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1 Examples

The BSD conjecture predicts that for an elliptic curve E over Q with E(Q) of rank
r ≥ 0,

L(r)(1, E)

r!
=

(
∏
p cp)ΩE ·XERE

#E(Q)tor#Ê(Q)tor
(1.1)

where

• Ê is the dual elliptic curve (so Ê ' E, unlike for higher dimensions in general),

• Ω =
∫
E(R) |ω|, and ω is the global section of Ω1

N(E)/Z corresponding to a choice
of basis of the Z-line Cot0(N(E)) for the Néron model N(E) of E over Z,

• cp is the number of connected components of N(E)Fp that are geometrically
connected over Fp, or equivalently (by Lang’s theorem applied to N(E)0Fp

-
torsors) have a rational point, so cp coincides with the number of Fp-points of
the finite étale component group N(E)Fp/N(E)0Fp

.

• RE is a regulator term that equals 1 when E(Q) is finite.

We consider the three elliptic curves over Q with conductor 11:

1. E1 : y2 + y = x3 − x2, which happens to be X1(11),

2. E2 : y2 + y = x3 − x2 − 10x− 20, which happens to be X0(11),

3. E3 : y2 + y = x3 − x2 − 7820x− 263580.

These are all minimal Weierstrass models, so their smooth loci over Z are the rela-
tive identity components of the Néron models. The evident action of (Z/11Z)× on
the fine moduli scheme X1(11) makes {±1} act trivially, and the resulting action of
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the cyclic group C = (Z/11Z)×/{±1} on X1(11) leaves invariant the forgetful map
X1(11) → X0(11). The resulting map X1(11)/C → X0(11) between smooth pro-
jective (geometrically connected) curves is clearly bijective on Q-points away from
j = 0, 1728, so it is birational and hence an isomorphism. In other words, we have
a natural 5-isogeny E1 → E2.

To understand this isogeny in another way, we consider the moduli-theoretic
viewpoint. By moduli-theoretic considerations, the two geometric cusps on E2 (cor-
reaponding to the 11-gon and 1-gon equipped with their unique order-11 ample
cyclic subgroups take up to automorphism of the polygon) are both Q-points, and
5 of geometric cusps on E1 are Q-points (namely, the ones corresponding to the
11-gon equipped with a generator of its component group Z/11Z up to sign). On E1

with the model above, these are the points {(0, 0), (0,−1), (1, 0), (1,−1),∞}. This
exhausts E1(Q).

Remark 1.1. The fact that E1(Q) consists entirely of cusps reflects the fact that no
elliptic curves over Q have a rational 11-torsion point.

Using the rational cusp for the 11-gon as the identity for the group law turns
X0(11) (so not the cusp∞ in the standard analytic model!) turns it into the elliptic
curves E2, and likewise for E1 using any of the Q-cusps on X1(11). Hence, the
forgetful map E1 → E2 is a 5-isogeny that carries all 5 rational cusps to the identity;
i.e., its kernel is the constant Q-group Z/5Z. Thus, the dual isogeny has kernel µ5.

But E2(Q) is also finite with order 5, consisting of the points

{(5, 5)(5,−6), (16, 60), (16,−61),∞},

so the quotient of E2 by that Q-subgroup Z/5Z is not E1 (as otherwise composing
these would yield an endomorphism of E1 of degree 25, necessarily with kernel E2[5]
since E2 has non-integral j-invariant and hence is not CM, so then E1[5] would be
an extension of Z/5Z by Z/5Z as a Q-group; the µ5-valued Weil pairing on E1[5]
would then give a contradiction). This quotient of E2 must then be another elliptic
curve over Q, so it is E3.

To summarize, we have 5-isogenies

E1 → E2 → E3.

By design, each has kernel Z/5Z as a Q-group. Since the L-function is invariant
under isogeny, we have

L(1, E1) = L(1, E2) = L(1, E3) ≈ 0.2538 . . . .

Therefore, the BSD conjecture predicts that the quantity on the right side of (1.1)
is also the same for E1, E2, and E3. In all three cases X = 0. The regulator RE is
also trivial since the common rank of these Q-isogenous curves is 0. However, the
volume and Tamagawa factors vary, as follows.
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1. The common Galois module Ei[2] is not split over R (the cubic 4x3 − 4x2 + 1
for E1 has negative discriminant −44 and so has one real root), so the 1-
dimensional compact commutative Lie groups Ei(R) are all connected and
hence are circles. Since the Weierstrass models described above are minimal,
and the smooth part of the minimal Weierstrass model coincides with the
relative identity component of the Néron model, a Néron differential on each
Ei is given by dx/(2y + 1). Hence, for E1 the volume term is

Ω1 =: ΩE1 =

∫
E(R)

∣∣∣∣ dx

2y + 1

∣∣∣∣ = 2

∫ ∞
α

dx√
4x3 − 4x2 + 1

where α is a real root of 4x3 − 4x2 − 1.

This volume turns out to be 25L(1, E), expressing thatX(E1) = 1, #E1(Q) =
5, and cp = 1 for all p. The triviality of cp for p 6= 11 is clear by the moduli-
theoretic meaning of E1 (or by hand: good reduction away from 11), and for
p = 11 we note that E1 has split multiplicative reduction. Consequently, by
the theory of Tate curves and the link between the minimal regular proper
model and the Néron model for an elliptic curve (the latter being the smooth
part of the former) it follows that c11 = −v11(j) = −1.

It is a general theorem that the Jacobian of X1(`) has Néron model with
connected fiber at ` for all primes ` > 3, but this requires computing the
minimal regular proper model of X1(`) over Z(`), which is much harder than
for X0(`) and is also harder in general than for the genus-1 case ` = 11.

2. For E2, we have Ω2 = Ω1/5. The other factors must change to compensate,
and it turns out that the change is c11 = 5. This comes from the fact that
v11(j(E2)) = −5 and E2 has split multiplicative reduction (since E1 has that
property); in contrast, a quadratic twist E′2 of E2 by a character that is unram-
ified but nontrivial locally at 11 would have c′11 = 1 even though v11(j′) = −5
too.

3. For E3, we have Ω3 = Ω2/5. Here the changes relative to E2 are that c11 =
1 (because the reduction type is split multiplicative and v11(j) = −1) but
E3(Q) = 0.

We have seen that the variation in the j-invariants, coupled with the theory
of Tate curves and minimal regular proper models, explains the variation of the
Tamagawa factors. Let’s explain why the volume terms are changing.

In all three cases, we have seen that Ei(R) is a circle. The induced maps Ei(R)→
Ei+1(R) are therefore finite-degree homomorphisms from the circle onto itself as a
Lie group, of degree equal to the size of the kernel. But we rigged both isogenies
over Q to have kernel Z/5Z, so on R-points the kernel has order 5; i.e., it is a
degree-5 map between Lie groups. Hence, the effect on periods is precisely division
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by 5 (from the degree of the map) provided that a Néron differential pulls back to a
Néron differential under each map N(Ei) → N(Ei+1). In other words, we have to
prove that this Z-homomorphism between smooth Z-groups is étale.

Over Z[1/11] the map N(Ei)→ N(Ei+1) between abelian schemes must be finite
flat, and its generic fiber is a constant Q-group of order 5 by design. But away from 5
this kernel must then be finite étale, hence the same constant group. By Raynaud’s
work on finite flat group schemes, the kernel must be constant over Z(5) as well
(or more concretely, the points in the kernel are clearly distinct modulo 5 for each
isogeny), so overall we have the étaleness away from 11. It remains to study the
situation at 11.

If you look at the points in E2(Q) aside from the identity, they all have the same
reduction at 11, namely (5, 5). This is the singularity in the mod-11 fiber of the
minimal Weierstrass model, so over Z(11) these points have reduction in the Néron
model that lie in non-identity components of the mod-11 fiber. Consequently, we
see that the quasi-finite flat schematic closure in N(E2) of the kernel of E2 → E3

has mod-11 fiber that is also a constant group consisting of 5 distinct points. Since
N(E2)F11 has 5 connected components and N(E3)F11 is connected, we conclude that
N(E2) → N(E3) is actually surjective even on mod-11 fibers and its kernel is the
constant group Z/5Z over Z. Hence, this map between Néron models is the quotient
by that constant group, and in particular it is an étale morphism as desired.

1.1 Computing X

Finally, let’s discuss computing X, focusing on X(E)[2] for E one of the curves
discussed above. This is a subgroup of H1(GQ,S , E[2]), where S = {2, 11} (the
ramified places for E[2]). We will compute this ambient degree-1 cohomology group,
and find that it is 2-dimensional over F2 (and then when further local conditions
are imposed to get X(E)[2] one gets 0). Since 5-isogenies induce isomorphisms on
2-torsion, the problem is literally the same for each E.

Abstractly M := E[2] ' (Z/2Z)2 ' {(u, v, w) ∈ (Z/2Z)3 : u + v + w = 0} on
which the Galois action is given by a map GS → S3 corresponding to the cubic
equation defining E[2]. This is the standard permutation representation, and the
splitting field of Ei[2] is an S3-extension of Q.

Remark 1.2. Tate’s global Euler characteristic for Galois cohomology (as will be
discussed in Jeremy’s talk) says

#H1(GS ,M)

#H0(GS ,M) ·#H2(GS ,M)
=

#M

#MGal(C/R)
.

Since our cubic has only one real root, we have #MGal(C/R) = 2. Also, #M =
#E[2] = 4. We also know #H0(GS ,M) = 1 because E(Q) has no non-trivial 2-
torsion points, so #H1(GS ,M)/#H2(GS ,M) = 2. We’ll show #H1(GS ,M) = 4
(so #H2(GS ,M) = 2).
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There is only one way to approach the H1-computation, which is to pass to the
splitting field (which lies inside QS). Let K be the cubic extension of Q obtained
by adjoining a root α of 4x3 − 4x + 1, and L its Galois closure, so L has a unique
quadratic extension Q(

√
−11).

L

2 3

S3K

3

Q(
√
−11)

2

Q

Obviously Gal(QS/L) acts trivially on E[2]. There is a spectral sequence

Hp(GL/Q, H
q(QS/L,M)) =⇒ Hp+q(GQ,S ,M)

whose E2 page is

H0(GL/Q, H
2(QS/L,E[2])) . . .

H0(GL/Q, H
1(QS/L,E[2]))

,,

H1(GL/Q, H
1(QS/L,E[2])) . . .

H0(GL/Q, H
0(QS/L,E[2])) H1(GL/Q, H

0(QS/L,E[2])) . . .

It turns out that everything beyond the left column vanishes, but this is not obvious,
so the spectral sequence degenerates at this page. The reason is that on a p-torsion
module Galois cohomology injects into that of a p-Sylow subgroup, and E[2] happens
to be a free module over the group algebra on a 2-Sylow of this S3.

Therefore, what we want is

H1(QS/L,E[2])GL/Q = (E[2]⊗H1(QS/L,Z/2Z))GL/Q'S3 .

Now, S3 has two irreducible representations in characteristic 2: the trivial repre-
sentation T and a two-dimensional representation U . (In characteristic 2, the sign
representation collapses to the trivial one). It is clear that E[2] = U as an S3-module,
and since U is self-dual we can identify the functor (U ⊗ (·))S3 with HomS3(U, ·).
This is an exact functor on F2[S3]-modules. Indeed, if N is any F2[S3]-module then

Exti(U,N) = H i(S3, U
∗ ⊗F2 N) = H i(S3, U ⊗F2 N)

and we claim that this vanishes for i > 0. It suffices to check vanishing for the
analogous cohomology of a 2-Sylow, over which U is free over the group algebra. In
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general if G is a finite group and V is a k[G]-module for a ring k then we claim that
k[G] ⊗k V is an induced module (so has vanishing higher cohomology); this is due
to the classical observation that for the underlying k-module V0 with trivial action
we have a G-module isomorphism k[G]⊗k V ' k[G]⊗k V0 via g ⊗ v 7→ g ⊗ (g.v).

The upshot is that to compute the size of (U ⊗H1(QS/L,Z/2Z))S3 , it suffices
to find a filtration of H1(QS/L,Z/2Z) as an S3-module and compute the sizes for
S3-invariants of U tensored against each successive quotient in the filtration.

The ring OL,S of S-integers of L has trivial class group, so the S-integral Kummer
sequence gives

H1(QS/L,Z/2Z) = H1(QS/L, µ2) = O×L,S/(O
×
L,S)2

as a GL/Q-module. The unit group is

O×L,S = 〈π2, πa11, πb11, πc11〉O×L ,

where πa,b,c11 are respective generators for the three primes lying over 11 (and π2
is a generator for the unique prime over 2). Thus, we have an exact sequence of
GL/Q-modules

1→ O×L/(O
×
L )2 → O×L,S/(O

×
L,S)2 → T ⊕ T ⊕ U → 0.

Tensoring against U and taking invariants, the right term gives

(U ⊕ U ⊕ (U ⊗ U))S3 = (U ⊗ U)S3 = (U∗ ⊗ U)S3 = EndS3(U) = F2.

Thus, it remains to show that (U ⊗ (O×L/(O
×
L )2))S3 is 1-dimensional over F2. Con-

sider the filtration

1→ 〈−1〉 → O×L/(O
×
L )2 → O×L/(〈−1〉 · (O×L )2)→ 1.

The quotient O×L/〈−1〉 is free of rank 2, and by computing a basis one sees by
inspection that the action of GL/Q gives the standard representation of S3 on Z2.
Hence, O×L/(O

×
L )2 is an extension of U by T , so applying the exact functor (U⊗(·))S3

gives a further contribution of (U ⊗U)S3 that we have already seen is 1-dimensional
Hence, H1(GQ,S , E[2]) is 2-dimensional as claimed.
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