L to a line bundle on X we have to be able to choose these isomorphisms so that
they satisfy a cocycle condition expressing compatibility with the multiplication in the Galois group (hence
induce a Galois descent datum on L ).

BecauseX is geometrically integral and projective, the units onXks we’d use to adjust an initial “random”
choice of isomorphisms from L to its Galois twists all come from units in ks. The obstruction to adjusting
to get a 1-cocycle is a Galois 2-cocycle valued in k×s , and defines an element in Br(k) = H2(ks/k, k

×
s )

whose vanishing is necessary and sufficient for L to descend to X. Similarly, for a general k-scheme T the
low-degree part of the Leray spectral sequence

Hi(T,Rj(fT )∗(Gm,XT
))⇒ Hi+j(XT ,Gm,XT

)

and the equality Gm,T = (fT )∗(Gm,XT
) give an exact sequence:

0→ Pic(XT )/Pic(T )→ PicX/k(T )→ H2(T,Gm,T ) =: Br(T )

This “Brauer obstruction” is often nontrivial when k is a number field or a local field (except C), whereas if
k = ks or k is finite then the Brauer obstruction is trivial. Here’s a concrete example:

Example 1.3. Let X be the conic x2 + y2 + z2 = 0 in P2
R, so XC is isomorphic to P1

C. For a general ring
R a line bundle on PnR is given Zariski-locally on R by O(d) for some d, and the resulting fiberwise degree
map deg : PicPn

k/k
→ Zk is an isomorphism (as we can see by using the theorem on formal functions).

Especially, the degree function is invariant under complex conjugation, so the point O(1) ∈ PicX/R(C) is
an R-rational point of the Picard scheme. On the other hand, X has no degree-1 line bundles, as any such
would arises from an R-point due to Riemann–Roch for the genus-0 curve X yet X(R) is empty. The map
Pic(X) → PicX/R(R) = Z is the inclusion of 2Z into Z (the line bundle Ω1

X/R has degree −2). Thus, the
R-point arising from a degree-1 line bundle on XC must have nontrivial image in Br(R).

Now, if f : X → Spec(k) has a section e (i.e. a k-rational point) then for any k-scheme T and line
bundle L on XT the line bundle N := L ⊗ f∗T (e∗T (L ))−1 has the same image in Pic(XT )/Pic(T ), so
also the same image in PicX/k(T ), but it has an additional property: it admits a trivialization along e
(i.e., an isomorphism i : OT ' e∗T (N )). Such pairs (M , j) consisting of a line bundle M on XT and a
trivialization i of M along e are called rigidified line bundles and have a crucial advantage: for the evident
notion of isomorphism among such pairs there are no nontrivial automorphisms (a simple exercise, using
that (fT )∗(Gm,X) = Gm,T ). Consequently, in contrast with the set of isomorphism classes of line bundles,
the functor PicX/k,e of rigidified line bundles (with respect to e) is a Zariski sheaf and even an fpqc sheaf.

The above construction of (N , i) from L readily shows (exercise!) that the natural forgetful map

PicX/k,e(T )→ Pic(XT )/Pic(T )

is an isomorphism for every T . Thus, the right side is already an étale (and even fpqc) sheaf, so the forgetful
map PicX/k,e → PicX/k is an isomorphism of functors. Hence, in such cases we achieve the goal of giving
a concrete meaning to the elements of PicX/k(T ) (and in particular for any local k-scheme R we have
Pic(XR) = PicX/k(R), the case R = k being of much interest).

See Theorem 9.2.5 of “FGA Explained” for further discussion of this rigidification construction, which
is applicable in particular to the case when X = A is an abelian variety (in which case it is standard to
take e to be the identity section). In such cases A∨ := Pic0

A/k is not only proper (since A is smooth) and
connected but also smooth; this is the dual abelian variety. Going beyond the 1-dimensional case in Example
1.2, the smoothness of A∨ is remarkable in positive characteristic, as already for smooth projective surfaces
X the Picard scheme PicX/k can be non-smooth when char k > 0. Mumford’s book “Lectures on curves on
an algebraic surface” is largely about this phenomenon (which cannot occur in characteristic 0, by Cartier’s
theorem).

1.2 Polarizations
For this subsection, a good reference is Mumford’s “Abelian Varieties,” or notes and homework from Brian’s
course (see Tony’s webpage).
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For any line bundle L on an abelian variety A over a field k, define the map of k-schemes φL : A→ A∨

functorially via Mumford’s construction: x 7→ t∗xL ⊗L −1 on T -valued points for any k-scheme T . Here are
some properties of this construction:

(a) The map φL is a homomorphism (by the Theorem of the Square) and is symmetric with respect to
double duality.

(b) For the Poincaré bundle PA, (1, φL )∗(PA) ' L ⊗2 ⊗M with M ∈ Pic0
A/k(k) ⊂ Pic(A).

(c) If L is ample then φL is an isogeny with square degree.

(d) If k = k then every symmetric homomorphism A→ A∨ arises via the Mumford construction. (See §23
of Mumford’s book for a proof. This uses crucially the structure of simple finite commutative group
schemes over an algebraically closed field: Z/`Z for an arbitrary prime `, and also µp and αp when
char(k) = p > 0.)

If ` 6= char(k) and f : A → A∨ is a homomorphism then the Z`(1)-valued bilinear form ef,`(x, y) =
e`(x, T`(f)(y)) on T`(A) is skew-symmetric if and only if f is symmetric (due to symmetry properties of the
`-adic Weil pairing with respect to swapping the role of A and A∨ via double-duality). This underlies the
proof that φL is always symmetric.

It is a general (nontrivial) fact that ampleness or not of a line bundle on A depends only on its geometric
component in the Picard scheme (this is a special feature of abelian varieties, not true for a general geomet-
rically integral projective k-scheme), so property (b) above shows that ampleness of L is equivalent to that
of (1, φL )∗(PA). In view of property (d), we are thereby led to make the following definition over k that
does not explicitly mention the Mumford construction and is in the spirit of considerations with positive
definite quadratic forms over Q (when studied in the language of symmetric bilinear forms):

Definition 1.4. A homomorphism φ : A→ A∨ is called a polarization when it is symmetric with respect to
double duality and (1, φ)∗(PA) is ample on A. A polarization of degree 1 is called a principal polarization
(these are special symmetric isomorphisms A ' A∨).

Over k we see via property (d) above that the polarizations are precisely the maps φL for line bundles
L on Ak, so in general any polarization of A is an isogeny of square degree (as we may check over k). By
working a bit harder, we can improve a bit on k: any polarization in the form φL over ks (a very useful
improvement when k is not perfect).

The Mumford construction defines a map of k-group schemes

PicA/k → Homsym(A,A∨)

from the Picard scheme into the group scheme of symmetric homomorphisms (built into the Hom-scheme
of the underlying projective schemes); this Hom-scheme is étale since we may check via the vanishing of its
tangent space at the zero map via the rigidity of homomorphisms between abelian schemes. Consequently,
this group scheme homomorphism kills the identity component. In Mumford’s book it is shown that the
condition φL = 0 says exactly that L arises from the dual abelian variety (as may be checked over k), so
we get a map

NS(A) := PicA/k/Pic0
A/k → Homsym(A,A∨)

from the étale component group of PicA/k (called the Néron–Severi group of A) into the étale k-group of
symmetric homomorphisms. But this is bijective on k-points (injectivity being much simpler; surjectivity
is property (d) above that ultimately rests on Proposition 1.7 below) and hence is an isomorphism of étale
k-schemes. In particular, NS(A) corresponds to the “Galois lattice” of symmetric homomorphisms from Aks
to A∨ks .

Remark 1.5. It is a general result of Lang and Néron that the étale Néron–Severi group PicX/k/Pic0
X/k is

finitely generated on geometric points for any projective geometrically integral k-scheme X. This is called
the Theorem of the Base; the case of abelian varieties is very special since we can “interpret” the finite
generation via injection into a lattice of homomorphisms. Over C there is a proof for smooth X via the
exponential sequence to inject the Néron–Severi group into H2(X(C),Z(1)). The Theorem of the Base was
proved more generally by Grothendieck and Kleiman for any proper k-scheme; see Theorem 5.1 in Exposé
XIII of SGA6 (whose proof uses étale cohomology and resolution of singularities for projective surfaces).
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Consider the resulting exact sequence of smooth k-groups

0→ A∨ → PicA/k → NS(A)→ 0.

Polarizations of A are points φ ∈ NS(A)(k) = Homsym(A,A∨) that satisfy an additional “positivity” condition
(encoding ampleness of (1, φ)∗(PA)), and those which arise from a (necessarily!) ample line bundle are the
ones in the image of PicA/k(k) = Pic(A). Hence, the obstruction to φ arising from a line bundle on A is the
connecting map in the cohomology sequence

0→ A∨(k)→ Pic(A)→ Homsym(A,A∨)
δ→ H1(k,A∨)→ H1(k,PicA/k)→ H1(k,NS(A)). (1)

(Note that the second term really is Pic(A) because A(k) 6= ∅.) By Lang’s theorem it follows that for finite
fields k there is no obstruction: every φ arises from a line bundle over such k. Also, if k is separably closed
then there is certainly no obstruction. Since ks is exhausted by finite Galois extensions of k, we conclude:

Proposition 1.6. For any polarization φ on A there exists a finite Galois extension K/k such that the
polarization φK on AK has the form φL for some ample line bundle L on AK .

Now we can see the Galois-theoretic obstacle to realizing a general polarization as arising from a line
bundle: for a finite Galois extension K/k and (ample) line bundle L on AK , a Galois descent datum on φL

can define a polarization φ on A via Galois descent for homomorphisms, but such a descent datum is much
weaker than a Galois descent datum on L itself (due to the A∨(K)-translation ambiguity in L when only
φL is given).

Remarkably, the obstruction class δ(φ) ∈ H1(k,A∨) for a symmetric homomorphism φ to arise from a line
bundle on A is always 2-torsion. To explain this, we recall that symmetry of a homomorphism f : A→ A∨

is equivalent to skew-symmetry of the associated self-pairing ef,` = e`(·, T`(f)(·)) on T`(A) for a prime
` 6= char(k). Hence, the 2-torsion property for the obstruction class is immediate from the following result
(Theorem 2 in §20 of Mumford’s book), as we will discuss at the start of §3.1:

Proposition 1.7. If a homomorphism f : A→ A∨ is skew-symmetric with respect to the `-adic Weil pairing
then 2f = φLf

for Lf := (1, f)∗(PA).

This result is analogous to an elementary fact in linear algebra: if q : V → F is a quadratic form on
a vector space V over a field F and Bq : V × V → F is the associated symmetric bilinear form (v, v′) 7→
q(v+v′)−q(v)−q(v′) then for the associated linear map Lq : V → V ∗ defined by v 7→ Bq(v, ·) = Bq(·, v) the
composition of the evaluation map V × V ∗ → F with (id, Lq) : V → V × V ∗ is v 7→ Bq(v, v) = 2q(v). Since
Mumford’s book is written over an algebraically closed field, we note that since Proposition 1.7 concerns an
equality of maps given over k it is sufficient to check the equality after scalar extension to k.

Remark 1.8. Though we speak of “polarizations” throughout this discussion. most of what we do will
not use the ampleness property of a polarization; any symmetric isogeny φ (for example, one for which
(1, φ)∗(PA) is anti-ample; i.e., the additive opposite of a polarization) would do, or sometimes even just a
symmetric homomorphism.

Also, the way we’ve explained the relationship between symmetric isogenies and the Mumford construc-
tion is backwards: Proposition 1.7 is proved in §20 of Mumford’s book and is used in §23 along with a study
of possibility for the structure of the finite commutative group scheme ker f over an algebraically closed field
to remove the factor 2 over such fields (i.e., to show that Lf is the square of another line bundle N , so then
f = φN ).

The last topic we discuss in our background review is how to get a canonical principal polarization of the
Jacobian J of a smooth proper and geometrically connected curve X of genus g > 0 over k. This will rest
on an algebraic incarnation of a map defined by Abel for compact Riemann surfaces using integration. The
starting point is the observation that we have a natural map

j : X → Pic1
X/k

into the “degree 1” component of the Picard scheme via x 7→ O(x) (associating to any x ∈ X(T ) the inverse
of the invertible ideal sheaf of the section to XT → T defined by the graph of x, for any k-scheme T ). By
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the Riemann–Roch Theorem this is injective on geometric points (using that g > 0), and a mild refinement
(exercise!) gives injectivity on artinian points, so j is a closed immersion.

In general X(k) may be non-empty, but since X is smooth there is a finite Galois extension K/k such
that X(K) is non-empty. For such K/k and x0 ∈ X(K) we get a pointed map

ix0 : XK → JK = Pic0
XK/K

defined functorially by x 7→ O((x0)T ) ⊗ O(x)−1 =: O(x0 − x) for any K-scheme T . If we replace x0 with
x′0 ∈ X(K) then the map changes via translation against a point in J(K) (namely, ix′

0
= ξ + ix0

for
ξ = O(x′0 − x0)). But such translation induces the identity on J∨ since (on geometric points) the dual
abelian variety consists of “translation-invariant line bundles”. Hence, the induced map Pic0(ix0

) : J∨K →
Pic0

XK/K = JK is independent of the choice of x0! However, it is clear (why?) that if σ ∈ Gal(K/k) then
(σ−1)∗(ix0) = iσ(x0), so

(σ−1)∗(Pic0(ix0
)) = Pic0(iσ(x0)) = Pic0(ix0

);

Galois descent then implies that the K-homomorphism Pic0(ix0) descends to a canonical k-homomorphism
J∨ → J independent of all choices.

In the theory of Jacobian varieties it is shown that this final homomorphism is an isomorphism whose
inverse φJ : J ' J∨ is a polarization. Explicitly, for K/k as above for which there exists x0 ∈ X(K),
(φJ)K = φL (Θx0

) where Θx0
⊂ J is the so-called “theta divisor” that is the image of Xg−1

K → JK defined
by (x1, . . . , xg−1) 7→

∑g
i=1(xi − x0), and L (Θx0

) is ample. (Beware that if we had used x 7→ O(x − x0)
in the definition of ix0

, which is to say we negated the definition of ix0
, then the effect on φJ would have

been to introduce an overall negation, thereby getting the negative of a polarization. This is not just a
matter of conventions, but is a real difference!) More elegantly, the theta divisor canonically lies in Picg−1

X/k

as the image of Xg−1 without any need for a base point over k, and when Picg−1
X/k contains a K-point (e.g.,

O(x0)⊗(g−1) for x0 ∈ X(K)) then translating by that brings the theta divisor into Pic0
X/k as a well-defined

divisor class.
In particular, if X(k) is empty then there is no evident reason why φJ should arises from a line bundle on

J . Only in the latter case will it be generally true that the self-pairing on X(J) arising from the Cassels–Tate
pairing via φJ is alternating.

Remark 1.9. Here is a more geometric way to see that the above construction of φJ is independent of x0.
For any k-scheme S and x0 ∈ X(S), we get a map XS → JS defined on points valued in an S-scheme T by
x 7→ O((x0)T − x). Applying Pic0 then gives a map of k-schemes

X → Hom(J∨, J)

where the target is the k-scheme of group homomorphisms (rather than general scheme morphisms). This
Hom-scheme over k is étale by rigidity for abelian schemes yet X is geometrically connected over k, so this
map must factor through a single k-point of the target. This proves the independence of x0 and that it yields
a (canonical) homomorphism J∨ → J over k.

Remark 1.10. There is yet another geometric method to present the principal polarization, as follows. We
built a canonical map X → Pic1

X/k =: P where P is a J-torsor. Applying Pic0 then gives a canonical map
Pic0

P/k → J . This latter map is what is shown to be an isomorphism whose inverse is a polarization via
considerations over k, but at a basic level how can we canonically identify Pic0

P/k with J∨?
Rather generally, for any abelian variety A and A-torsor P we claim that canonically A∨ ' Pic0

P/k. First
observe that the group scheme P ′ := Pic0

P/k is an abelian variety, as it suffices to check this over k (where
the A-torsor P becomes trivial, so we can appeal to the theory of the dual abelian variety). For any k-scheme
T and ξ ∈ P (T ) we get an isomorphism of T -schemes fξ : AT ' PT defined functorially by a 7→ a.ξ (on
points valued in any T -scheme), and hence an isomorphism Pic0(fξ) : P ′T → A∨T between abelian schemes
over T . This construction is compatible with base change on T and so defines a map of k-schemes

P → Isom(P ′, A∨).
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But the target is étale and the source is geometrically connected over k, so it factors through a single k-point
of the target; this is a distinguished k-isomorphism f : P ′ ' A∨.

For any K/k such that P ′(K) contains a point ξ we see that the canonical fK is exactly Pic0(fξ). The
independence of ξ is explained more concretely by the fact that geometric points of A∨ are translation-
invariant line bundles, and this concrete description shows (check!) that f is an isomorphism of A∨-torsors.

2 Definitions and Formal Properties of the Cassels–Tate Pairing
For an abelian variety A over a global field k we’d like to define a bilinear pairing (the Cassels–Tate pairing)

〈 , 〉 : X(A)×X(A∨)→ Q/Z

with the following properties:

• The kernels on left and right are the respective maximal divisible subgroups (especially, if #X < ∞
then 〈·, ·〉 is non-degenerate).

• If we pull back 〈·, ·〉 to a self-pairing on X(A) via a polarization (or any symmetric homomorphism)
then the result is skew-symmetric (not necessarily alternating!).

• Functoriality holds with respect to any k-homomorphism f : A → B and its dual (as described and
used in Lecture 6): 〈f(a), b〉 = 〈a, f∨(b)〉.

There are maybe a half-dozen ways to define this pairing. Each of them has its own appeal and purpose,
and to obtain all desired properties one needs to prove equality among (some of) the various definitions.

Remark 2.1. One can find a “fancy” definition of the pairing in Chapter II, Section 5 of Milne’s book
“Arithmetic Duality Theorems” (ADT). As Milne notes, we should view that as an étale cohomology version
of the definition described in Tate’s 1962 ICM talk, which is in turn analogous to Tate’s global duality result
(loc cit. or Theorem 4.10 in Chapter I of ADT) on finite discrete Galois modules. In particular, the ICM
definition is essentially the “Weil pairing” definition of Poonen and Stoll, namely the one used in the proof
of Proposition 6.9 in ADT. We don’t give a proof here (yet?) of these compatibilities.

Poonen and Stoll use four definitions: the “homogeneous space” definition, the “Weil pairing” definition,
the “Albanese–Picard” definition, and the “Albanese–Albanese” definition. Both of the latter two are quite
painful, involving pushing zero-cycles around and evaluating rational functions at them, so we don’t give
them here. Poonen and Stoll use the Albanese–Picard definition crucially to compute the value of the pairing
in the case that A is the Jacobian of a curve X. We’ll black-box some of that computation, referring to
Poonen–Stoll for full details. The Appendix of Poonen–Stoll proves that these four definitions coincide.

The Weil pairing definition is slightly less complicated, but we won’t give it either.1 An advantage of the
Weil pairing definition is that the Cassels–Tate pairing defined in this way inherits most of the basic desired
properties (bilinearity, anti-symmetry with respect to double-duality, and functoriality) directly from the
known analogues for the Weil pairing. The non-degeneracy based on this definition is a bit more complicated
to prove (see Chapter II, Section 6 of ADT, which uses Tate’s 9-term exact sequence from Lecture 4).

Soon we’ll give the homogeneous space definition, but first we want to see that the obstruction to alterna-
tion of a skew-symmetric pairing on X(A)nd is a formal consequence of the desired properties when X(A)nd

is finite. The real miracle then will be that Poonen and Stoll succeed in describing such an obstruction
directly without assuming finiteness of X(A)nd, and they use their description of it to perform calculations.

Consider quite generally a Q/Z-valued non-degenerate skew-symmetric pairing 〈·, ·〉 on a finite abelian
group G. The map a 7→ 〈a, a〉 is easily checked to be a homomorphism via the skew-symmetry. Hence, by
perfectness, there exists a unique c ∈ G such that this homomorphism has the form a 7→ 〈a, c〉. Also due to
perfectness, this is the zero homomorphism (i.e. 〈·, ·〉 is alternating) if and only if c = 0.

One can use the structure theorem of finite abelian groups and work separately on each primary factor to
show that if 〈·, ·〉 is alternating then #G is a square. On odd-primary parts skew-symmetry and alternation

1Perhaps it will be given in a later version of these notes.
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are the same thing, so in general #G is either a square or twice a square. A slightly more involved argument
(see Theorem 8 in Poonen–Stoll) using just elementary algebra shows that 〈c, c〉 = 0 if and only if #G is
actually a square. The argument shows that if c 6= 0 but 〈c, c〉 = 0 then we can find square-sized subgroup
V of G containing c such that 〈·, ·〉 is alternating on V ⊥. The phenomenon that c 6= 0 but 〈c, c〉 = 0 does
sometimes happen for the Cassels–Tate self-pairing 〈·, ·〉λ on X(A) where c is the Poonen–Stoll obstruction
cλ to alternation for a principally polarized (A, λ).

3 Homogeneous Space Definition and Counterexamples
At last, here is the homogeneous space definition of 〈·, ·〉A, which is the most palatable among the various
definitions. Choose a ∈X(A) and a′ ∈X(A∨). Let P be an A-torsor representing a, so P has a rational
point over every completion kv. By Remark 1.10, we have canonically Pic0

P/k ' A. This does not identify
A(k) with a subgroup of Pic(P ) since we have no concrete description of what points in Pic0

P/k(k) mean!
Nonetheless,

a′ ∈X(Pic0
P/k) ⊂ H1(k,Pic0

P/k).

In general PicP/k(k) receives a homomorphism from Pic(P ) but we cannot say much more.
Let j : η = Spec(k(P )) ↪→ P be the inclusion of the generic point, so there is a short exact sequence of

étale sheaves on P
1→ Gm,P → j∗(Gm,P )→ Div → 0

where the cokernel term is the sheaf of Weil divisors (surjectivity expressing that they are locally principal,
even for the Zariski topology, as P is regular!); the value of Div on an étale P -scheme U is the group of
principal Weil divisors on U . Applying higher direct images relative to f : P → Spec(k) for the étale topology
gives an exact sequence of étale sheaves on k:

1→ Gm,k → (f ◦ j)∗(Gm,η)→ f∗(Div)→ R1f∗(Gm,P ) = PicP/k. (2)

We now make this more explicit for the corresponding exact sequence of ks-points as discrete Gal(ks/k)-
modules. Note that the natural map Pic(Pks) → PicP/k(ks) is an isomorphism since P (ks) 6= ∅ (as P
inherits smoothness from A), and f∗(Div) corresponds to the group Div(Pks) of Weil divisors on Pks . But
every line bundle on Pks does arise from a global Weil divisor on Pks (as for any regular scheme), so (2)
is actually surjective at the end. In other words, we recover the classical 4-term exact sequence of discrete
Gal(ks/k)-modules

1→ k×s → ks(P )×
div→ Div(Pks)→ Pic(Pks)→ 1.

Inside Pic(Pks) it makes sense to define

Pic0(Pks) := Pic0
P/k(ks).

(This has no “degree 0” interpretation when dimP > 1; it is defined via the topology of the Picard scheme.)
Inside the group Div(Pks) of Weil divisors on Pks , we define Div0(Pks) to be those divisors whose associated
line bundle lies in Pic0(Pks). Thus, replacing Pic(Pks) with Pic0(Pks) and replacing Div(Pks) with its
subgroup Div0(Pks) gives a 4-term exact sequence

1→ k×s → ks(P )×
div→ Div0(Pks)→ Pic0(Pks)→ 1

that we chop into two short exact sequences of discrete Gal(ks/k)-modules

0→ k×s → ks(P )× → ks(P )×/k×s → 0, 0→ ks(P )×/k×s → Div0(Pks)→ Pic0(Pks)→ 0.

This provides a connecting map

δ : H1(k,Pic0
P/k)→ H2(k, ks(P )×/k×s )

and an exact sequence
H2(k, ks(P )×)→ H2(k, ks(P )×/k×s )

δ′→ H3(k,Gm).
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Up to here there has been no number theory. Now class field theory enters: the cohomological approach
to global class field theory shows that H3(k,Gm) = 1 for the global field k, so δ(a′) lifts to an element
f ′ ∈ H2(k, ks(P )×) well-defined up to the image of H2(k,Gm) = Br(k). The Galois groups Gal(ks/k) and
Gal(ks(P )/k(P )) are naturally identified, and in this manner (using Hilbert 90) H2(k, ks(P )×) is identified
with the subgroup of Br(k(P )) consisting of classes that split over ks(P ). We now use Grothendieck’s work on
Brauer groups of schemes to analyze when the natural map Br(k)→ H2(k, ks(P )×) ⊂ Br(k(P )) is injective.

Grothendieck proved (see Corollary 2.6 in Chapter IV of Milne’s book on étale cohomology) that for any
regular connected scheme Z with generic point ηZ , the natural map of étale cohomology groups

Br(Z) := H2(Z,Gm)→ H2(ηZ ,Gm) = Br(κ(ηZ))

is injective. Applying this with Z = P and using functoriality of cohomology relative to the factorization

η → P → Spec(k)

shows that injectivity of Br(k) → Br(k(P )) is equivalent to that of Br(k) → Br(P ). If there were a k-point
of P , which is to say a section to P → Spec(k), then the latter map of Brauer groups would obviously
be injective. Of course, generally P (k) is empty (after all, the whole point of the present discussion is to
grapple with the possibility that a′ 6= 0), but by hypothesis P (kv) is non-empty for all v. Hence, by the same
considerations applied over kv rather than over k we conclude that the local analogue Br(kv) → Br(kv(P ))
is injective for all v.

To see why the “local injectivity” is interesting, note that the local restrictions a′v vanish for all v (as
a′ ∈X(A∨)). Hence, by the functoriality of our purely algebraic considerations relative to extension of the
ground field, the local restriction f ′v ∈ H2(kv, kv,s(P )×) ⊂ Br(kv(P )) maps to zero in H2(kv, kv,s(P )×/k×v,s)
for all v. It follows that f ′v comes from some cv ∈ Br(kv) for each v, and such cv is unique for each v.
Consequently, we get a collection

(cv)v ∈
∏
v

Br(kv)

that is actually well-defined up to precisely the image of Br(k) (the ambiguity in the global class f ′). We
need (cv)v to lie inside the direct sum rather than just the direct product, so now we prove:

Lemma 3.1. Any element ξ ∈ H2(k, ks(P )×) ⊂ Br(k(P )) has trivial restriction ξv ∈ Br(kv(P )) for all but
finitely many v. In particular, for all but finitely many v the local restriction f ′v ∈ Br(kv(P )) vanishes and
so cv = 0.

Proof. 2

Local class field theory provides natural isomorphisms invv : Br(kv) ' Q/Z for all non-archimedean v
and a unique obvious inclusion for archimedean v with the property that the resulting map

inv :
⊕
v

Br(kv)→ Q/Z

defined by
∑
v invv kills Br(k). Hence, the Br(k)-ambiguity in the definition of (cv) is wiped out by applying

inv, so it is well-posed to define
〈a, a′〉A =

∑
v

inv(cv) ∈ Q/Z.

That is the “homogenous space” definition of the Cassels–Tate pairing.
As with most definitions of the pairing, this definition is rather asymmetric in how it treats A and A∨,

so the anti-symmetry of the pairing relative to swapping the roles of A and A∨ and using double duality
isn’t obvious. The dependence on a via the torsor P relates additivity in a to “addition” of torsors, so with
some care one can verify additivity in a. Additivity in a′ is immediate, so overall we see that bilinearity
holds. Functoriality in A is a bit tricky, but can be shown just via careful work with the definition. The
behavior on divisible elements and non-degeneracy of the resulting pairing between X(A)nd and X(A∨)nd

are completely opaque via this definition.
2Needs to be justified. Does not appear to be addressed in ADT or Poonen–Stoll.
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3.1 Explicit Description of c
Assuming now the properties of the Cassels–Tate pairing and agreement among multiple definitions, our
goal is to reduce the study of the alternation of the pairing and the size of X(A)nd (if finite!) for principally
polarized A to the study of a single element of X(A) (depending on the principal polarization), which in
turn can be computed explicitly in some cases. In particular, we want to find the c that, thanks to those
properties, we know must exist if X(A)nd is finite (and A admits a principal polarization).

The starting point is the cohomology sequence (1). For any polarization (or merely symmetric homo-
morphism) λ : A→ A∨, define cλ to be the image of λ under the connecting homomorphism

δ : Homsym(A,A∨) = NS(A)(k)→ H1(k,A∨).

By exactness, cλ = 0 if and only if λ has the form φL for some line bundle L on A. By Proposition
1.7, 2λ does arise via the Mumford construction. Thus, 2cλ = c2λ = 0. Up to here, the construction of
cλ ∈ H1(k,A∨)[2] is pure algebraic geometry, valid over any field. Note that the formation of cλ is compatible
with extension of the ground field. Number theory enters in the following result:

Lemma 3.2. If k is a (possibly archimedean) local field then cλ = 0. In particular, if k is a global field then
cλ ∈X(A∨).

Proof. The class cλ ∈ H1(k,A∨) maps to zero in H1(k,PicA/k) due to how it was constructed, Thus, by the
commutativity of the diagram of long exact ohomology sequences arising from the commutative diagram of
short exact sequences

0 // ks(A)×/k×s // Div0(Aks) //

��

A∨(ks)

��

// 0

0 // ks(A)×/k×s // Div(Aks) // Pic(Aks) // 0

it follows that cλ is killed by the connecting map H1(k,A∨) → H2(k, ks(A)×/k×s ). Hence, suffices to show
that this connecting map is injective, or equivalently (by long exactness for the cohomology sequence arising
from the top row) that the natural map H1(k,Div0(Aks))→ H1(k,A∨) vanishes.3

To go further we want to compute cλ using homogeneous spaces. The argument is typical of those in
Poonen–Stoll in that it involves pushing around divisors and cocycles, so we give this proof and omit the
others. Before we state the result, we need to extend the Mumford construction to the setting of line bundles
on A-torsors. That is, for a line bundle L on an A-torsor P , we explain how to make sense of φL as a
symmetric homomorphism A→ A∨.

Note that the Mumford construction a 7→ t∗a(L ) ⊗L −1 gives a meaningful scheme map A → PicP/k
since the formula only involves A throught its action on P , and this map carries a = 0 to the trivial line
bundle, so for topological reasons it carries A into Pic0

P/k respecting identity sections. Thus, this is a map of
abelian varieties A→ Pic0

P/k over k. But the target is canonically identified with A∨ as we saw in Remark
1.10! This map φL is symmetric because we can check it over k (where P becomes a trivial torsor upon
choosing a base point in P (k), in terms of which this construction becomes the usual Mumford construction
that is always a symmetric homomorphism).

Proposition 3.3. Let λ : A → A∨ be a symmetric homomorphism and P an A-torsor such that λ = φL

for a line bundle L ∈ Pic(P ). Then cλ is the image of [P ] under H1(λ) : H1(k,A)→ H1(k,A∨).

We shall express the proof in the language of line bundles and the Picard group Pic(Aks) of isomorphism
classes of line bundles rather than the more explicit language of divisors and the group Div(Aks)/ks(A)× of
divisor classes (as used by Poonen–Stoll). Much as the definition of cλ as an element of H1(k,A∨) (without
reference to X(A∨)) involved no number theory and made sense over any field, the statement of Proposition
3.3 also makes sense over any field and the proof will work in that generality (i.e., there is no number theory
in the proof, just basic algebraic geometry).

3Needs to be finished, in a later revision.

10



Proof. Since P is an A-torsor, for any two points z1, z2 ∈ P (ks) the “difference” z1− z2 ∈ A(ks) makes sense
as the unique a ∈ A(ks) such that a carries z2 to z1. In the same manner, if N is a line bundle on P and
z ∈ P (ks) then we can make sense of the line bundle Nz = f∗z (Nks) on Aks where fz : Aks ' Pks is the
torsor isomorphism via the base point z. For any a ∈ A(ks) we have fa+z = fz ◦ ta, so Na+z ' t∗a(Nz). For
the calculation we are about to carry out, the significance of N arising on P rather than just on Pks is that
(σ−1)∗(Nz) = Nσ(z) for σ ∈ Gal(ks/k).

[As a sanity check, the reason for σ−1 appearing on the left side is forced by both functoriality and
geometric reasons: (i) it cancels out the contravariance of pullback and so corresponds to making a left
action of Gal(ks/k) on Pic(Aks) in accordance with the habitual convention in the theory of modules for a
group, or equivalently it is the pushforward σ∗ along the automorphism action of σ on the scheme Aks , (ii)
it corresponds to making Div(Aks) � Pic(Aks) Galois-equivariant since σ∗ applied to the line bundle for a
divisor is the line bundle for the σ-preimage of that divisor and σ-preimage is the same as image under σ−1.]

Now comes the cocycle calculation. Choose z ∈ P (ks). Following the conventions as in §5.3 of Chapter
I of Serre’s book on Galois cohomology (look at the proof of Proposition 33), the class [P ] ∈ H1(k,A) is
the class of the cocycle σ 7→ zσ − z. (Warning: this may look like it’s a 1-coboundary for A(ks) but that is
erroneous because z and zσ are not points in A(ks), whereas “zσ − z” is.) The consistency of φL and the
Mumford construction over ks upon trivializing Pks via the base point z identifies λks with φLz

. Thus, cλ
is represented by the 1-cocycle

σ 7→ δ(Lz)(σ) = (σ−1)∗(Lz)⊗L −1
z ' Lσ(z) ⊗L −1

z ' t∗σ(z)−z(Lz)⊗L −1
z

valued in A∨(ks). But this is φLz (zσ− z) = λks(zσ− z), so we have the class of H1(λ)([P ]) ∈ H1(k,A∨).

Corollary 3.4. If A = J is the Jacobian of a curve X with genus g > 0 and canonical principal polarization
λ then cλ = H1(λ)([Picg−1

X/k]). In particular, H1(λ)([Picg−1
X/k]) ∈X(J).

The statement and proof of the formula for cλ will work over any field; only the membership in X(J)
has arithmetic content.

Proof. The theta divisor exists over k as a canonical divisor D on the J-torsor P = Picg−1
X/k, and if x0 ∈ X(ks)

then for z = O(x0)⊗(g−1) ∈ P (ks) we see that the isomorphism fz : Jks ' Pks via the base point z carries D
back to the classical theta divisor Θx0

⊂ Aks associated to x0. The definition of λ in terms of Θx0
thereby

shows that λ coincides with the homomorphism φL (D) is associated to the line bundle L (D) arising from
the divisor D on P . Proposition 3.3 may now be applied to obtain the formula for cλ, and the assertion
concerning X(J) is a consequence of Lemma 3.2.

Using similar argumentation (i.e., cocycle manipulation) and the homogeneous space definition, one
proves the following result (Theorem 5 in Poonen–Stoll):

Theorem 3.5. For every a ∈X(A) and a symmetric k-homomorphism λ : A→ A∨,

〈a, λa+ cλ〉A = 〈a, λa− cλ〉A = 0.

Hence, cλ as we’ve constructed it satisfies 〈a, λa〉A = 〈a, cλ〉A. For λ of degree 1 it follows that the
class c = λ−1cλ ∈X(A) (which depends on λ) makes sense and its image in X(A)nd is the obstruction to
alternation of the self-pairing on X(A)nd induced by the Cassels–Tate construction when X(A)nd is finite.

3.2 Counterexamples to alternation
In this subsection, we assume A = J = Pic0

X/k for a genus g curve X, and we fix λ to be the canonical
principal polarization for turning the Cassels–Tate pairing into a skew-symmetric form

〈·, ·〉X : X(J)×X(J)→ Q/Z.

Using Corollary 3.4, we know that the class [Picg−1
X/k] ∈ H1(k, J) lies in X(J) and is the obstruction to the

alternating property for 〈·, ·〉X ; likewise, the pairing of this class against itself is the obstruction to #X(J)nd

being a square (when finite).
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By computing using the Albanese–Picard definition, Poonen and Stoll show that for any n ∈ Z such that
[PicnX/k] ∈X(J) (as always happens for n = g − 1),

〈[PicnX/k], [PicnX/k]〉X =
N

2
mod Z ∈ Q/Z (3)

where N is the number of places of k for which the J-torsor PicnX/k does not have a local point.

Remark 3.6. To see that N is finite, it suffices to show that Pic1
X/k(kv) is non-empty for all but finitely

many v, or even better that X(kv) is non-empty for all but finitely many v. Consider any non-archimedean
place v of k for which Xkv admits a smooth proper model Xv over Okv . By the Riemann Hypothesis for
curves,

|Xv(κ(v))− qv − 1| ≤ 2gq1/2
v

where qv is the size of the residue field at v. Hence, for qv ≥ 4g2 (which rules out only finitely many v),
it follows that Xv(κ(v)) must be non-empty. Any such κ(v)-point lifts to an Okv -point of Xv, due to the
Zariski-local structure theorem for smooth and étale morphisms [EGA, IV4, 17.12.2(d), 18.4.6(ii)] (usually
incorrectly called “Hensel’s Lemma”). Passing to the generic fiber gives a point in X(kv) for such v.

Combining Corollary 3.4 with (3) for n = g−1, it follows that #X(J)nd is a square (assuming it is finite)
if and only if the number N of places v for which Xkv has no Weil divisor of degree g − 1 is even. Likewise,
〈·, ·〉X is alternating if and only if X has a divisor of degree g − 1 (i.e., the J-torsor Picg−1

X/k is trivial).
As applications of these conclusions, Poonen and Stoll do the following:

(i) They give some density computations to show that a positive proportion of Jacobians (of a specific
type of hyperelliptic curve) have X with non-square size if finite.

(ii) They build a genus-2 curve whose Jacobian has non-alternating Cassels–Tate pairing but whose Tate–
Shafarevich group has provably finite size that is a square!

We finish by discussing the family in (i).
For even g > 0 and any t ∈ Q, let Xt be the genus-g hyperelliptic curve over Q given by

y2 = −(x2g+2 + x+ t). (4)

(Note that Xt is not the Zariski closure in P2 of this smooth affine plane curve; such a closure is not smooth!)
Let Jt = Pic0

Xt/Q be its Jacobian. Using computations resting on Hensel’s Lemma, for every prime p one
finds that (Xt)Qp has a divisor of Qp-degree g − 1. The map x : Xt → P1

Q has degree 2, so its fiber over
any Q-point is a Q-point in Pic2

Xt/Q. Thus, whether or not the Jt-torsor PicnXt/Q has a point over a given
extension of Q (such as a completion of Q) depends only on the parity of n. In particular, since g − 1 is
odd, the existence of a divisor on (Xt)Qp

with Qp-degree g− 1 is equivalent to (Xt)Qp
admitting a (possibly

non-effective!) divisor of Qp-degree equal to 1.
We now show that Picg−1

Xt/Q
(R) is empty for suitable t, in which case the Jt-torsor Picg−1

Xt/Q
fails to have

a local point at exactly one place of Q (namely, the archimedean place). The key point is to use special
features of R to relate the existence of an odd-degree divisor to the existence of an effective divisor of degree
1 (i.e., an R-point of the curve Xt).

Assume PicnXt/Q(R) is non-empty for some odd n, so there exist line bundles on (Xt)R with arbitrarily
large odd R-degree. Choosing one such L that is very ample yields a closed immersion

(Xt)R ↪→ P(Γ((Xt)R,L )) = PNR

as a curve with odd degree d > 0 in some projective space over R. A “generic” projection to a line in PNR
is a finite map f : (Xt)R → P1

R whose fibers are scheme-theoretic intersections of (Xt)R with hyperplanes
in PNR , so deg(f) = d. The fiber of f over a point in P1(R) outside the finite branch locus of f is an étale
R-scheme in (Xt)R with R-degree d that is odd. This étale fiber cannot be a union of copies of Spec(C) (as
otherwise its R-degree would be even), so it must contain an R-point. In other words, the existence of some
divisor on (Xt)R with odd R-degree implies that there exists an R-point! (This is specific to the field R.)

Since (Xt)R is R-smooth with pure dimension 1, by the analytic inverse function theorem over R it
follows that Xt(R) is infinite when it is non-empty. In particular, the affine open subscheme of Xt given by
(4) has a solution (x0, y0) ∈ R2 in such cases. This is impossible if we choose the rational t to be positive.
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