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Abstract

We use étale cohomology to obtain a conceptual proof of global Tate duality by means of Artin–
Verdier duality, elaborating on Zink’s method of appending “real points” to Spec(OK) to extend Mazur’s
proof in the totally imaginary case.
It is organized in six sections.
After some introductory review in §1, including statements of Tate’s main theorems, in §2 we discuss
the foundations of the étale topology on algebraic number fields and its modification to allow consid-
eration of real places. In §3 we deal with the cohomology theory arising from what we call extended
small étale sites, introduced in §2.
In §4 we prove one of the main theorems (including a finiteness aspect) via a series of explicit compu-
tations and reductions.
In §5 we prove the basics of Artin–Verdier duality. Finally, in §6 we use Artin-Verdier duality to recover
Tate’s theorems, including the 9-term long exact sequence for finite ramification as a local cohomology
sequence.
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1 Introduction

1.1 Some history

Given a field k and a separable closure k of k, we denote by Gk the Galois group Gal(k/k).
We consider the category ModGk of discrete Gk-modules (called “Galois modules over k”, or
simply “Galois modules” when k is understood). A very interesting Gk-module is k

×
, which

plays an essential role in ModGk when k is a non-archimedean local field. Our main interest
will be the case when k is a number field, but first we discuss some more basic cases that feed
into the study of the number field case.

Suppose first k is a non-archimedean local field. Let M be a finite Galois module over k, and
define

M∨ := HomAb(M,k
×

) = HomAb(M,µ∞)

where µ∞ is the Galois module of roots of unity in k
×
; M∨ is a finite Galois module in the

evident manner. Tate local duality says that cup-product induces a perfect pairing of finite
abelian groups

Hi(Gk,M)×H2−i(Gk,M
∨)→ H2(Gk, k

×
)
'−→ Q/Z

for 0 ≤ i ≤ 2 and all finite M of order prime to the characteristic of k. Here, the isomorphism
H2(Gk, k

×
) ' Q/Z comes from local class field theory. Tate also proved

χ(M) :=
h0(M)h2(M)

h1(M)
=

1

|#M |

for the normalized | · | on k (with hi(M) := #Hi(GK ,M)).

These results are proved in §5.2 of Chapter II of Serre’s book Galois cohomology using local
class field theory and general results on the cohomology of profinite groups; the same methods
are also used there to show that for such M the cohomology Hi(Gk,M) vanishes for i > 2
(so Gk has cohomological dimension 2 relative to torsion coefficients with torsion-orders prime
to char(k)). There is also a duality result when p = char(k) > 0 and p|#M but then it
involves Cartier duality and fppf cohomology, so we do not discuss that here. The analogue for
archimedean local fields is elementary but will be important in some later considerations:
Remark 1.1.1 The field k = R admits a duality using Tate cohomology: for a finite Gk-
module M , the cup product

Hi
T (Gk,M)×H2−i

T (Gk,M
∨)→ H2

T (Gk, k
×

) = H2(Gk, k
×

) = Br(k) = Z/2Z

is a perfect pairing of finite groups (with H•T (G, ·) denoting Tate cohomology for a finite group
G). To prove this, note that since the Tate cohomologies are 2-torsion, Hom(·,Z/2Z) is exact
on long exact cohomology sequences in such Tate cohomologies. We may thereby reduce to the
case when M is a simple Gk-module, so it is killed by some prime `. If ` is odd then the Tate
cohomologies vanish and there is nothing to do. Hence, we can assume M is 2-torsion. Since
Gk has order 2, it follows that M has a composition series of Gk-submodules whose successive
quotients are Z/2Z. In this way we may assume M = Z/2Z.

Let ω ∈ H2(Gk,Z) be the unique generator (an element of order 2). By the theory of Tate
cohomology for cyclic groups, cup product with ω induces and isomorphism Hp

T (Gk, N) →
Hp+2
T (Gk, N) for every Gk-module N . Using the δ-functoriality of Tate cohomology cup

products, the pairing

Hn
T (Gk,M)×Hm

T (Gk,M
∨)→ Hn+m(Gk,K

×
)
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depend on n and m only through their parities. Hence, it suffices to prove that

H−nT (Gk,Z/2Z)×Hn
T (Gk,Z/2Z)→ H0

T (Gk,Z/2Z) = H0
T (Gk,K

×
)

(final equality via inclusion of µ2 into K
×
!) is perfect for n = 0, 1. This is a trivial verification.

Remark 1.1.2 If k is a finite field, so Gk = Ẑ has cohomological dimension 1 (and strict
cohomological dimension 2), the “dualizing module” for Gk is Q/Z (playing a role analogous
to that of µ∞ for local fields above). Hence, we consider the Pontryagin dual Galois module
MD := Hom(M,Q/Z) and we get that for all finite M (no condition on gcd(#M, char(k))!)
there is a perfect pairing of finite abelian groups Hi(Gk,M)×H1−i(Gk,M)→ H1(Gk,Q/Z) =
Q/Z induced by cup-product. One also has χ(M) := h0(M)/h1(M) = 1 from the classical
theory of Herbrand quotients for the cohomology of (pro-)cyclic groups.

In the case k is a global field, there is a duality principle, called global Tate duality and first
announced by Tate at the 1962 ICM [Tate]. He never published his proofs, which were later
documented in [Mi] and [Hab]. Based entirely on techniques in Galois cohomology, the proofs
(and even the some aspects of the statements) were sufficiently complicated that they did not
provide a great conceptual insight into “why” they held (in contrast with the duality above for
local fields, for which the statements are more concrete and calculations with µn have explicit
meaning that leads to the general case).

As first worked out by Mazur in the totally imaginary case in [Ma], the formalism of Artin–
Verdier duality provides an elegant approach to Tate’s main global results; e.g., the famous “9-
term exact sequence” (see Theorem 13) which seems so mysterious in the traditional formulation
(as it was originally built in a somewhat ad hoc manner as a device to record a few other dualities
built by prior means) is obtained directly as a long exact “local cohomology” sequence.

In these notes we use or extend arguments from [Ma] to recover Tate’s results on global duality
for algebraic number fields via étale cohomology on spectra of rings of S-integers augmented
with some “real places at infinity”, expanding on ideas of Zink introduced in the Appendix of
[Hab]. This provides topological insight into Tate’s results that make Spec(OK,S) for a number
field K (and finite set S of places of K containing the archimedean places) behave as if it is a
3-manifold.

The analogy with 3-manifolds can be seen directly in the function field case: if X is a smooth
proper and geometrically connected curve over a finite field F of characteristic p then for
a dense open j : U ↪→ X the structure map f : U → Spec(F) is viewed as a “family” of
open Riemann surfaces fibered over a loop, “hence” of dimension 3 for cohomological purposes
with torsion coefficients away from p. More specifically, we have the Leray spectral sequence
Hn(F,Rmf!(·)) ⇒ Hn+m

c (U, ·) with F of cohomological dimension 1 and f! of cohomological
dimension 2 on torsion objects.

1.2 Summary of results

First, we set some notation to be fixed for the entire discussion. We let K be a number field,
and OK its ring of integers. We set X := Spec(OK). Let S be a finite set of places of K
that contains the archimedean places, and denote by {v1, . . . , vr} the set of real places of K
(which may be empty). As usual, denote by KS the maximal algebraic extension of K which
is unramified outside S, and by GS its Galois group over K.

Let U := Spec(OK,S) ⊂ X. Since finite extensions of K inside KS “correspond” (via normaliz-
ation) to connected finite étale covers of U , we have GS = π1(U, η) where η : Spec(K)→ U is
a geometric generic point (over KS).
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One of the results we will prove takes care of global cohomology beyond degree 2:
Theorem 1.2.1 Let M be a finite GS-module whose order is an S-unit. For i ≥ 3 there is a
canonical isomorphism:

Hi(GS ,M)→
r⊕
j=1

Hi(Dvj ,M)

where Dv is a decomposition group at a real place v.

This will emerge as a piece of a local cohomology sequence (the flanking terms vanishing due
to the “3-manifold” property of Spec(OK,S)); see Theorem 4.3.1. Before going further, we state
and prove a basic finiteness result:
Proposition 1.2.2 If M is finite and #M an S-unit then Hi(GS ,M) is finite for all i.

Finiteness also holds for cases with #M not an S-unit, and such M are certainly of much
importance in Galois deformation theory (so their avoidance in Proposition 1.2.2 does not mean
that such cases of are no interest). Proposition 1.2.2 also follows from a general finiteness result
of Artin–Verdier (part of Theorem 1.2.6) via a local cohomology argument and a comparison
isomorphism in Appendix A between continuous cohomology of the fundamental group GS
of Spec(OK,S) and étale cohomology on Spec(OK,S) with locally constant coefficients; the
essential arithmetic input from class field theory remains the same under both approaches.

Proof. Theorem 1.2.1 settles the case i ≥ 3, so the remaining issue is i = 1, 2. If K ′/K is a
finite Galois splitting field for M (so K ′ ⊂ KS) and S′ is the set of places of K ′ over S then
the Hochschild–Serre spectral sequence

Hi(K ′/K,Hj(GS′ ,M))⇒ Hi+j(GS ,M)

reduces the finiteness assertion to the case when M has trivial GS-action, so we can assume
M = Z/nZ for some n > 0 that is an S-unit. In a similar manner we can replace K with K(ζn)
so that M = µn. Note that O×KS ,S is n-divisible since n is an S-unit.

The extension KS/K is the directed union of finite-degree Galois subextensions F/K, for all of
which Spec(OF,S) is a connected finite étale Galois cover of Spec(OK,S). Hence, étale descent
for line bundles identifies H1(F/K,O×F,S) with ker(Pic(OK,S) → Pic(OF,S)). Passing to the
limit over such F/K, we get

H1(GS ,O×KS ,S) = ker(Pic(OK,S)→ Pic(OKS ,S)).

But every ideal class for OK,S becomes trivial over the ring of S-integers of the Hilbert class
field ofK by the Principal Ideal Theorem, so the above kernel coincides with Pic(OK,S). Hence,
the exact sequence

1→M → O×KS ,S
tn→ O×KS ,S → 1

of discrete GS-modules provides an exact sequence

1→ O×K,S/(O
×
K,S)n → H1(GS ,M)→ Pic(OK,S)[n]→ 0.

The S-unit theorem and finiteness for class groups thereby settle the case i = 1 for this M .

Likewise, by Hilbert 90 the natural inflation map H2(GS ,M) → H2(K,µn) = Br(K)[n] is
injective, so to prove finiteness it suffices to check that for v 6∈ S the image of this injection has
vanishing local restriction into Br(Kv). This is reduced to the vanishing of H2(Kun

v /Kv, µn),
that in turn is immediate since Gal(Kun

v /Kv) = Ẑ has cohomological dimension 1. (Note that
in Br(Kv) = H2(Kun

v /Kv, (K
un
v )×) the n-torsion has nothing to do with H2(Kun

v /Kv, µn) = 1
for n > 1 because the n-power endomorphism of (Kun

v )× is not surjective! That is, there is no
n-power Kummer sequence at the level of Kun

v /Kv when n > 1.)
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For each v ∈ S we denote by Hp(Kv,M) the group Hp(Dv,M) for finite places v in S and the
Tate cohomology group Hp

T (Dv,M) for real places v. Tate established the following 9-term
exact sequence that we will recover as a local cohomology sequence in étale cohomology:
Theorem 1.2.3 Let M be a finite GS-module such that #M is an S-unit. Then there exists
a natural exact sequence:

0 // H0(GS ,M) //
⊕

v∈S H0(Kv,M) // H2(GS ,M
∨)D

fM // H1(GS ,M)

//
⊕

v∈S H1(Kv,M) // H1(GS ,M
∨)D

f ′M // H2(GS ,M) //
⊕

v∈S H2(Kv,M)

// H0(GS ,M
∨)D // 0

where M∨ := Hom(M,K
×

) is the dual Galois module, (·)D denotes the Q/Z-dual of a finite
abelian group, and all maps aside from fM and f ′M are the evident ones.

This exact sequence encodes some deep duality theorems. To see this, define

Xi
S(K,M) := ker(Hi(GS ,M)→

∏
v∈S

Hi(Kv,M))

(with the “modified” definition for real v with Tate cohomology as noted above). A “justific-
ation” for this notation is that if A is an abelian variety over K with good reduction outside
S then the analogous definition X1

S(K,A) ⊂ H1(GS , A(KS)) actually coincides with X(A)
inside H1(K,A) (because H1(Kun

v /Kv, A(Kun
v )) = 0 for good v, proved using Néronian proper-

ties of abelian schemes and Lang’s theorem on torsors for connected group varieties over finite
fields; this local triviality at unramified places has no counterpart for finite coefficient modules
M !)

The 9-term exact sequence provides an exact sequence

0→X2
1(K,M)D → H2(GS ,M)→

⊕
v∈S

H2(Kv,M) (1)

and this expresses exactly a perfect duality pairing

X2
S(K,M)×X1

S(K,M∨)→ Q/Z

that will arise for us as an instance of “Poincaré duality” on the “3-manifold” Spec(OK,S).

As a consequence of the above theorems, we can define a useful notion of Euler-Poincaré
characteristic for any M as above, via an alternating product of the sizes #Hp(GS ,M). There
is a complication: if K has a real place and M has even size then the cohomology groups will
be nonzero for an infinite number of values of p in general (see Theorem 1.2.1). We ignore this
and simply define

χ(GS ,M) :=
#H0(GS ,M) ·#H2(GS ,M)

#H1(GS ,M)

in general (with #M an S-unit; one can drop this condition on #M but then more ideas are
needed to establish useful results building on Tate’s).

By adapting the technique with Grothendieck groups used to prove his local Euler characteristic
formula (which is proved in §5.7 of Chapter II of Serre’s book on Galois cohomology), Tate
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proved the following formula (again, with #M an S-unit):

χ(GS ,M) =
∏
v arch

#H0(Gv,M)

|#M |v
,

where | · |v is the normalized absolute value (which for complex v is understood to be the square
of the usual complex absolute value, as needed in the product formula); see [Mi, §5, Ch. I] for
the details on this proof (which is not proved in a new way via the étale cohomology method).
Example 1.2.4 Consider M = Z/nZ with n > 0 and S the set of infinite primes together
with those dividing n, so OK,S = OK [1/n]. Clearly H0(Gv,M) = MGv = Z/nZ, and |#M |v
is equal to n or n2 depending on whether v is real or complex respectively. The formula yields

χ(GS ,Z/nZ) = n−s

with s the number of complex places.
Example 1.2.5 To illustrate the power of Tate’s global Euler characteristic formula when
combined with the 9-term exact sequence, we compute a “formula” for #H1(GS ,M) in general
(remembering that #M is required to be an S-unit!). We have #X2

S(K,M) = #X1
S(K,M∨)

since these two finite groups are Pontryagin dual to each other, and #H2(Kv,M) = #H0(Kv,M
∨)

for all v (by Tate local duality for finite v, and some care for real v). Combining this with the
Euler characteristic formula and (1), we get

#H1(GS ,M) = #X1
S(K,M∨) · #H0(GS ,M)

#H0(GS ,M∨)
·
∏
v∈S

#H0(GS ,M
∨) ·

∏
v arch

|#M |v
#H0(GS ,M)

.

This formula has a mystery term, namely X1
S(K,M∨). The merit of this formula is that the

groups Xi
S(K, ·) are more robust than Hi(GS , ·) for some purposes since they admit a good

duality theory (which the Hi(GS , ·)’s do not); it is in this sense that the above formula for
#H1(GS ,M) can be useful. (Wiles established a important generalization comparing sizes of
such H1’s for M and M∨ when it is not assumed that #M is an S-unit.)

We have seen that the 9-term exact sequence encodes some duality results among subgroups
Xi

S(K, ·) of GS-cohomologies. In Tate’s original work, he first directly established the duality
between X1

S(K,M∨) and X2
S(K,M) and then defined the 9-term exact sequence in terms of

that global duality and his local duality theorems.

In the étale cohomology approach, we will begin with the Artin–Verdier duality theorem
stated below that is of entirely different nature, relating cohomology and Ext’s (much as in
Grothendieck–Serre coherent duality and Verdier’s topological duality), applicable to rather
general constructible coefficient sheaves. From that foundation, we will obtain the 9-term exact
sequence as an exact “local cohomology” sequence and deduce the duality between X1

S(K,M∨)
and X2

S(K,M) from that 9-term sequence (so the logic is opposite to Tate’s original approach).

For totally imaginary K, Mazur wrote up an account [Ma] with all of the essential arithmetic
ideas. But there are many interesting number fields that are not totally imaginary, the most
basic being Q itself. In an appendix to [Hab], Zink introduced the idea of including extra
“points” for real places to extend Mazur’s aproach so that one recovers the entirety of Tate’s
results for all number fields. We have provided some additional explanations and define an ap-
propriate δ-functorial notion of H•c(U, ·) for dense open U ⊂ Spec(OK) (which is not addressed
in Zink’s exposition) to clarify some aspects. This appears in the statement of:
Theorem 1.2.6 (Artin-Verdier) Let U ⊂ X = Spec(OK) be a dense open subscheme. There
are natural isomorphisms H3

c(U,Gm,U ) ' H3
c(X,Gm,X) ' Q/Z and for constructible F on U
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there is a δ-functorial perfect pairing

Hi
c(U,F )× Ext3−iU (F,Gm,U )→ H3

c(U,Gm,U ) = Q/Z,

of finite abelian groups for all i ∈ Z.

Beware that Hi
c(U,F ) doesn’t generally vanish for i < 0 when there are real places (but by

definition the Ext’s vanish in negative degrees); see Remark 5.4.5. Also, as is noted in [Ma],
there is no hypothesis concerning stalks of F having order that is a unit on U !

Theorem 1.2.6 is the basis upon which everything else will depend in the approach of these notes
(and it will be easily reduced to the case U = X once the definitions are in place). Incorporating
the real places in a systematic way will require quite a bit of preparatory work. But as with
any cohomological machine, once the foundations are laid we can reap many rewards from some
key calculations.

Notation. For a scheme X, denote by Xét the small étale site of X; i.e., the category ÉtX
consists of étale morphisms U → X together with X-morphisms as arrows, endowed with the
étale topology for covers of such U . We denote by AbX the category of abelian sheaves on
Xet. If X is of finite type over Z, we denote by X0 the set of closed points of X.

To avoid overload of notation, with any scheme X:
from now on, by “abelian sheaf on X” we shall means an abelian sheaf on Xet.

2 Étale topology on algebraic number fields

This section is organized as follows. We briefly review some definitions and basic facts from the
theory of abelian sheaves on the small étale site on a scheme, for which the main case of interest
is the scheme Spec(OK) and schemes étale over it. We also build an extension of the category of
abelian étale sheaves on Spec(OK) so that its objects have “stalks” at real places of K. Finally,
we introduce and study an appropriate notion of “finite morphism” in this extended setting,
especially the exactness of an associated pushforward functor; that wil be a valuable tool to
reduce some problems to the case of totally imaginary K (which don’t involve the intervention
of real places, so ordinary étale cohomology of schemes does the job).

2.1 Abelian sheaves represented by constant X-schemes

Given an abelian group G, we set GX to be the functor

Sch→ Grp

represented by the X-group GX :=
∐
g∈GX; this assigns to any X-scheme Y the group of

locally constant functions |Y | → G. This is a sheaf for the étale topology on X because of the
openness of étale maps (check!), or in fancier terms because every representable functor on the
category of X-schemes is a sheaf for the Zariski and fpqc topologies (one of the key theorems
of descent theory).
Definition 2.1.1 Every abelian sheaf on X which is represented by an abelian X-group of the
form GX , for some abelian group G, is called constant.

We also recall the following:
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Definition 2.1.2 An abelian sheaf F on X is called locally constant if there exists an étale
covering

{fi : Ui → X}i∈I
such that each F |Ui := f∗i (F ) is constant as an abelian sheaf on Ui.
Example 2.1.3 Let k be a field, and G its Galois group. For X = Spec(k), AbX is equivalent
to the category of discrete G-modules. By Galois theory, a sheaf is locally constant if an open
subgroup of G acts trivially on the corresponding discrete G-module.

For example, if n ≥ 1 is not divisible by char(k) then µn is locally constant and correspondingly
µn(k) has trivial action by the open subgroup corresponding to the finite extension k(ζn); in
contrast, Gm is not locally constant in general (aside from quirky cases such as separably closed
k, or k = R).

2.2 Artin’s decomposition lemma and applications

An important source of motivation for how to systematically add “real points” to Spec(OK)
is obtained from a result of Artin that describes how to reassemble étale sheaves on a scheme
from étale sheaves on constituents of a stratification of the underlying topological space.

To explain this, let X be a scheme (we only need the case of Dedekind X), j : U ↪→ X an open
subscheme, and Z = X − U its closed complement (with any closed subscheme structure we
wish, such as the reduced structure; it doesn’t matter since killing nilpotents has no effect on
the étale site and hence no effect on étale sheaf theory). Let i : Z ↪→ X be the canonical closed
immersion.

Let F be an abelian sheaf on X, and define FU = j∗(F ) and FZ = i∗(F ). Using the natural
map F → j∗(FU ), applying i∗ gives a natural map

ϕF : FZ → i∗j∗(FU ).

We now denote by CX,U the category whose objects are triples (F ′, F ′′, ϕ) consisting of an
abelian sheaf F ′ on Z, an abelian sheaf F ′′ on U , and a morphism ϕ : F ′ → i∗j∗(F

′′). We
define a morphism between two such triples in the evident manner (involving a commutative
square). This yields a “decomposition” functor

dec : F 7→ (FZ , FU , ϕF )

from AbX to the category CX,U . Artin proved the crucial decomposition lemma, which is so
important that we record it as a Theorem:
Theorem 2.2.1 (Artin, [Art, §3.2.5]) The functor dec is an equivalence of categories.

The key to the proof is to answer the puzzle: how to recover F from FZ and FU? It will be
built as an appropriate fiber product.

Proof. Using the deep theorem that formation of strict henselization of a local ring commutes
with passage to quotients by ideals, for an abelian sheaf F ′ on Z we naturally have

(i∗(F
′))x =

{
0 if x /∈ i(Z)
F ′x0

if x = i(x0)

For an abelian sheaf F ′′ on U we have the more trivial identification (j∗(F
′′))x = F ′′x0

if
x = j(x0), but the stalk at points of Z is rather less easy to write down (it is the group of
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global sections of the pullback of F ′′ over the pullback of U along Spec(Osh
X,x)→ X). We now

use these two basic calculations.

Given some F on Xet, we claim that the commutative square

F

��

// j∗(FU )

��

i∗(FZ) // i∗i
∗j∗(FU )

is Cartesian. In this diagram the vertical maps express the natural transformation id → i∗i
∗

(applied to F and to j∗(FU )), and commutativity just expresses naturality with respect to
F → j∗(FU ). It suffices to check the Cartesian property on stalks at geometric points x over
x ∈ X.

The situation at stalks over U is trivial because the bottom of the square has vanishing stalks
at such points and the top collapses to an isomorphism on such stalks. If instead x ∈ Z
then applying x-stalks to the natural transformation id → i∗i

∗ always yields an isomorphism
between functors on abelian sheaves on Xet. The Cartesian property is then a tautology as
well.

Inspired by this construction, for a triple (F ′, F ′′, ϕ) in CX,U we define

F := i∗(F
′)×i∗(ϕ),i∗i∗j∗(F ′′) j∗(F

′′).

We need to show this gives an inverse to the “decomposition” functor.

The formation of such a fiber product sheaf commutes with any pullback (left-exactness of
pullback), so the restriction FU over U is naturally identified with F ′′ (more precisely: the
natural projection F → j∗(F

′′) restricts over U to an isomorphism FU ' F ′′). Likewise,

FZ = F ′ ×ϕ,i∗i∗i∗(j∗(F ′′)) i
∗j∗(F

′′),

where the second component of the fiber product is given by i∗ applied to the natural trans-
formation hi : id → i∗i

∗ on abelian sheaves on X. But by consideration of stalks we see that
i∗(hi) is always an isomorphism, so the fiber-product description of FZ collapses to make the
projection FZ → F ′ an isomorphism.

The upshot is that under the fiber product definition of F , the first projection restricts to an
isomorphism over Z and the second restricts to one over U . In particular, the natural map

F → i∗(FZ)× j∗(FU )

is injective, and more specifically recovers exactly the definition of F as a fiber product inside
a direct product! By its definition, F is thereby identified with the fiber product along the two
maps

i∗(FZ)
i∗(ϕ)−→ i∗i

∗j∗(FU )
can←− j∗(FU )

where ϕ : FZ = F ′ → i∗j∗(F
′′) = i∗j∗(FU ) is the initially given map, so we have to show that

ϕ = ϕF . It is equivalent to prove equality of such maps over Z after applying i∗, and it is
harmless to check equality after composing with the surjection F � i∗(FZ). This becomes a
problem of comparing two composite maps F ⇒ i∗i

∗j∗(FU ).

Ah, but by definition of F as a fiber product, the composite map resting on ϕ is equal to the
composition of the canonical second projection F → j∗(FU ) with the effect of id→ i∗i

∗ applied
to j∗(FU ). However, this latter composition is exactly what arises in the initial considerations
we made when realizing every abelian sheaf H on X as a fiber square using ϕH . Thus, indeed
ϕ = ϕF , so we are done!
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Example 2.2.2 If F ′′ is an abelian sheaf on U then j!(F ′′) corresponds to (0, F ′′, ϕ = 0). By
contrast, j∗(F ′′) corresponds to the triple (j∗(F

′′)|Z , F ′′, ϕ) where ϕ is the identity map on
j∗(F

′′)|Z .

Before specializing the decomposition lemma to the global setting of interest, we first discuss
an instructive local example.
Example 2.2.3 Let R be a complete (or henselian) discrete valuation ring with fraction field
L, and consider X := Spec(R). Let G := Gal(Lsep/L), with I the inertia subgroup. Let k be
the residue field of R and Gk := Gal(ksep/k). Then we claim that the decomposition lemma
provides an equivalence of AbXét

onto the category of triples (M,N,ϕ) with M a discrete
Gk-module, N a discrete G-module, and ϕ : M → N I a Gk-module homomorphism.

Setting Z := Spec(k) → X and U := Spec(L) → X, clearly AbZ is the category of discrete
Gk-modules and AbU is the category of discrete G-modules. The only issue with content is
to show that the functor i∗j∗ from discrete G-modules to discrete Gk-modules is precisely the
formations of I-invariants.

Using the link between stalks at a geometric point and global sections of the pullback to a
strictly henselian local ring, the discrete Gk-module associated to i∗(j∗(N)) is precisely the Gk-
module of global sections of the pullback of j∗(N) along π : Xsh := Spec(Rsh)→ Spec(R) = X
(where Gk acts through its identification with Aut(Rsh/R) = G/I!). But expressing Rsh as
a direct limit of local finite étale extensions R′ inside Lsep and using the compatibility of the
formation of global sections with passage to limits of qcqs schemes (with affine transition maps)
shows that

Γ(Xsh, π∗(j∗(N))) = lim−→Γ(Spec(R′), j∗(N)) = lim−→Γ(L′, N) = lim−→NGal(Lsep/L′) = N I ,

the final equality because N is a discrete G-module.

Now we finally come to the situation of interest: for the remainder of these notes we write
X = Spec(OK) for a number field K. Let η : Spec(K)→ X be the generic point, and likewise

η : Spec(K)→ X

for a fixed separable closure K of K. We set G := Gal(K/K), and for any closed point

x : Spec(κ)→ X,

we set Gx := Gal(κ/κ) when an algebraic closure κ of κ is specified.

For each closed point x, we fix a decomposition subgroup Dx ↪→ G, and recall Dx is unique
up to conjugation inside G. The choice of Dx amounts to a choice of place on K extending
the x-adic place on K, and relative to this choice we get an inclusion of K into an algebraic
closure of the completion Kx at x, thereby identifying Dx with Gal(Kx/Kx). We denote by Ix
the inertia subgroup of Dx. This data identifies the residue field of Kx (or equivalently of K
at the chosen place over x) with an algebraic closure of the residue field κ at x, so it defines κ
and identifies Gx with Dx/Ix.

By Example 2.1.3, for any abelian sheaf F on X we identify Fη := η∗(F ) with a discrete G-
module, each Fx := x∗(F ) with a discrete Gx-module, and the pullback of F over Spec(OX,x)
corresponds to the triple (Fx, Fη, ϕx) where

ϕx : Fx → F Ixη

is called the specialization map at x. The decomposition lemma (Theorem 2.2.1) now becomes:
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Lemma 2.2.4 Let S = {x1, . . . , xn} be a finite set of closed points of X, and U := X − S.
Then for any abelian sheaf F on X, the functor dec : AbX → CX,U takes the form:

dec(F ) =

(
n⊕
k=1

(xk)∗Fxk , FU ,

n⊕
k=1

ϕxk

)

for the specialization maps ϕxk : Fxk → F
Ixk
η where Fη := η∗(FU ).

This lemma says that F is determined by: the skyscraper sheaves Fxk (1 ≤ k ≤ n), the sheaf
FU on U , and the specialization maps from each Fxk into the Ixk -invariants of η∗(FU ) = Fη.
The case when every ϕxk vanishes corresponds to

F = j!(FU )⊕
n⊕
k=1

(xk)∗(Fxk).

Recall that in general a constructible abelian étale sheaf on a noetherian scheme is one that
becomes locally constant with finite geometric fibers on the constituents of a finite stratification
by locally closed sets (and these are characterized as the noetherian objects in the category of
abelian étale sheaves). Thus, it is a simple exercise to check that an abelian sheaf F on X is
constructible if it is locally constant with finite fibers on some dense open U ⊂ X and has stalks
Fx that are finite Gx-modules for all x ∈ X = U . If F is locally constant and constructible
(equivalently, locally constant with finite stalks) we say F is lcc.
Example 2.2.5 A constructible abelian sheaf F is locally constant on an étale neighborhood
of a closed point x ∈ X if and only if two conditions hold: Ix acts trivially on Fη and ϕx :
Fx → F Ixη = Fη is an isomorphism.

Hence, a constructible abelian etale sheaf F is characterized in terms of the associated data
Fη, Fx for closed x ∈ X, and specialization maps ϕx : Fx → F Ixη by the conditions: Fη is finite
(hence by G-discreteness it is unramified at all but finitely many x!), every Fx is finite, and ϕx
is an isomorphism for all but finitely many x.

Turning this around, if we are given such data

(Fη, {Fx}x∈X0 , {ϕx : Fx → F Ixη }x∈X0)

satisfying these finiteness and isomorphism conditions then we claim that it arises from a
canonically determined constructible F on X. Indeed, the finite Fη comes from a locally
constant sheaf FU on some Uet governed by the finitely many ramified places for Fη as a
finite discrete G-module, so then by removing from U any closed u ∈ U for which ϕu isn’t an
isomorphism, we we equivalently package this data in terms of (FU , {Fx}x∈X−U , {ϕx}x∈X−U )
to which the decomposition lemma really is applicable.

2.3 Adjoining the real places to X = Spec(OK)

We define X to be the union of X and the set X∞ := {v1, . . . , vr} of all real places of K, and
we endow X with the topology whose closed sets are finite subsets of X−{η} (so X is an open
subspace of X).

Notation. Let v be a fixed extension of a real place v to a place on a fixed algebraic closure
K of K. Denote by Dv the decomposition group of v, so uniquely Dv ' Z/2Z since v is
real. We define Iv := Dv due to the convention in algebraic number theory that a real place
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is “unramified” when it is totally split (such as in the definition of Hilbert class fields), so we
define Gv := 1. In particular, real points should be treated as if they are geometric points!

For any dense open subscheme U ⊂ X, we denote by U the union of U and X∞; this is an
open subspace of X (i.e., it is the result of applying to U = Spec(OK,S) the same formalism
we applied to X when defining X). We also use the notation Ũ for a typical open subset
of X (which may contains several or no real points). Given a choice of Ũ , we denote by
Ũ∞ = {ṽ1, . . . , ṽs} its overlap with X∞, and define U := Ũ ∩X (so if Ũ is non-empty then U
makes sense and contains Ũ).

Next, inspired by Artin’s decomposition lemma, we shall now define notions of: “abelian étale
sheaf” on non-empty open subsets Ũ of X, “stalk” at real places (simply an abelian group, since
we view real points as geometric points), and constructibility for such “sheaves”:

Definition 2.3.1 An abelian sheaf F̃ on a non-empty open subset Ũ ⊂ X is a tuple

F̃ := ({F̃ṽ}, F, {ϕṽ})

where ṽ varies through Ũ∞, the F̃ṽ are abelian groups, F is an abelian sheaf on U := Ũ∩X, and
ϕṽ : F̃ṽ → F Iṽη is a group homomorphism. We call F̃ṽ the stalk of F̃ at ṽ, and we also denote
by F̃x the stalk Fx at any x ∈ U . The “sheaf” F̃ is called constructible if F is constructible and
each F̃ṽ is finite.

Remark 2.3.2 The fixed field K
Iv is the algebraic closure Kalg

v of K inside its completion
Kv ' R (isomorphism unique!). In particular, Kalg

v is intrinsic to K (given v), in contrast with
K. Since F Ivη is identified with the group F (Kalg

v ) of global sections of the pullback of F over

Spec(Kalg
v ), we see that it is intrinsic to (K, v) in a way that F Ixη = F (K

Ix
) = F (Frac(Osh

X,x))

is not for x ∈ U0 (a geometric point over x is needed to define the strict henselization Osh
X,x).

We can likewise identify F Ivη with the group F (Kv) of global sections of the pullback of F over
Spec(Kv), saving a bit of notation. Consequently, we will sometimes prefer to speak in terms
of F (Kv) or F (Kalg

v ) rather than F Ivη to emphasize that it doesn’t depend on base points.
However, the notation F Ivη is closer to that at closed points x as in the decomposition lemma
(with Dx 6= Ix for x ∈ U0!).

The abelian category of such “sheaves” is denoted AbŨ . The reason that we do not (yet) denote
it as AbŨ is that later we will define an étale site for Ũ , so the category of abelian sheaves
on that site will deserve the name AbŨ ; in Theorem 2.4.3 we will show that this naturally
coincides with AbŨ (after which we shall pass between the two notions interchangeably). At
this moment, objects in AbŨ are not yet genuinely realized as sheaves on an actual site, so the
usual Grothendieck cohomological formalism is not yet applicable to them.

In the special case that Ũ contains no real points, AbŨ trivially recovers AbU . Our aim is, for
now, to gain information on F̃ from knowledge of information of F ∈ AbU and the real stalks.
In effect, we shall establish a special case of the decomposition lemma in our new framework
(but later we will have to do work to establish a general version of the decomposition lemma
in our new setting, appropriately interpreted as sheaves on a site).

In the setting of étale sheaf theory on schemes, the functors of pushforward and pullback
are related by an adjunction, as are extenson by zero j! and pullback j∗ relative to an open
immersion j, and pushforward i∗ and extraordinary pullback i! relative to a closed immersion
i (with Hom(i∗(F

′), F̃ ) = Hom(F ′, i!(F̃ )); i.e., i! is a right adjoint to i∗).
Remark 2.3.3 For usual étale sheaf theory and the inclusion i of a geometric closed point, a
right-adjoint i! to i∗ is given by the functor “global sections vanishing away from the point”.
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If instead i is the inclusion of a general closed point and its open complement has associated
inclusion j then ker(i∗ → i∗j∗j

∗) = i∗(ker(id→ j∗j
∗)) gives such a right-adjoint i! to i∗.

Motivated by how these functors are described in terms of the decomposition lemma (e.g., see
Example 2.2.2 for extension by zero and pushforward from an open set), for the open embedding
of topological spaces j : U → Ũ and the closed embedding of topological spaces iṽ : {ṽ} → Ũ

for a real point ṽ of Ũ we define functors

AbU

j! //

j∗ //

AbŨ
j∗
oo

(iṽ)!

//

(iṽ)∗
//

Ab
(iṽ)∗
oo

as follows (with our notation conventions as used above):

j!(F ) := (0, . . . , 0, F, 0→ F
Iṽ1
η , . . . , 0→ F

Iṽs
η )

j∗(F̃ ) := F

j∗(F ) := (F
Iṽ1
η , . . . , F

Iṽs
η , F, id

F
Iṽ1
η

, . . . , id
F
Iṽs
η

)

i∗ṽk(F̃ ) := F̃ṽk

iṽk∗(Ak) := (0, . . . , 0, Ak, . . . , 0, 0→ 0, . . . , Ak → 0, . . . , 0→ 0)

i!ṽk(F̃ ) := ker(ϕṽk).

It is easy to check that the first three satisfy the expected adjunctions, as do the iṽ∗ and i∗ṽ,
and that i!ṽ is right adjoint iṽ∗. Hence, these notations are all “justified”.
Remark 2.3.4 It is irrelevant to try to make sense of such j and iṽ as “morphisms” of geometric
objects; all that actually matters are the 6 associated functors as defined above. Speaking in
terms of j and iṽ is mainly for ease of exposition when we want to argue similarly to what is
done with actual open immersions and closed immersions between schemes.
Example 2.3.5 A moment’s reflection yields a canonical map F̃ → j∗j

∗(F̃ ) that realizes the
adjunction between j∗ and j∗.
Remark 2.3.6 We can reformulate the map ϕṽ appearing in the definition of i!ṽ as follows:
for F := j∗(F̃ ) clearly

i∗ṽj∗j
∗(F̃ ) = i∗ṽj∗(F ) = i∗ṽ(F

Iṽ1
η , . . . , F

Iṽs
η , F, id

F
Iṽ1
η

, . . . , id
F
Iṽs
η

) = F Iṽη ,

so i!ṽ(F̃ ) is identified with the kernel of a map ϕṽ : i∗ṽ(F̃ )→ i∗ṽj∗(F ), and we easily identify this
map as i∗ṽ applied to the canonical map F̃ → j∗j

∗(F̃ ) as in Example 2.3.5.

This calculation will ensure that once we have realized AbŨ as a genuine sheaf category for
some site, the map ϕṽ are built exactly as in the decomposition lemma on X.
Remark 2.3.7 The functors j!, j∗, i∗ and i∗ are exact, and therefore their respective right
adjoints j∗, j∗, i∗, i! preserve injectives. It is also clear from the termwise construction of kernels
that a map in AbŨ has vanishing kernel if the same holds after applying j∗ and i∗ṽ for all ṽ ∈ Ũ∞.
If we let J be an injective object in AbU and Jṽk be an injective abelian group for k = 1, . . . , s,
then

j∗(J)⊕
⊕

iṽk∗(Jṽk)

is injective in AbŨ , so it is clear that AbŨ has enough injectives (and more specifically of this
special form). Of course, the existence of enough injectives will also follow from general sheaf
theory on sites once we define an appropriate site whose category of abelian sheaves is AbŨ ;
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however, for some later theoretical calculations it will be useful to know that “enough” injectives
can be found in this explicit form.
Remark 2.3.8 The collection of functors {i∗x}x∈Ũ has the familiar properties one wants for a
collection of “enough stalk functors” on AbŨ (with i∗x valued in Ab for real x, and valued in
the category of abelian sheaves on Spec(κ(x)) for x ∈ U): each such functor is exact, we can
detect equality for a pair of maps between abelian sheaves by checking equality after applying
every i∗x, and a complex in AbŨ is exact if and only if it is exact after applying every i∗x. These
assertions are all obvious by inspection how i∗x is defined for real x and how the formation of
kernels and cokernels and images is expressed in the language of triples that define objects of
AbŨ .

2.4 Completed small étale sites

We now wish to show that the category AbŨ of abelian sheaves on Ũ is actually equivalent to
the category of abelian sheaves for a suitable Grothendieck topology. This will provide us with
a cohomology theory on Ũ . One could try to avoid this and impose the later explicit formula
for the global sections functor given in Example 2.4.5 out of thin air as a definition, and then
define cohomology as its derived functors (since we have seen directly that AbŨ has enough
injectives). That would be a mistake: avoiding the completed site introduced below would
entail a lack the insight and techniques that come for free once we can view AbŨ as sheaves on
an actual site.

We first note that the set {ṽ1, . . . , ṽs} = Ũ∞ can be regarded as a subset of

U(R) = Hom(Spec(R), U).

In Definition 2.3.1 we rigged the notion of abelian sheaf on Ũ as if Ũ were “stratified” by the
pair (U, Ũ∞). Therefore, let us introduce the category S̃chX , whose objects are pairs (Y, Y∞)
for an étale X-scheme Y and a subset Y∞ ⊂ Y (R), and morphisms (Y, Y∞) → (Y ′, Y ′∞) are
morphisms of X-schemes Y → Y ′ sending Y∞ into Y ′∞ (at the level of R-points).

Remark 2.4.1 We are forcing into the definition of S̃chX that there is no “residue field
extension” at real points (as the latter are meant to behave like geometric points; we want to
treat C as “ramified” over R, and more algebraically K as “ramified” over Kalg

v for real v).

Remark 2.4.2 The category S̃chX has fibered products: for (Y, Y∞) → (T, T∞) ← (Y ′, Y ′∞)

two morphisms in S̃chX , by writing Ỹ := (Y, Y∞) and likewise for T̃ and Ỹ ′ we have:

Ỹ ×T̃ Ỹ ′ = (Y ×T Y ′, Y∞ ∪ Y ′∞).

By definition, the category ÉtŨ has as its objects the morphisms Ỹ → Ũ in S̃chX as its
objects, and the morphisms in this category are defined over Ũ in the evident manner. A
family of morphisms {f̃i : Ỹi → Ỹ } is a covering in ÉtŨ precisely when {fi : Yi → Y } is a
covering in ÉtU and moreover ⋃

i∈I
fi(Ỹi∞) = Ỹ∞.

These coverings define the étale topology on Ũ , so in this way we have defined the small étale
site Ũét. We denote by AbŨ the category of abelian sheaves on Ũét.

The main theorem of this section is:
Theorem 2.4.3 The categories AbŨ and AbŨ are equivalent.
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We first need to set some notation. First, for a real point ṽ of Ũ let Tṽ be a copy of the category
of sets, equipped with the topology generated by jointly surjective families of morphisms. Let

jŨ : ÉtŨ → ÉtU

be the forgetful functor, and
iṽ : ÉtŨ → Tṽ

the functor associating to Ỹ the inverse image of ṽ under the map

Ỹ∞ → Ũ∞.

Manifestly, the category Abṽ of abelian sheaves on Tṽ is the category of abelian groups. From
the functors j := jŨ and iṽ we obtain functors:

AbU

j∗ //

AbŨj∗
oo

(iṽ)∗
//

Abṽ(iṽ)∗
oo

where j∗ is defined by composing a sheaf with the functor j, likewise for (iṽ)∗, and j∗ and i∗ṽ
are their respective left adjoints.

Explicitly, j∗ is restriction of a sheaf to the full subcategory ÉtU ⊂ ÉtŨ , and (iṽ)
∗(F̃ ) is the

sheaf on Tṽ whose value on the singleton is the direct limit of the diagram of abelian groups
F̃ (Ỹ ) for all Ỹ → Ũ with non-empty ṽ-fiber (and with maps in the diagram arising from
morphisms among such Ỹ ’s); the same limit is attained by limiting attention to those Ỹ ’s with
a singleton over ṽ.

Proof. (of Theorem 2.4.3) We want to define a functor τ : AbŨ → AbŨ yielding an equivalence
of categories. Given M in AbŨ , we shall cook up a triple

({F̃ṽ}, F, {ϕṽ})

with group homomorphisms ϕṽ : F̃ṽ → F Iṽη = F (Kṽ) for all v ∈ Ũ∞.

We denote by j : U → Ũ and ix : x→ Ũ the natural maps (where x is a closed point, possibly
“real”), so we get the triple

({i∗ṽ(M)}, j∗(M), {ϕṽ})

with ϕṽ : i∗ṽ(M)→ i∗ṽj∗j
∗(M) the canonical “specialization” maps. Clearly i∗ṽ(M) is an abelian

group for all ṽ, j∗(M) an abelian sheaf on U , and ϕṽ is a group homomorphism.

We now check that ϕṽ has target of the required form. Clearly

i∗ṽj∗j
∗(M)({ṽ}) = lim−→

(W,w)

j∗(M)(W )

with objectsW in ÉtŨ and w ∈W (R) mapping to ṽ; the limit can be interpreted as evaluating
j∗(M) at a maximal extension of K unramified at ṽ. Since K

Iṽ is such extension, we get

i∗ṽj∗j
∗(M)({ṽ}) = (j∗M)Iṽη

as desired. We can now define

τ(M) := ({i∗ṽ(M)}, j∗(M), {ϕṽ : i∗ṽ(M)→ (j∗M)Iṽη })
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and it is clear that τ is functorial in M with values in the category AbŨ .

We seek a quasi-inverse. For ease of notation, suppose Ũ contains one real point ṽ. (The
general case will go similarly, just with more notation.) Let F̃ be the object of AbŨ given by
a triple

({F̃ṽ}, F, {ϕṽ}).

In the spirit of the proof of the decomposition lemma, define

M := i∗(F̃ṽ)×i∗(ϕṽ),i∗i∗j∗(F ) j∗(F )

where we ease the notation by writing i := iṽ and j := jU . Heuristically, F̃ṽ is viewed as an
abelian sheaf on the punctual site {v} and the inclusion i “yields” the functor i∗ : Ab→ AbŨ .

We would like to argue exactly the same way as in the proof of Theorem 2.2.1, and to do so we
need stalk functors for every x point in Ũ , with the usual desired properties. For x ∈ U and
an abelian sheaf F̃ on Ũ we define

F̃x := (j∗F̃ )x;

this inherits the usual exactness properties from the classical theory of stalks for étale sheaves.

Consider x a real point of Ũ , so a cofinal system of étale neighbourhoods of x is of the form:
(W,w), with w ∈W (R) mapping to x and W → U étale. Maps between such pairs are defined
in the evident manner, and by definition

F̃x := lim−→
(W,w)→Ũ

F̃ (W,w),

for which exactness is immediate. By design of the pullback functors i∗x, it is readily checked
that F̃x = i∗x(F̃ ) in accordance with étale sheaf theory on schemes. Now the argument in the
proof of Theorem 2.2.1 applies.

Next, we record the Decomposition Lemma adapted to the study of sheaves on the étale site
of Ũ . (This goes beyond the version for schemes, but is easily deduced from that due to what
has been shown above, including Remark 2.3.6).

Lemma 2.4.4 Let j : Ũ ′ → Ũ be a non-empty open subset, and S = {v1, . . . , vn} the comple-
ment of Ũ ′ in Ũ . For any abelian sheaf F̃ on Ũ , the assignment:

dec(F̃ ) := (F̃v1
, . . . , F̃vn , j

∗(F̃ ), ϕv1
: F̃v1

→ F̃
Iv1
η , . . . , ϕvn : F̃vn → F̃

Ivn
η )

with F̃vk being the discrete Gvk -module i∗vk(F̃ ) for each k, and

ϕvk : F̃vk = i∗vk(F̃ )→ i∗vkη∗η
∗(F̃ ) = F̃

Ivk
η

the natural Gvk -module homomorphism for all k, is a functor which yields an equivalence
between the category AbŨ and the category of tuples:

(M1, . . . ,Mn, F
′, ϕ1, . . . , ϕn)

with Mk a discrete Gvk -module for each k, F ′ an abelian sheaf on Ũ ′, and ϕk : Mk → F ′η
Ivk a

Gvk -module homomorphism for all k.

To appreciate the power of Theorem 2.4.3, we discuss an example.
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Example 2.4.5 The constant sheaf ZŨ on the site Ũ corresponds to ({Z}ṽ,ZU , {idZ}ṽ) ∈ AbŨ .
Since F̃ (Ũ) = Hom(ZŨ , F̃ ), we immediately obtain the formula

F̃ (Ũ) = F (U)×Fη F̃ṽ1
×Fη · · · ×Fη F̃ṽs ,

where the fibre product is taken with respect to the natural map F (U)→ Fη and the specializ-
ation maps ϕṽk : F̃ṽk → Fη. The right side thereby defines the “global sections” functor Γ(Ũ , ·)
on the category of triples AbŨ .

2.5 Push/pull functors, finite morphisms, and traceable sheaves

We finish this preliminary discussion by introducing pushforward and pullback functors beyond
the setting open (and closed) immersions; they will be especially useful in the case of finite
morphisms (appropriately defined!). Fix a pair of number fields K ′ and K and the associated
schemes X ′ = Spec(OK′) and X = Spec(OK). We have the corresponding “spaces” X and X

′

and associated étale sheaf theories.

[It would be more natural to permit K and K ′ to be finite étale Q-algebras, allowing discon-
nectedness of the spaces, as disconnectedness arises when forming fiber products. However,
this will not be necessary for our needs and it overloads the notation too much to keep track
of the connected components and associated abundance of generic points. Hence, we impose
connectedness throughout.]

For non-empty open subsets Ũ ′ ⊂ X
′
and Ũ ⊂ X with respective “finite parts” U ′ ⊂ X ′ and

U ⊂ X (complement of the respective real points in each), a morphism f̃ : Ũ ′ → Ũ is defined
to be a morphism f : U ′ → U such that on R-points f carries Ũ ′ into Ũ . Composition of such
morphisms is defined in the evident manner.
Definition 2.5.1 Let f̃ : Ũ ′ → Ũ be a morphism. The pullback f̃∗ : AbŨ → AbŨ ′ is

f̃∗({F̃ṽ}, F, {ϕṽ}) = ({F̃ ′ṽ′}, F
′, {ϕ′

ṽ′
})

where F ′ = f∗(F ), F̃ ′ṽ′ = F̃f̃(ṽ′), and ϕ
′
ṽ′

= ϕf̃(ṽ′). The pushforward f̃∗ : AbŨ ′ → AbŨ is

f̃∗({F̃ ′ṽ′}, F
′, {ϕ′

ṽ′
}) = ({F̃ṽ}, F, {ϕṽ})

where F = f∗(F
′),

F̃ṽ = (
⊕

ṽ′∈f̃−1(ṽ)

F̃ ′ṽ′)×⊕
ṽ′∈f̃−1(ṽ)

F ′(K′
v′ )

(f∗F
′)(Kv) = (

⊕
ṽ′∈f̃−1(ṽ)

F̃ ′ṽ′)×F ′(∏v′ 7→v K
′
v′ )
F (Kv)

(using the maps ϕ′
ṽ′

for the first component of the fiber product and the natural projection
from (f∗F

′)(Kv) = F ′(K ′ ⊗K Kv) = F (Kv) onto its “real factors” for the second component),
and for ṽ ∈ Ũ the map ϕṽ : F̃ṽ → F Ivη = F (Kv) is the second projection from the fiber product.
Remark 2.5.2 If w′ varies through the non-real places of K ′ over a real place v of K then

(f̃∗F̃ ′)ṽ =
⊕
ṽ′ 7→ṽ

F̃ ′ṽ′ ×
⊕
w′

F ′(K ′w′).

The appearance of such places w′ in general will underlie the adjointness between f̃∗ and f̃∗!
(Think about the case when K ′ has no real places to see that complex places of K ′ over v must
be taken into account to possibly have adjoint functors over v.)
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Example 2.5.3 For open Ṽ ⊂ Ũ there is an evident notion of preimage f̃−1(Ṽ ) ⊂ Ũ ′, and
building on Example 2.4.5 it is very instructive (and a good exercise!) to build a natural
isomorphism

(f̃∗(F̃ ′))(Ṽ ) = F̃ ′(f̃−1(Ṽ )).

This is rather interesting: the appearance of complex stalks in the definition of f̃∗ is wiped out
at the level of global sections as on the right side; this apparent paradox is resolved by the role
of fiber products over the generic stalk in the description of the global-sections functors. This
formula for (f̃∗(F̃ ′))(Ṽ ) with varying open Ṽ ⊂ Ũ cannot be used to define f̃∗ (why not?).

For a second morphism F̃ ′ : Ũ ′′ → Ũ ′ involving a third number field K ′′, we define the
isomorphism f̃∗◦F̃ ′∗ ' (f̃◦F̃ ′)∗ in the evident manner, and this satisfies an obvious associativity
condition.
Lemma 2.5.4 The functor f̃∗ is exact and is a left adjoint to f̃∗.

Proof. It is elementary to check that exactness of f̃∗ by computing on stalks (see Remark 2.3.8!),
and the left-adjoint property is a straightforward diagram-chase (underlying the reason that we
incorporate the stalks of F ′ at all points of Spec(K ′ ⊗K Kv) in the definition of f̃∗(F̃ ′)ṽ!)

Example 2.5.5 The ṽ-stalk of the kernel of F̃ → f̃∗f̃
∗(F̃ ) vanishes if v lifts to a real place of

K ′ and otherwise it is kerϕṽ = iṽ∗i
!
ṽ(F̃ ) (since the stalk of f∗(F ) at any complex place over

v computes the geometric points of the generic fiber Fη). That the kernel can have a nonzero
stalk at a real place that does not lift to a real place is geometrically reasonable.
Definition 2.5.6 Let f̃ : Ũ ′ → Ũ be a morphism, with K → K ′ the associated injection
arising from the dominant map f : U ′ → U . We say that f̃ is finite if f is finite and Ũ ′∞
coincides with the preimage of Ũ∞ under the map X ′(R)→ X(R) induced by K ′/K.

Put in other words, if K ′/K is a given finite extension and Ũ is a dense open subset of X then
there is an evident notion of “preimage” of Ũ in X

′
and finiteness says exactly that Ũ ′ is that

preimage (informally, it says that Ũ ′ is the “normalization” of Ũ in X
′
). One subtlety is that if

K has real places but K ′ is totally imaginary then f̃∗(F̃ ) loses all information about the stalks
of F̃ at real points of Ũ , so the natural map F̃ → f̃∗f̃

∗(F̃ ) is the zero map on stalks at real
points of Ũ that do not lift to real points of Ũ ′.

The purpose of the preceding abstract nonsense is so that we can obtain:
Proposition 2.5.7 If f̃ : Ũ ′ → Ũ is finite then f̃∗ is exact and

ker(F̃ → f̃∗f̃
∗(F̃ )) =

⊕
v∈Σ

iṽ∗i
!
ṽ(F̃ )

where Σ is the set of real places of Ũ that do not lift to a real place of Ũ ′.

In particular, if U ⊂ X and U ′ ⊂ X ′ are dense opens with f : U ′ → U a finite map and
f : U

′ → U the associated finite morphism then

ker(F → f∗f
∗
F ) =

⊕
v∈U(R)−f(U ′(R))

iṽ∗i
!
ṽ(F ).

Proof. This is an elementary computation on stalks (see Remark 2.3.8), requiring just a bit of
attention to the role of complex stalks in the definition of f̃∗. The determination of the kernel
is a matter of unwinding definitions.
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Example 2.5.8 If F̃ṽ = 0 for all real points ṽ ∈ Ũ then F̃ → f̃∗f̃
∗F̃ has trivial kernel. But

beware that f̃∗f̃∗F̃ generally has nonzero stalks at such ṽ (if K ′ has complex places over v).

Finally, we consider f : U ′ → U that is a connected finite étale cover and ask when the usual
trace map tr : f∗f

∗ → id extends to a “trace map” f∗f
∗ → id. Over U we know what to do,

but how should we make a definition for stalks at a real point ṽ? If Σ is the set of real places on
K ′ over v and Σ′ is the set of non-real places over such a v then on ṽ-stalks we seek a suitable
map ∏

v′∈Σ

F̃ṽ′ ×
∏
w′∈Σ′

F Iw′η → F̃ṽ.

There is no apparent such map when Σ′ is non-empty except if ϕṽ : F̃ṽ → F Ivη = F (Kv) is an
isomorphism, in which case (f∗f

∗
F )ṽ = F (K ′ ⊗K Kv) and hence we may define the ṽ-stalk

map
trṽ : F (K ′ ⊗K Kv)→ F (Kv)

to be the map on Kv-points by the usual trace map f∗f∗(F )→ F . This motivates:
Definition 2.5.9 A sheaf F on U is traceable if ϕṽ : F ṽ → F Ivη = F (Kv) is an isomorphism
for all real points v of U . For such F that are locally constant and constructible on U , and
connected finite étale cover f : U ′ → U , the trace map

trf,F : f∗f
∗
(F )→ F

is defined to be the usual trace f∗f∗F → F over U and its effect on Kv-points at each real
place v (so the necessary diagrams commute, hence trf,F is a morphism of sheaves on U).

Remark 2.5.10 It is clear that F  F |U is an equivalence between the categories of traceable
sheaves on U and abelian sheaves on U . The inverse functor is j∗ where j : U → U is the
natural “map”; explicitly, j∗(F ) = ({F (Kv)}, F, {id}). Note that F is locally constant and
constructible if and only if F is.

For such F that are locally constant and constructible and any connected finite étale cover
f : U ′ → U , the composition F → F of trf,F with the natural map F → f∗f

∗
F coincides with

multiplication by the degree of f , as we may verify by computing over U since F is lcc (or
can do directly on stalks separately at real points and usual points of U). This will be very
useful to reduce some later cohomological problems with K to the case of a totally imaginary
extension K ′/K that is easier to work with (e.g., no real points).

3 Cohomology theory

We now develop what is necessary for étale cohomology over Ũ with real points ṽ1, . . . , ṽs.

3.1 Two basic δ-functors

Since Γ(Ũ , ·) is left-exact, we can make the habitual definition:

Definition 3.1.1 For any abelian sheaf F̃ in AbŨ , we set:

Hp(Ũ , F̃ ) := RpΓ(Ũ , F̃ ), p ≥ 0.

For x ∈ Ũ∞, recall from Remark 2.3.6 that the functor

F̃  ker(ϕx : F̃x → i∗xj∗j
∗(F̃ ))
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has the right-adjunction property to deserve the notation i!x. More importantly, in view of
the explicit formula describing Γ(Ũ , ·) in Example 2.4.5, we see that if Ṽ = Ũ − {x} then the
functor

Γx(Ũ , ·) := ker(Γ(Ũ , ·)→ Γ(Ṽ , ·))

of “global sections with supports in x” coincides with i!x. Thus, the functor

H•x(Ũ , ·) = R•Γx(Ũ , ·)

of local cohomology with supports in x ∈ Ũ∞ coincides with R•i!x.

For a usual closed point x ∈ U , the functor Γx(Ũ , ·) of “global sections with supports in x” is
the composition of Γ(x, ·) with i!x. The modified étale site treats the real points as if they are
geometric points, but the usual closed points of U are cohomologically nontrivial (so the output
of i!x must be viewed as a sheaf or Galois module, not just an abelian group, when x 6∈ Ũ∞).

3.2 The local cohomology sequence

Let j : Ṽ ↪→ Ũ be a non-empty open subset, and call S its complement.

For any abelian sheaf F̃ on Ũ , we set:

ΓS(Ũ , F̃ ) := ker(F̃ (Ũ)→ F̃ (Ṽ )).

It is easy to see that the functor

ΓS(Ũ , ·) : AbŨ → Ab

from the category of abelian sheaves on Ũ to the category of abelian groups is a left-exact
functor. We denote by Hp

S(Ũ , ·) the right-derived functors RpΓS(Ũ , ·).

For Ĩ an injective sheaf on Ũ , we have that the sequence:

0→ ΓS(Ũ , Ĩ)→ Γ(Ũ , Ĩ)→ Γ(Ṽ , Ĩ)

is also right-exact. To see this, we claim it is enough to consider sheaves of the form described
in Remark 2.3.7. Indeed, if Ĩ is contained into another abelian sheaf J̃ , then it is a direct
summand of this latter, by injectivity, and it suffices to treat J̃ . But by Remark 2.3.7, every
abelian sheaf on Ũ can be embedded into one of the injectives described there as an abelian
subsheaf, and we conclude. The right-exactness of the above sequence for this explicit class of
injectives is clear, because it boils down to the analogous claim for injectives on Uét.

We now let F̃ → Ĩ• be an injective resolution, and take cohomology of the short-exact sequence
of complexes:

0→ ΓS(Ũ , Ĩ•)→ Γ(Ũ , Ĩ•)→ Γ(Ṽ , Ĩ•)→ 0

It yields the following local cohomology sequence

· · · →
⊕
x∈S

Hp
x(Ũ , F̃ )→ Hp(Ũ , F̃ )→ Hp(Ṽ , F̃ |Ṽ )→ · · ·

Remark 3.2.1 A consequence of the local cohomology sequence is that étale cohomology of Ũ
commutes with filtered colimits. Indeed, it reduces this to the case of usual étale cohomology
of U , and cohomology of Iv, which are both known. This will be used without comment!
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Remark 3.2.2 It is natural to wonder if the connecting map Hp(Ṽ , F̃ |Ṽ ) → Hp+1
S (Ũ , F̃ ) is

δ-functorial in the sense that for a short exact sequence

0→ F̃ ′ → F̃ → F̃ ′′ → 0

of abelian sheaves on Ṽ , the diagram of connecting maps

Hp(Ṽ , F̃ ′′|Ṽ ) //

��

Hp+1
S (Ũ , F̃ ′′)

��

Hp+1(Ṽ , F̃ ′|Ṽ ) // Hp+2
S (Ũ , F̃ ′)

commutes. This is not an entirely idle question: it will arise later when we need to convert an
abstract isomorphism into concrete terms to recover one of Tate’s theorems.

The diagram actually does not commute, but it comes close: it anti-commutes. This sign
issue is a well-known phenomenon for the analogous situation in usual topological and étale
cohomologies, and by going back to the definitions of the maps it expresses a basic fact in
homological algebra: given a commuting diagram of short exact sequences of complexes

0

��

0

��

0

��

0 // A′ //

��

A //

��

A′′

��

// 0

0 // B′

��

// B //

��

B′′

��

// 0

0 // C ′

��

// C //

��

C ′′

��

// 0

0 0 0

in an abelian category, the resulting diagram of connecting maps from the snake lemma

Hn(C ′′)

��

// Hn+1(A′′)

��

Hn+1(C ′) // Hn+2(A)

anti-commutes; see Exercise 10.2.6 in Weibel’s book on homological algebra for a broader
context on the significance of this fact.

Setting Ṽ := Ũ − Ũ∞, we have

Hp(Ṽ , F̃ |Ṽ ) = Hp(U,F ).

It follows that problems for Hp(Ũ , F̃ ) (such as finiteness properties) can sometimes be reduce to
separate consideration of usual étale cohomology groups and of local cohomology with support
at real points. We deal with this latter case in the following:
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Lemma 3.2.3 For ṽ ∈ Ũ∞, we have canonical isomorphisms:

H0
ṽ(Ũ , F̃ ) = ker(ϕṽ), H1

ṽ(Ũ , F̃ ) = coker(ϕṽ)

Hp
ṽ(Ũ , F̃ ) = Hp−1(Iṽ, F̃η), p ≥ 2.

In this latter isomorphism, the right side is group cohomology.

Proof. We only need to check that the right sides form a δ-functor such that

H0
ṽ(Ũ , F̃ ) = ker(ϕṽ)

and the “erasability” property

coker(ϕṽ) = Hp−1(Iṽ, F̃η) = 0, p ≥ 2

holds for all injective sheaves F̃ .

In §3.1 we reviewed the reason that H0
ṽ(Ũ , F̃ ) = ker(ϕṽ). Likewise, if F̃ is injective then to show

that coker(ϕṽ) = 0 it suffices to show that F̃ → j∗j
∗(F̃ ) is an epimorphism. If F̃ is embedded in

another abelian sheaf then it splits off as a direct summand, and so this epimorphism problem
is reduced to the “cofinal” system of injectives as built in Remark 2.3.7. For those specific
injectives the epimorphism property is obvious.

Now consider a short-exact sequence of abelian sheaves on Ũ :

0→ F̃ ′ → F̃ → F̃ ′′ → 0

Using the long-exact sequence for group cohomology, we find a commutative diagram with
exact lines:

0 // F̃ ′ṽ

ϕ′ṽ
��

// F̃ṽ //

ϕṽ

��

F̃ ′′ṽ //

ϕ′′ṽ
��

0

0 // H0(Iṽ, F̃ ′η) // H0(Iṽ, F̃η) // H0(Iṽ, F̃ ′′η) // H1(Iṽ, F̃ ′η) // · · ·

Taking the ker-coker sequence on each column, we deduce that the right sides in the assertions
of the Lemma indeed form a δ-functor.

Using Remark 2.3.7 once again, and noting that tautologically i∗ṽ(M)η = 0 for any abelian
group M , we are reduced to showing that any injective sheaf F on U satisfies

Hp(Iṽ, Fη) = 0

for all p ≥ 1. Here we are computing cohomology on the fieldK
Iṽ of real algebraic numbers over

K. This field is the directed limit of Zariski-localized rings of integers of number fields inside
K
Iṽ . This corresponds via Spec with the inverse system of connected étale affine U -schemes Y

whose function field is equipped with an embedding into K
Iṽ . Since étale cohomology of qcqs

schemes commutes with inverse limits having affine transition maps,

Hp(Iṽ, Fη) = lim−→
Y

Hp(Y, F |Y ).

Pullback along étale maps Y → U preserves injectives, so the colimit on the right side vanishes
for all p ≥ 1.
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As an immediate corollary of the local cohomology sequence and the fact that Hp(Iṽ,M) = 0
for p ≥ 1 when M is an Iṽ-module on which 2 acts invertibly (e.g., a torsion group with trivial
2-primary part), we get:
Corollary 3.2.4 If 2 acts invertibly on Fη then

Hp(Ũ , F̃ ) = Hp(U,F )

for all p ≥ 2.

3.3 Cohomology of Gm,U

Let U ⊂ X be a dense open subscheme. We shall define the multiplicative group Gm,U over U
and compute its cohomology. Recall that U contains all real points. In §5.1 we will motivate
a new canonical procedure to extend abelian sheaves F on U to abelian sheaves F̂ on U (not
extension-by-zero from U , nor pushforward from U ; it will be right-exact and generally not left-
exact!). The definition given directly below will be an instance of that more general formalism
applied to the sheaf F = Gm,U (see Example 5.1.2); here we give the direct definition without
any broader context and see how to work with it.

For each v ∈ X∞ = U∞, denote by Kalg
v the algebraic closure of K inside its completion Kv

at the real place v. We write Kalg,+
v for its positive part, positivity being determined via the

unique isomorphism Kv ' R (or by virture of Kalg
v being a real closed field, so it has a unique

order structure as a field). Clearly Kalg,+
v is a multiplicative subgroup of Kalg,×

v , and we denote
by ϕv this inclusion of groups.
Definition 3.3.1 The sheaf Gm,U ∈ AbU = AbU is defined to be the triple

((Kalg,+
v )v∈X∞ ,Gm,U , (ϕv)v∈X∞).

We want to calculate the cohomology of Gm,U over U , by adapting Artin’s method for usual
curves. To that end, we need some modifications of constructions that arise in Artin’s method.
Given the embedding of the generic point ηU : Spec(K)→ U and the embedding jU : U → U ,
we have functors

ηU∗ : Abη → AbU , jU∗ : AbU → AbU .

Denote by µ∗ their composition. From the definitions we get at once

µ∗(Gm,η) = ((Kalg
v )v∈X∞ , ηU∗Gm,η, (K

alg
v

id−→ Kalg
v )v∈X∞)

and an evident exact sequence of abelian shaves on U

0→ Gm,U → µ∗(Gm,η)→
⊕
x∈U0

ix∗(Z)⊕
r⊕

k=1

iṽk∗(Z/2Z)→ 0

in which the first map corresponds to the identification of Gm,η with µ∗(Gm,U ). If we compute
the cohomology of the latter two terms in this exact sequence then we can hope to compute
the cohomology of Gm,U . This will be achieved by using a lot of class field theory.

For p > 0 we have RpηU∗(Gm,η) = 0 by applying Proposition A.2.1 after base change to the
henselization (not completion!) of OK at closed points of U . We deduce, as in the proof of
Lemma 3.2.3:

RpjU∗(ηU∗Gm,η) =

r⊕
k=1

iṽk∗H
p(Ivk ,Gm,η), p ≥ 1.
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Using Grothendieck’s composition of functors spectral sequence, we thereby get:

Rpµ∗(Gm,η) '
r⊕

k=1

iṽk∗H
p(Ivk ,Gm,η), p ≥ 1.

Now we use the Leray spectral sequence for the functor µ∗:

Ep,q2 = Hp(U,Rqµ∗(Gm,η))⇒ Hp+q(η,Gm,η).

Since Rqµ∗(Gm,η) is concentrated in the real places for q ≥ 1, we deduce Ep,q2 = 0 for all
p, q ≥ 1. Therefore, we have the following exact sequence:

0 // H1(U, µ∗(Gm,η)) // H1(η,Gm,η) //
⊕r

k=1 H1(Ivk ,K
×

)

// H2(U, µ∗(Gm,η)) // H2(η,Gm,η) //
⊕r

k=1 H2(Ivk ,K
×

)

// H3(U, µ∗(Gm,η)) // H3(η,Gm,η).

By Hilbert’s Theorem 90, we have

H1(η,Gm,η) = 0 = H1(Ivk ,K
×

)

and by class field theory we get an exact sequence:

0→ H2(η,Gm,η)→
⊕
v

Br(Kv)
sum−−→ Q/Z→ 0 (2)

where the direct sum runs over all places v of K. The sequence from before becomes:

0 // H1(U, µ∗(Gm,η)) // 0

0 // H2(U, µ∗(Gm,η)) // H2(η,Gm,η) //
⊕r

k=1 Br(Kvk)

// H3(U, µ∗(Gm,η)) // H3(η,Gm,η).

From (2) we get an exact equence:

0→ H2(U, µ∗(Gm,η))
inv−−→

⊕
x∈X0

Br(Kx)
sum−−→ Q/Z→ 0

and that

H2(η,Gm,η)→
r⊕

k=1

Br(Kvk)
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is surjective. But H3(η,Gm,η) = 0 by class field theory, so we obtain exact sequences:

0 // H1(U, µ∗(Gm,η)) // 0

0 // H2(U, µ∗(Gm,η)) // H2(η,Gm,η) //
⊕r

k=1 Br(Kvk) // 0

0 // H3(U, µ∗(Gm,η)) // 0

We summarize what we have shown so far in the following:
Proposition 3.3.2 We have

H0(U, µ∗(Gm,η)) = K×, H1(U, µ∗(Gm,η)) = 0

the exact sequence:

0→ H2(U, µ∗(Gm,η))→
⊕
x∈X0

Q/Z→ Q/Z→ 0

and
H3(U, µ∗(Gm,η)) = 0.

We also have

Hp

(
U,
⊕
x∈U0

ix∗(Z)⊕
r⊕

k=1

iṽk∗(Z/2Z)

)
= 0

if p 6= 0, 2, and it is equal to
⊕

x∈U0 Q/Z if p = 2. Indeed, by Remark 3.2.1,

Hp

(
U,
⊕
x∈U0

ix∗(Z)⊕
r⊕

k=1

iṽk∗(Z/2Z)

)
=
⊕
x∈U0

Hp(U, ix∗(Z))⊕
r⊕

k=1

Hp(U, iṽk∗(Z/2Z)),

and exactness of the pushforwards from the (finite and real) closed points identifies the co-
homologies on the right side with derived functors of the composition of Γ(U, ·) with the
pushforward. At real points such composite functors are the identity, so their higher derived
functors vanish. At finite closed points such composite functors are global sections for étale
sheaves on the spectrum of a finite field, so the higher derived functors are Galois cohomology
of Ẑ. This gives that Hp(U, ix∗(Z)) is Q/Z for p = 2 and vanishes for all other positive p, and
that Hp(U, iṽk∗(Z/2Z)) = 0 for all p > 0. The case p = 0 is trivial.

3.4 Putting everything together

Given the exact sequence:

0→ Gm,U → µ∗(Gm,η)→
⊕
x∈U0

ix∗(Z)⊕
r⊕

k=1

iṽk∗(Z/2Z)→ 0
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we apply H0(U, ·) to get an exact sequence

0→ H0(U,Gm,U )→ K×
f→
⊕
x∈U0

Z⊕
r⊕

k=1

Z/2Z→ H1(U,Gm,η)→ 0

where

f : K× →
⊕
x∈U0

Z⊕
r⊕

k=1

Z/2Z

has x-component given by the normalized valuation for each x ∈ U0 and has vk-component
given by the sign relative to vk. Thus, H0(U,Gm,U ) is the group O×,+K,X−U of totally positive
elements of K which are units over U ; for U = X we shall denote this as O×,+K .

By classical weak approximation, the composition of f with projection onto the direct sum of
the real components is surjective with kernel K×+ consisting of the totally positive elements of
K. Thus,

H1(U,Gm,U ) =
⊕
x∈U0

Z/π(K×+ )

where π : K×+ →
⊕

x∈U0 Z is the evident map. Hence, H1(U,Gm,U ) is a refinement of the
Picard group of U via a positivity condition, so we denote it as Pic+(U).

Combining the preceding calculations with the commutative diagram

H2(U, µ∗Gm,η) //

��

H2(U, ix∗Z) H2(x,Z)

H2(η,Gm,η) // Br(Kx) H2(Kun
x /Kx,Gm)'

oo

'

OO

(in which the two maps emanating from the lower-right corner are shown to be isomorphisms
in local class field theory), we obtain:
Proposition 3.4.1 For U 6= X, we have

H0(U,Gm,U ) = O×,+K,X−U , H1(U,Gm,U ) = Pic+(U),

an exact sequence
0→ H2(U,Gm,U )→

⊕
x∈(X−U)0

Q/Z→ Q/Z→ 0,

and H3(U,Gm,U ) = 0. For U = X, we have:

H0(X,Gm,X) = O×,+K , H1(X,Gm,X) = Pic+(X), H2(X,Gm,X) = 0, H3(X,Gm,X) = Q/Z.

4 Finiteness and vanishing

4.1 Main goal

The purpose of this section is to show the following:
Theorem 4.1.1 Let U be an non-empty open subscheme of X, and F a constructible sheaf on
U . Then the groups Hp(U,F ) are finite abelian groups, and Hp(U,F ) = 0 for all p ≥ 4.
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First consider when K is totally imaginary or the stalk Fη has odd order. In these cases, the
assertions amount to the same for usual étale cohomology on U : this is obvious if K is totally
imaginary (as then there are no real places), and in the second case it is Corollary 3.2.4.

Upon decomposing the constructible F into its `-primary parts for varying primes ` (only
finitely many of which have nontrivial contribution to F ), the general vanishing for each `-
primary part beyond degree 3 in the totally imaginary case is part of [SGA4, Exp.X, §6.1], the
proof of which amounts to many applications of results in Serre’s book on Galois cohomology
and also applies to ordinary étale cohomology of `-primary parts for odd ` without a totally
imaginary hypothesis (as will be useful shortly).

Suppose instead that Fη has odd order but K may have real places. In that case the local
cohomology sequence attached to the dense open U ⊂ U and its complement consisting of the
real points has vanishing local cohomologies at the real points in degrees ≥ 3 by Lemma 3.2.3.
Hence, the restriction map Hp(U,F ) → Hp(U,F ) is an isomorphism for p ≥ 3 in such cases,
so the vanishing in degree ≥ 4 reduces to the case of ordinary étale cohomology that we have
noted is established in [SGA4] without a totally imaginary hypothesis.

Next, consider the finiteness assertion if either K is totally imaginary or Fη has odd order. In
both cases the finiteness concerns ordinary étale cohomology, so for those cases the finiteness
assertion is a consequence of:
Proposition 4.1.2 For an arbitrary number field K and dense open subscheme U ⊂ Spec(OK),
the étale cohomology groups Hp(U,F ) are finite for all constructible sheaves F on U .

Before we prove this result, we require a technical lemma that justifies the idea of local co-
homology at a point only depending on a “small open set” around the point:
Lemma 4.1.3 Let F be a sheaf on Xét for a scheme X. Let x ∈ X be a closed point, and
denote by Xh

x the henselization of X at x. For the natural map fh
x : Xh

x → X, there is a natural
isomorphism

Hp
x(X,F ) = Hp

x(Xh
x , (f

h
x )∗F ), p ≥ 0.

Proof. It is a general fact (used all the time when working with étale cohomology) that if {Yi} is
an inverse system of qcqs schemes with affine transition maps and {Fi} is a compatible system
of étale sheaves on them (i.e., for i′ ≥ i, the pullback of Fi along Yi′ → Yi is identified with
Fi′ in a “transitivie” manner) then for the inverse limit Y of the Yi’s (i.e., over any affine open
U in a fixed Yi0 we form Spec of the direct limit of the corresponding coordinate rings from
the affine open preimages in each Yi of U) and the common pullback F of the Fi’s to Y , the
natural map lim−→Hp(Yi, Fi)→ Hp(Y, F ) is an isomorphism for all p ≥ 0.

Applying this to cohomology over X and X − Z for closed Z ⊂ X, the local cohomology
sequence shows that Hp

Z(X, ·) satisfies the same limiting behavior. In particular, for Xx :=
Spec(OX,x), to show that Hp

x(X,F )→ Hp
x(Xx, F |Xx) is an isomorphism it suffices to show that

Hp
x(X,F )→ Hp

x(U,F |U ) is an isomorphism for every open j : U ⊂ X containing X. But this is
obvious since Γx(X, ·) = Γx(U, (·)|U ) and j∗ preserves injectivity (as its left adjoint j! is exact).

Since Xh
x is the inverse limit of the spectra of the residually trivial local-étale extensions of

OX,x, each of which is Zariski-localizing at a k(x)-point over x on an étale OX,x-scheme, it
remains suffices to check that Hp

x is unaffected by pullback to a residually trivial pointed étale
neighborhood of (X,x). That is, if π : X ′ → X is étale and x′ ∈ π−1(x) is a k(x)-point of X ′
over x then we claim that the natural map

Hp
x(X, ·)→ Hp

x′(X
′, π∗(·)).
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The functor π∗ has left adjoint π! that is exact, the same reasoning as in the proof of Zariski-
local invariance reduces the task to checking that Γx(X,F ) → Γx′(X

′, F ) is an isomorphism
for any étale abelian sheaf F on X.

The settled passage to the local case allows us to now assume X is local, so X ′ → X is
surjective. We may also replace X ′ with an open around x′ so that x′ is the only point over
x. In particular, X ′ − {x′} maps onto X − {x}. Hence, F (X) → F (X ′) is injective and
F (X)∩Γx′(X

′, F ) = Γx(X,F ). For any σ′ ∈ Γx′(X
′, F ) ⊂ F (X ′), to show that σ′ comes from

Γx(X,F ) it is therefore equivalent to show that σ′ comes from the subgroup F (X) ⊂ F (X ′).
In other words, the two pullbacks of σ′ in F (X ′ ×X X ′) coincide. Both pullbacks vanish over
the part of X ′ ×X X ′ lying over X − {x} since X ′ − {x′} is the preimage of X − {x} in X ′

(check!). Consequently, our problem is concentrated in the stalks at points of X ′ ×X X ′ over
x. But we have arranged that x′ is the unique point of X ′ over x and that k(x′) = k(x), so
the x-fiber of X ′ ×X X ′ is a single k(x)-point too. Since this schematic point (as a morphism
from Spec(k(x)) over X) is invariant under the X-automorphism of X ′ ×X X ′ that swaps
the two factors (thereby interchanging the two projections), the desired equality of pullbacks
follows.

We turn to the proof of Proposition 4.1.2. Let’s first see that for a given F we may shrink U
as much as we wish. Let j : V ↪→ U be a non-empty open subscheme with finite complement
S, so the local cohomology sequence

· · · → Hp
S(U,F )→ Hp(U,F )→ Hp(V, F |V )→ . . .

allows us to replace U with V provided that the local cohomologies are finite. Since ΓS =⊕
x∈S Γx(U, ·), for the finiteness of local cohomology we may use Lemma 4.1.3 to reduce to

showing the finiteness of Hp
m(Spec(A), F ) for a henselian discrete valuation ring A with maximal

ideal m and a constructible abelian étale sheaf F on Spec(A). This in turn reduces to finiteness
of the étale cohomology of constructible sheaves on Spec(A) and on its open generic point
Spec(K).

Since A is henselian, the Galois theory of K coincides with that of its completion (due to
Krasner’s Lemma), so finiteness for the Galois cohomology of K on finite Galois modules is
reduced to the known case of local fields of characteristic 0. The henselian property also ensures
that cohomology on Spec(A) coincides with that at its closed point (for the stalk of a sheaf) and
hence the elementary finiteness properties of the Galois cohomology of finite fields completes
the proof of Proposition 4.1.2.
Remark 4.1.4 Since finite fields have cohomological dimension 1 (hence strict cohomological
dimension ≤ 2) and non-archimedean local fields of characteristic 0 have cohomological dimen-
sion 2 (hence strict cohomological dimension ≤ 3), the preceding considerations relating local
cohomology to Galois cohomology shows that for any x ∈ U0 the functor Hp

x(U, ·) vanishes
for p ≥ 4 on constructible sheaves (hence on all torsion sheaves, as they are always a limit of
constructible subsheaves) and for p ≥ 5 on arbitrary abelian sheaves.

Now we may shrink U so that F is locally constant on U . For such F the finiteness in degree
0 is clear. Let f : U ′ → U is a connected finite étale cover and define F ′ = f∗(F ). In the exact
sequence

0→ F → f∗(F
′)→ H → 0

all terms are locally constant. Since Hp(U, f∗(·)) = Hp(U ′, ·), we can induct upwards on p to
reduce to replacing (U,F ) with (U ′, F ′). In this way we can arrange that F is constant, and
then even F = Z/nZ for some n > 0. Further use of the local cohomology sequence allows us
to shrink U to make n a unit on U , and then to replace U with a connected finite étale cover
so that µn = Z/nZ on U and K is totally imaginary. The Kummer sequence on U = U and
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Proposition 3.4.1 now do the job in view of standard finiteness properties of unit groups and
class groups for rings of S-integers.

We have established Theorem 4.1.1 when either K is totally imaginary or Fη has odd order. In
fact, we can now establish the finiteness assertion in general (but will have to work harder for
the vanishing beyond degree 3 in general). Indeed, by Proposition 4.1.2 (which had no “totally
imaginary” hypothesis) the groups Hp(U,F ) are finite for all p, so to prove that Hp(U,F ) is
finite for all p we may use the local cohomology sequence to reduce to proving the finiteness of
Hp
ṽ(U,F ) for all p. But F is constructible, so the finiteness of these local cohomologies at the

real points is an immediate consequence of Lemma 3.2.3.

It remains to prove the vanishing assertion for p ≥ 4 when we do not assume either that K is
totally imaginary or Fη has odd size. For this we need some preliminary results.

4.2 Preliminaries and reductions

We need one more lemma before we can complete the proof of Theorem 4.1.1.
Lemma 4.2.1 Let F be a constructible sheaf on U . For fixed p > 0 there exists an injection
F → F

′
of F into a constructible sheaf F

′
such that the induced map

Hp(U,F )→ Hp(U,F
′
)

vanishes.

Proof. By Remark 3.2.1, Hp(U, ·) commutes with direct limits. Also recall that F is a subsheaf
of an injective J that is a direct sum of jU∗(I) and iṽk∗(Ik) for an injective I on Uet and
injective abelian groups Ik. More specifically, we may pick an integer m > 0 killing F and take
such I and Ik’s to be injective as Z/mZ-module sheaves. But every torsion abelian sheaf on a
noetherian scheme is a direct limit of its constructible subsheaves, and the analogue for torsion
abelian groups (as a direct limit of finite subgroups) is clear. Hence, since jU∗ and each iṽk∗
commute with direct limits (clearly from their definitions), and the constructible F satisfies the
ascending chain condition for directed systems of (necessarily constructible!) subsheaves, we
can find a sufficiently large constructible subsheaf F

′ ⊂ J containing F such that the vanishing
of the image of the finite group Hp(U,F ) in Hp(U, J) already occurs in Hp(U,F ′).

We are ready to complete the proof of Theorem 4.1.1, whose statement the reader is encouraged
to review.

Proof of Theorem 4.1.1. Recall that it remains to prove the vanishing assertion for p ≥ 4.
Consider a dense open subscheme V → U and the local cohomology sequence:⊕

x∈(U−V )0

Hp
x(U,F )→ Hp(U,F )→ Hp(V , F )→

⊕
x∈(U−V )0

Hp+1
x (U,F ).

Note that none of the points x here are real; they are all ordinary closed points. Hence,
Hp
x(U,F ) = 0 for all p ≥ 4 by Remark 4.1.4. Therefore, we can replace U by any dense open

subscheme V .

By Lemma 4.2.1, there exists an injection α : F → F
′
into a constructible sheaf F

′
with the

property that Hp(U,F ) → Hp(U,F
′
) is the zero map. Call F

′′
the cokernel of α. From the

long exact sequence we obtain a surjection

Hp−1(U,F
′′
)� Hp(U,F ).
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By induction on p ≥ 4 we thereby reduce to the case p = 4.

Running the preceding argument for F with p = 4, we can shrink U so that: U 6= X, F ′′ is
locally constant on U and the order of F ′′η is a unit on U . It suffices to show that in this case
H3(U,F

′′
) = 0. This is achieved in the following result (applied to F

′′
).

Proposition 4.2.2 Let F be a constructible sheaf on U such that F is locally constant on U
with order that is a unit on U . Then H3(U,F ) = 0.

Let us first reduce to the case that F is traceable (in the sense of Definition 2.5.9). For
F = F |U , consider the traceable sheaf j∗(F ) as defined in Remark 2.5.10. There is an evident
map F → j∗(F ) whose kernel and cokernel are supported at the real points of U ; in fact, by
Lemma 3.2.3 we have an exact sequence

0→
⊕
v∈X∞

iṽ∗i
!
ṽ(F )→ F → j∗(F )→

⊕
v∈X∞

iṽ∗R
1i!ṽ(F )→ 0.

The cohomology functors Hm(U, ·) kill all pushforwards from real points v for m > 0 because
Γ(U, iṽ∗(·)) is the identity functor. It follows that the natural map

Hp(U,F )→ Hp(U, j∗(F ))

is an isomorphism for all p > 0. Hence, for our purposes we may replace F with j∗(F ) to
reduce to the case that F is traceable.

To go further, we need a lemma that is an application of Sylow subgroups:
Lemma 4.2.3 Let U be a connected normal noetherian scheme. Let ` be a prime number
and F a locally constant sheaf of finite-dimensional F`-vector spaces on Uet. There exists a
connected finite étale cover f : V → U of degree prime to ` such that f∗(F ) has a finite filtration
whose successive quotients are Z/`Z

V
.

Proof. Since U is connected and F is locally constant and constructible, it has constant fiber-
rank r. We may therefore choose a Galois connected finite étale cover f : V → U such that
f∗(F ) is isomorphic to Z/`Z

⊕r. Let G be the Galois group of this cover; this is the Galois group
of the field extension at the generic points. Observe that the action of G on V lifts to an action
of G on f∗(F ) ' Z/`Z

⊕r. Looking at the stalk in the generic point gives a representation
ρ : G→ GLr(F`).

Let H ⊂ G be an `-Sylow subgroup. We claim that V/H → U works. The action of π1(V/H)
(based at its generic point) associated to the pullback of F to V/H corresponds to ρ|H , but
H is a finite `-group and hence ρ|H is a successive extension of copies of Z/(`) with trivial
H-action. Since V/H → U has degree [G : H] that is prime to `, it does the job.

Continuing with the proof of Proposition 4.2.2, since K(ζ`) is unramified over K away from `
and has degree at most `−1 < ` we can find a connected finite étale cover f : U ′ → U of degree
prime to ` over which µ` becomes constant. Using Lemma 4.2.3, we can moreover arrange that
f∗(F ) has a filtration whose successive quotients are copies of the constant sheaf Z/(`) = µ`.
Since F is now traceable, so it coincides with j∗(F ), we have the composite map

F → f∗f
∗
(F )→ F

that is multiplication by deg(f) (see Remark 2.5.10).

This degree acts invertibly on the `-torsion F , so likewise Hp(U,F ) is thereby realized as a
direct summand of Hp(U

′
, f
∗
(F )). It therefore suffices to prove that the latter vanishes for
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p = 3. This permits us to replace (U,F ) with (U
′
, f
∗
(F )); note that this step preserves the

“traceable” condition (as it is clear by inspection that the functors f ′
∗
and F ′  F̂ ′ naturally

commute for any connected finite étale cover f ′ : V → U). The filtration provided by Lemma
4.2.3 thereby reduces us to the case F = j∗(µ`).

If ` is odd then there are no real places in K (as we have arranged that K contains a primitive
`th root of unity), so in such cases U = U and j∗(µ`) = µ`. But if ` = 2 then K might
have real places, and so then j∗(µ`) does not naturally lie inside Gm,U (there are problems at
any real place since −1 < 0). Thus, rather than work with j∗(µ`), it is better to work with
j!(µ`). Indeed, for odd ` this is the same as µ` = j∗(µ`) and so for any ` the natural map
j!(µ`) → j∗(µ`) has kernel and cokernel that are pushforwards from real points. Hence, these
two sheaves have the same higher cohomology over U , whence it is equivalent to prove the
vanishing of H3(U, j!(µ`)).

The reason it is advantageous to consider j!(µ`) for all ` is that it fits into an exact “Kummer
sequence”

0→ j!(Z/`Z)→ Gm,U → Gm,U → 0 (3)

over U . Now we may conclude via Proposition 3.4.1 as follows. We arranged by preliminary
shrinking that U 6= X, so H3(U,Gm,U ) = 0. Thus,

H3(U, j!(µ`)) = H2(U,Gm,U )/(`).

Thus, we just need to show that H2(U,Gm,U ) is `-divisible. But we have an exact sequence

0→ H2(U,Gm,U )→
⊕

x∈(X−U)0

Q/Z→ Q/Z→ 0,

so the snake lemma applied to the `-power endomorphism of this short exact sequence identifies
the cokernel of ` on H2(U,Gm,U ) with the cokernel of⊕

x∈(X−U)0

(Q/Z)[`]→ (Q/Z)[`].

This latter map is surjective, so we are done. This completes the proof of Proposition 4.2.2.

4.3 Global Galois cohomology beyond degree 2

We are ready to show Theorem 1.2.1, which we restate here for convenience of the reader:
Theorem 4.3.1 Let S be a finite set of places of K that contains the archimedean places, and
let {v1, . . . , vr} be the real places (with corresponding decomposition groups Dvk = Ivk ⊂ GS).
LetM be a finite discrete GS-module whose order is an S-unit. For p ≥ 3 the natural restriction
map

Hp(GS ,M)→
r⊕

k=1

Hp(Dvk ,M)

is an isomorphism.

Proof. Let U = Spec(OK,S), soM = Fη for a locally constant constructible sheaf F on U whose
fiber-rank is a unit on U . Hence, for the traceable sheaf j∗(F ) we have Hp(U, j∗(F )) = 0 for all
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p ≥ 3 by Proposition 4.2.2 (for p = 3) and Theorem 4.1.1 (for p ≥ 4). The local cohomology
sequence arising from the inclusion U ↪→ U thereby takes the form

· · · →
r⊕

k=1

Hp
ṽk

(U, j∗(F ))→ Hp(U, j∗(F ))→ Hp(U,F )→ . . . .

The vanishing of Hp(U, j∗(F )) for p ≥ 3 therefore implies that the connecting map

Hp(U,F )→
r⊕

k=1

Hp+1
ṽk

(U, j∗(F ))

is an isomorphism for all p ≥ 3.

Lemma 3.2.3 identifies the local cohomology in degree p + 1 at a real point ṽ with the Iv-
cohomology in degree p for the generic fiber (j∗(F ))η = Fη = M . Putting it all together, we
have natural isomorphisms

Hp(U,F ) '
r⊕

k=1

Hp(Iv,M)

for all p ≥ 3. An application of Theorem A.1.1 (whose proof uses Theorem 4.1.1 and Propos-
ition 4.2.2, but not the present result we are aiming to prove!) then identifies Hp(U,F ) with
Hp(GS ,M), so we get isomorphisms

fpM : Hp(GS ,M)→
r⊕

k=1

Hp(Dvk ,M) (4)

for p ≥ 3. It remains to check that fpM is the natural restriction map for p ≥ 3. This is verified
in Proposition B.1.1 as special case of a more general compatibility argument.

5 Artin-Verdier duality for algebraic number fields

5.1 A first look

Let us recall that our aim is to show Tate’s global duality theorem, together with the 9-term
exact sequence for finite ramification, by means of the Duality Theorem (Theorem 1.2.6). Such
exact sequence is intended to be an instance for Spec(OK,S) ⊂ X of the local cohomology
sequence which for dense open Ṽ inside Ũ with complement denoted S takes the form:

· · · →
⊕
x∈S

Hp
x(Ũ , F̃ )→ Hp(Ũ , F̃ )→ Hp(Ṽ , F̃ |Ṽ )→ · · ·

As a first step, since we will be given only a sheaf F on Spec(OK,S) (such as arising from a finite
discrete GS-module M) yet we want to exploit local cohomology relative to the inclusion of U
into X (accounting for all the places in S, including the real places!), we need an appropriate
functorial extension of abelian sheaves on U to abelian sheaves on X. Extending to X will be
achieved via extension-by-zero, but to extend from X to X involves an entirely different idea.

More generally, for any dense open subscheme U of X and abelian sheaf F on U we wish
to naturally extend to it to an abelian sheaf F̂ on U in a manner that interacts well with
local cohomology (and will then mainly need for U = X, though considering more general U
is illuminating and useful too). We will also need the functors Hp(X, F̂ ) to assemble into a
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δ-functor of F ; this will be a bit trick since it turns out that the appropriate functor F̂ will
not be exact in F (due to complications in stalks at real points) but merely right-exact. In
particular, calling j the “open embedding” of U into U , neither of the left-exact functors j! nor
j∗ will do the job we need.

For motivation, assume we have some such functor F  F̂ , so for a real point v we have an
exact sequence

0→ i!v(F̂ )→ F̂v
ϕv−−→ i∗vj∗j

∗(F̂ )→ R1i!v(F̂ )→ 0 (5)

(we used i∗v is exact and that i∗viv∗ → id is an isomorphism). Note that the third term
i∗vj∗j

∗(F̂ ) = i∗vj∗(F ) = (j∗(F ))v is equal to F (Kv) = H0(Iv, Fη) by the definition of j∗. By
Lemma 3.2.3, we also have

i!v(F̂ ) = H0
v(U, F̂ ), R1i!v(F̂ ) = H1

v(U, F̂ ).

What should these be as functors of F?

To guess correctly, we will use Tate cohomology (as developed in [CF, Chapter IV]). Since
Lemma 3.2.3 yields canonical isomorphisms

Hp
v(X, F̂ ) ' Hp−1(Iv, Fη) = Hp−1

T (Iv, Fη)

for p ≥ 2 ((·)T denoting Tate cohomology), the δ-functor F  H•v(X, F̂ ) we hope to have in
degrees ≥ 0 would extend two degrees to the left the δ-functor of Tate cohomology of Fη in
degrees ≥ 1. Hence, whatever F̂ is to be (as a functor of F ), it is natural to want

Hp
v(U, F̂ ) ' Hp−1

T (Iv, Fη)

for p = 0, 1 since Tate cohomology in degrees ≥ −1 provides the only erasable δ-functorial
extension to degrees ≥ −1 of Tate cohomology in degrees ≥ 1. In particular, (5) would then
take the form of an exact sequence

0→ H−1
T (Iv, Fη)→ F̂v

ϕv→ H0(Iv, Fη)→ H0
T (Iv, Fη)→ 0

for some unknown maps relating the terms in the sequence.

But Hp
T is defined for p = 0, 1 via a tautological exact sequence

0→ H−1
T (Iv, Fη)→ H0(Iv, Fη)

Nv→ H0(Iv, Fη)→ H0
T (Iv, Fv)→ 0

where Nv is the norm map for the Iv-module Fη. Hence, this motivates us to define F̂ ∈ AbU
via real stalks F̂v := H0(Iv, Fη) with ϕv := Nv for all v. In other words, we now make:

Definition 5.1.1 The modified sheaf F̂ on U is given by:

(H0(Iv1 , Fη), . . . ,H0(Ivr , Fη), F,H0(Iv1 , Fη)
Nv−−→ H0(Iv1 , Fη), . . . ,H0(Ivr , Fη)

N−→ H0(Ivr , Fη)).

Example 5.1.2 Since the norm map K → Kalg
v has image Kalg,+

v (or upon completion, the
norm map C× → R× has image R×>0), by computing H0(Iv,Gm,η) and the norm maps for all
real places v one readily sees that

Ĝm,U = Gm,U .

The first basic feature of F̂ as a functor of F is that it is not left-exact. Instead, we have:
Lemma 5.1.3 The functor AbU → AbU (or AbU → AbU ) given by F 7→ F̂ is right-exact and
preserves injectives; explicitly, for j : U ↪→ U naturally F̂ ' j∗(F ) for injective F .
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Proof. Right exactness can be checked over U and on the real stalks. Over U we have F̂ |U = F ,
and the real stalks are group homologies in degree 0, which are right-exact.

Now assuming that F is injective, so j∗(F ) is injective as an abelian sheaf on U (as its left
adjoint j∗ is exact), we will show that the natural map F̂ → j∗(F ) adjoint to the isomorphism
j∗(F̂ ) ' F is itself an isomorphism (so F̂ is indeed then injective). In view of how j∗ is defined,
the content is that the maps ϕv associated to F̂ are all isomorphisms, or in other words that
the kernel and cokernel of each ϕv vanishes. This is precisely the assertion that the Tate
cohomology groups Hp

T (Ivk , Fη) vanish for p = 0, 1 for any injective F on U .

The injectivity of F and j∗(F ) implies that the cohomologies

Hp(U, j∗(F )), Hp(U,F )

vanish for all p > 0, so the local cohomology sequence relating them gives that Hp
v(U, j∗(F )) = 0

for p ≥ 2 and real points v. Hence, Hp(Iv, Fη) = 0 for all p ≥ 1 by Lemma 3.2.3. Since the
cohomology of Iv is doubly periodic, it follows that all Hp

T (Iv, Fη) are zero.

5.2 Modified étale cohomology

As with Tate cohomology as a refinement of cohomology of finite groups, we are going to define
a modified δ-functorial cohomology theory Ĥ•(U, ·) that coincides with H•(U, (̂·)) in degrees
≥ 0 but extends to negative degrees accounting for the fact that H0(U, F̂ ) is generally not
left-exact in F . One subtlety is that since F̂ is not left-exact in F (the real stalks can fail to be
left-exact), some argument is needed to explain how H•(U, (̂·)) is at all a δ-functor in degrees
≥ 0!

Consider a short-exact sequence of abelian sheaves on U ,

0→ F ′ → F → F ′′ → 0,

and apply the modification functor (̂·). By means of the homology long-exact sequence for Iv
with real points v and the equality of Tate cohomology in degrees ≤ −2 with group homology
in degrees > 0 up to a re-indexing with a sign, we obtain the following long-exact sequence
extending on the left:

· · · //
⊕r

k=1 ivk∗H
−2(Ivk , Fη) //

⊕r
k=1 ivk∗H

−2(Ivk , F
′′
η )

// F̂ ′ // F̂ // F̂ ′′ // 0

We let M = ker(F̂ → F̂ ′′), so there is an induced map F̂ ′ � M . We call N the kernel of this
latter map, so also N = ker(F̂ ′ → F̂ ). Hence, N =

⊕
v iv∗(Nv) for

Nv := ker(H0(Iv, F
′
η)→ H0(Iv, Fη)) = coker(H−2

T (Iv, Fη)→ H−2
T (Iv, F

′′
η )).

Hence, Hp(U,N) = 0 for p ≥ 1 since Γ(U, iv∗(·)) is the identity functor for real v. We deduce
the following exact sequences:

0→ H0(U,N)→ H0(U, F̂ ′)→ H0(U,M)→ 0

0→ H0(U,M)→ H0(U, F̂ )→ H0(U, F̂ ′′)→ H1(U,M)→ · · ·
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together with the canonical isomorphism:

Hp(U, F̂ ′) ' Hp(U,M), p ≥ 1.

Hence, we get a long exact sequence

0→ H0(U,N)→ H0(U, F̂ ′)→ H0(U, F̂ )→ H0(U, F̂ ′′)→ H1(U, F̂ ′)→ H1(U, F̂ )→ . . .

The description of N in terms of Nv’s also gives an exact sequence

r⊕
k=1

H−2
T (Ivk , Fη)→

r⊕
k=1

H−2
T (Ivk , F

′′
η )→ H0(U,N)→ 0

This motivates the following:
Definition 5.2.1 For all p ∈ Z, the modifield étale cohomology groups are:

Ĥp(U,F ) :=

{
Hp(U, F̂ ), p ≥ 0⊕r

k=1 Hp−1
T (Ivk , Fη), p < 0.

The preceding considerations make the modified étale cohomology groups into a δ-functor: to
each the short-exact sequence of abelian sheaves

0→ F ′ → F → F ′′ → 0

on U we have naturally associated a long exact sequence

· · · → Ĥp(U,F ′)→ Ĥp(U,F )→ Ĥp(U,F ′′)→ Ĥp+1(U,F ′)→ · · ·

with p ∈ Z. Voila, Ĥ•(U, ·) has been made into a δ-functor on AbU despite the failure of F̂ to
be exact in F .

5.3 Modified cohomology with support

Using Lemma 3.2.3 and the definition of (̂·), for all real v and p ≥ 0

Hp
v(U, F̂ ) = Hp−1

T (Iv, Fη). (6)

This fails for p = 0, 1 if instead of F̂ we use a general abelian sheaf F = ({F v}, F, {ϕv}) on U
(rather than one of the form F̂ ). Indeed, for such F we have

H0
v(U,F ) = ker(ϕv : F v → F Ivη ), H1

v(U,F ) = coker(ϕv).

Hence, if F = j!(F ) for the inclusion j of U into U then F v = 0 for all real v, so H0
v(U,F ) = 0,

but generally H0
T (Iv, Fη) 6= 0. Hence, motivated by (6) as a functor of F , we are led to make:

Definition 5.3.1 For all p ∈ Z and real v, the modified local cohomology groups on U are

Hp
v(U,F ) :=

{
Hp
v(U, F̂ ), p ≥ 0

Hp−1
T (Iv, Fη), p < 0
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We make the convention that the functors Hp
x(U, ·) for x ∈ U0 and Hp(U, ·) vanish for p < 0

since they are left-exact for p = 0 (whereas for real v the functor H0
v(U, ·) := H0

v(U, (̂·)) is
not left-exact, so its non-vanishing extension to negative degrees is appropriate). Using that
convention, for any dense open subset V ⊂ U we get a long exact “local cohomology” sequence

→ · · ·
⊕

s∈U−V

Hp
s(U,F )→ Ĥp(U,F )→ Hp(V, F |V )→

⊕
s∈U−V

Hp+1
s (U,F )→ · · · (7)

with p ∈ Z. This is just a reformulation of the local cohomology sequence for F̂ on U relative
to V for p ≥ 0 and tautological identifications for p < 0 via the considerations in §5.2.

5.4 Compactly supported cohomology and duality preparations

We let j be the open immersion of an open subscheme U into X, and F be an abelian sheaf
on U . We make use of the notation developed so far with no further mention.
Definition 5.4.1 For p ∈ Z, the compactly supported cohomology groups are

Hp
c(U,F ) := Ĥp(X, j!(F ))

for abelian sheaves F on U .

First of all, we observe that H•c(U, ·) is a covariant δ-functor because Ĥ•(X, ·) is such a δ-functor
and j! is exact. For U = X we have j! = id, by definition for every abelian sheaf F on X and
every integer p we have

Hp
c(X,F ) = Ĥp(X,F ).

Likewise, if h : V ↪→ U is an inclusion of dense open subsets of X then for any sheaf F on U
there are natural maps

Hp
c(V, F |V )→ Hp

c(U,F ) (8)

defined by applying Hp
c(U, ·) to the map h!(F |V ) → F . Here is an important example for

arithmetic duality:
Example 5.4.2 Let j : U ↪→ X be a dense open subscheme. We claim that naturally

H3
c(U,Gm,U ) ' H3

c(X,Gm,X) ' Q/Z. (9)

For the second isomorphism, we note that by definition H3
c(X,Gm,X) = H3(X,Gm,X) by

Example 5.1.2, so it is identified with Q/Z by Proposition 3.4.1.

The first map in (9) is the map (8) for the inclusion U ↪→ X and the sheaf Gm,X on X;
explicitly, it is obtained by applying H3(X, ·) to the inclusion

(j!(Gm,U ))∧ ↪→ Gm,X (10)

over X whose cokernel is supported on X −U (no real points!) with stalk at x ∈ X −U given
by the Galois module (Osh

X,x)× for Gx = Gal(κ(x)/κ(x)) ' Ẑ. Since Gx has cohomological
dimension 1 and hence strict cohomological dimension ≤ 2, the map obtained from applying
H3(X, ·) to (10) is surjective with kernel that is a quotient of

⊕
x∈X−U H2(κ(x), (Osh

X,x)×).

Now it suffices to show that if A is a henselian (not necessarily complete!) excellent discrete
valuation ring with finite residue field k then H2(k, (Ash)×) = 1. This is the limit of the
finite-layer cohomology groups H2(k′/k,A′

×
) for finite extensions k′/k and the corresponding

local finite étale extension A′ of A. But the Tate cohomology of cyclic groups is doubly
periodic, so this degree-2 cohomology coincides with the degree-0 Tate cohomology that is
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the cokernel of the norm map on local unit groups A′× → A×. Hence, it suffices to show
that such norm maps are surjective. If A were complete then such surjectivity is clear by a
successive approximation argument. In general surjectivity is a consequence of the complete
case via the Artin approximation theorem, which applies to the existence of solutions to system
of polynomial equations over any henselian excellent discrete valuation ring. (A similar use of
Artin approximation occurs in the proof of Proposition A.2.1.)
Remark 5.4.3 Since the trace TrU : H3

c(U,Gm)→ Q/Z is defined to be a composition

H3
c(U,Gm)→ H3

c(X,Gm)
Tr−→ Q/Z

(with Tr an isomorphism), for dense open h : V ↪→ U we wish to express a compatibility
between TrU and TrV .

Calling jU the inclusion of U into X, and jV the inclusion of V into X, by definition

H3
c(U,Gm) = H3(X, (jU !Gm)∧), H3

c(V,Gm) = H3(X, (jV !Gm)∧).

The identification jV ! = jU !◦h! implies that the inclusion (jV !Gm,V )∧ ↪→ Gm,X factors through
(jU !Gm,U )∧ ↪→ Gm,X , so we obtain a natural map

f : H3
c(V,Gm,V )→ H3

c(U,Gm,U )

by applying Ĥ3(X, ·) to the inclusion (jV !Gm,V )∧ ↪→ (jU !Gm,U )∧. By functoriality of H3(X, ·),
the diagram

H3
c(V,Gm)

f

��

// H3
c(X,Gm)

H3
c(U,Gm) // H3

c(X,Gm)

commutes. It follows that f is an isomorphism and TrV = TrU ◦ f .

We have established most of the necessary terminology and preliminary results to begin to
prove Theorem 1.2.6, but we require one more definition in order for the entire statement to
make sense. Let us first recall the statement of the result to be proved:
Theorem 5.4.4 (Artin-Verdier) Let F be a constructible abelian étale sheaf on a dense open
U ⊂ X. The Yoneda pairing

Hp
c(U,F )× Ext3−pU (F,Gm,U )→ H3

c(U,Gm,U ) = Q/Z

is a perfect pairing of finite abelian groups for all p ∈ Z.
Remark 5.4.5 In this statement, the Ext-group is defined to be 0 when p > 3 (so part of
the assertion is that Hp

c(U,F ) = 0 if p > 3). Also, Hp
c(U,F ) doesn’t generally vanish for

p < 0 when there are real places since Ĥp(X, ·) doesn’t generally vanish for p < 0 when there
are real places: see Definition 5.2.1 (and Definition 5.4.1). It may seem totally ridiculous to
comtemplate p < 0, but if there are real places then H0

c is not left-exact and so to push through
the method of proof (which is an induction from the left) it is actually essential to incorporate
negative degrees in the presence of real places (in which case Hp

c for p < 0 is Tate cohomology
for decomposition groups at real places; these can be handled quite concretely, at the cost of
some actual work to ensure that the connecting map from degree −1 to degree 0 interacts well
with the constructions we’ll make!).
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The gap which remains before we can begin the proof is to explain what the “Yoneda pairing”
is; the technical problem is that the definition of H•c(U, ·) involves the intervention of the non-
exact functor (̂·). The role of such a non-exact functor made it a bit surprising that H•c(U, ·)
admits a δ-functor structure, but (̂·) applied to complexes of sheaves does not preserve quasi-
isomorphisms and hence doesn’t make sense at the level of derived categories. Consequently,
the standard method of defining Yoneda pairings via the identification of Extn(F,G) with the
set of derived-category homomorphisms F → G[n] (where G[n] is the one-term complex G
supported in degree −n) cannot be used. We shall proceed in another way.

Let j : U ↪→ X be the open immersion. By definition Hp
c(U,F ) ' Hp

c(X, j!(F )) for any abelian
sheaf F (even δ-functorial!), H3

c(U,Gm,U ) ' H3
c(X,Gm,X) (see Example 5.4.2), and

ExtiX(j!(F ), F ′) ' ExtiU (F, j∗(F ′))

induced by restriction along j for any F on U and any F ′ on X (δ-functorial in F ). Setting
F ′ = Gm,X , we see that to define the pairing over U for F in a manner that is δ-functorial it
suffices to treat the situation over X and then apply that to j!(F ) (as j! is exact). Hence, for
the rest of the proof we may focus on X.

If we let j : X ↪→ X be the inclusion then for abelian sheaves F and F ′ on X we have

ExtmX(F, F ′) = ExtmX(j
∗
(F̂ ), F ′) = Extm

X
(F̂ , j∗(F

′))

due to the adjunction between restriction j
∗ and pushforward j∗. Hence, the usual derived-

category Yoneda method gives a natural pairing

Hn(X, F̂ )× Extm
X

(F̂ , j∗(F
′))→ Hn+m(X, j∗(F

′))

for n ≥ 0. The natural isomorphism j
∗
(F̂ ′) ' F ′ is adjoint to a natural homomorphism

F̂ ′ → j∗(F
′) whose kernel and cokernel are supported at real points. Thus, applying Hp(X, ·)

to this gives an isomorphism for p > 0, so with p = 3 we have a natural isomorphism

H3
c(X,F

′) ' H3(X, j∗(F
′)).

Using the inverse of this gives a pairing

Hp(X, F̂ )× Ext3−p
X

(F̂ , j∗(F
′))→ H3(X, j∗(F

′)) = H3
c(X,F

′)

for p ≥ 0.

Setting F ′ = Gm,X , we get a natural pairing

Hp
c(X,F )× Ext3−p

X (F,Gm,X)→ H3(X,Gm,X) = Q/Z

for p ≥ 0. That is the Yoneda pairing by definition for p ≥ 0, and applying it to the extension-
by-zero to X of an abelian sheaf on U defines such a pairing over any dense open U in X (for
any abelian sheaf F on U).

For p < 0, by definition we seek a pairing

(
⊕
v

Hp−1
T (Iv, Fη))× Ext3−p

X (F,Gm,X)→ Q/Z.

To define this, we need to analyze the Ext’s in degree ≥ 4. This require a lemma:
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Lemma 5.4.6 For every constructible sheaf F on a dense open U ⊂ X, the edge map

Hi(U,HomU (F,Gm))→ ExtiU (F,Gm)

in the local-to-global spectral sequence Hm(U,ExtnU (F,Gm))⇒ Extm+n
U (F,Gm) is an isomorph-

ism if either i ≥ 4 or if F is locally constant with order that is a unit on U .

Proof. First consider the case of general F and i ≥ 4. Let j : V ↪→ U be a dense open such that
F |V is locally constant with order that is a unit on V . By Remark 4.1.4, the local cohomology
functor Hi

x(U, ·) vanishes on torsion abelian sheaves for i ≥ 4. Hence, the restriction map
Hi(U,F ′)→ Hi(V, F ′|V ) is an isomorphism for all i ≥ 4 and all torsion abelian sheaves F ′. We
shall apply that isomorphism with F ′ equal to any of the Ext-sheaves in the local-to-global Ext
spectral sequence.

The formation of that spectral sequence is pullback-functorial with respect to working locally
on U , so it follows that the formation of the edge map is not only compatible with restriction
from U to V but moreover, those restriction maps between edge terms as well as between the
global abutments are isomorphisms in all degrees ≥ 4. Hence, we may assume F is locally
constant with order that is a unit on U .

It suffices to show that for those special class of F ’s, the higher Ext-sheaves ExtiU (F,Gm)
vanish for all i > 0. This assertion is of étale-local nature on U , so by passing to a suitable
connected finite étale cover we may assume F = Z/nZ for some n > 0 that is a unit on U .
Then the exact sequence of constant sheaves

0→ Z→ Z→ Z/nZ→ 0

reduces the task to showing two facts:

(i) ExtiU (Z,Gm) = 0 for i > 0,

(ii) multiplication by n on Ext0(Z,Gm) = Gm is a surjection of étale sheaves.

Assertion (ii) is clear since n is a unit on U , and in general ExtiU (Z,Gm) is the sheafification
of

V  ExtiV (Z,Gm) = Hi(V,Gm).

This sheafification clearly vanishes when i > 0 (as for cohomology of any sheaf), settling (i).

For i ≥ 4 and any constructible F on U , Lemma 5.4.6 allows us to define a composite map

ExtiU (F,Gm) = Hi(U,Hom(F,Gm))→ Hi(η,Hom(Fη,Gm,η)) = Hi(K,F∨η )

via localization to the generic point, where F∨η = Hom(Fη,Gm,η) is the dual Galois module.
(The formation of Hom(F, ·) commutes with pullback to η because F is constructible; in general
the formation of Hom-sheaves does not commute with non-étale localization.) Pulling back
further to cohomology at the real places v1, . . . , vr of K thereby provides a canonical map

ExtiU (F,Gm)→
r⊕

k=1

Hi(Ivk , F
∨
η ).

Corollary 5.4.7 The preceding canonical map is an isomorphism for all i ≥ 4.

Proof. In the proof of Lemma 5.4.6, we saw that since i ≥ 4 we can shrink U without affecting
the Ext’s in degree ≥ 4. Hence, we may assume F is locally constant with order that is a unit
on U . Our task is equivalent to showing that the collective restriction map

Hi(U,F∨)→
⊕
v

Hi(Iv, F
∨
η )
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is an isomorphism for i ≥ 4, with F∨ = Hom(F,Gm) the Cartier dual sheaf (also lcc, and
naturally F ' F∨∨). Writing U = Spec(OK,S) (where S contains the archimedean places of
K) and focusing on the finite discrete GS-module corresponding to F∨η , this was established in
the proof of Theorem 4.3.1.

Remark 5.4.8 For later purposes we need to address a compatibility with finite pushforward.
Consider a finite extension K ′/K and the finite normalization f : U ′ → U of U in K ′/K. Let
η′ ∈ U ′ be the generic point. For a constructible abelian sheaf F ′ on U ′et, so F ′ is lcc over the
preimage of a dense open in U , naturally (f∗F

′)∨η ' f∗((F ′η′)∨). We claim that the isomorphism
in Corollary 5.4.7 is compatible with f∗ in the sense that for i ≥ 4 the diagram

ExtiU ′(F
′,Gm,U ′)

' //

��

⊕
v

⊕
w|v Hi(Iw, (F

′
η′)
∨)

��

ExtiU (f∗(F
′),Gm,U ) '

//
⊕

v Hi(Iv, (f∗F
′)∨η )

commutes, where the left side rests on the exactness of f∗ and the norm map f∗Gm,U ′ → Gm,U .

To prove this commutativity, we can use the compatibility of the isomorphisms in Lemma 5.4.6
and Corollary 5.4.7 with respect to Zariski localization to reduce to the case when F ′ is lcc on
U ′ and f is étale. Hence, the natural composite map

f∗HomU ′(F
′,Gm,U ′)→ HomU (f∗F

′, f∗Gm,U ′)→ HomU (f∗F,Gm,U )

is an isomorphism (here we use both that F ′ is lcc and that f is finite étale). Since f∗ is
exact and preserves injectives (so it carries Cartan–Eilenberg resolutions to Cartan–Eilenberg
resolutions), it follows that for i ≥ 0 the edge maps in Lemma 5.4.6 for F ′ on U ′ and for f∗F ′
on U are compatible in the sense that the diagram

Hi(U ′,HomU ′(F
′,Gm,U ′)) //

��

ExtiU ′(F
′,Gm,U ′)

��

Hi(U,HomU (f∗F
′,Gm,U )) // ExtiU (f∗F

′,Gm,U )

commutes (as we check by chopping the diagram into two smaller squares via an intermediate
row involving f∗Gm,U ′ , in terms of which the bottom square commutes by functoriality of the
edge map over U relative the norm map f∗Gm,U ′ → Gm,U ).

Returning to the task of defining the Yoneda pairing for negative p with constructible F , by
Corollary 5.4.7 it suffices to define pairings

Hp−1
T (Iv, Fη)×H3−p(Iv, F

∨
η )→ (1/2)Z/Z ⊂ Q/Z (11)

for p < 0. But Tate cohomology coincides with group cohomology in positive degrees, so the
usual cup product for Tate cohomology gives a pairing valued in H2(Iv,Gm) = H0

T (Iv,Gm),
and this latter group is the cokernel of the norm map K

× → (Kalg
v )× (with Kalg

v the real closed
field given by the algebraic closure of K in Kv = R). The image of the norm is the subgroup
of positive elements in the real closed field Kalg

v , so its cokernel has order 2. That defines the
Yoneda pairing for negative degrees.

In order to do nontrivial things with the Yoneda pairing as just defined, we need:
Proposition 5.4.9 The pairing Hp

c(U,F )×Ext3−p
U (F,Gm,U )→ Q/Z for constructible abelian

F on Uet is δ-functorial for p ∈ Z.
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Proof. Since extension by zero from U to X is exact, by design the problem reduces to the case
U = X. Consider a short exact sequence of abelian sheaves on X

0→ F ′
f→ F

f ′→ F ′′ → 0

and apply the right-exact (̂·) to get a pair of exact sequences

0→ N → F̂ ′ →M → 0, 0→M → F̂ → F̂ ′′ → 0

with M := ker f̂ ′ and N := ker f̂ , with N supported at the real points.

The δ-functor structure of H•c(X, ·) was defined in degrees ≥ 0 to be the maps

δp : Hp(X, F̂ ′′)→ Hp+1(X,M) ' Hp+1(X, F̂ ′)

for p ≥ 0. Since M → F̂ restricts to an isomorphism over X, applying Ext•
X

(·, j∗(G)) to that
map gives an isomorphism for any G on X (such as G = Gm,X). Hence, the δ-functoriality
of the usual Yoneda pairing does the job for connecting maps in non-negative degrees. Up to
here, the constructibility of F has not been used.

Now let’s consider the connecting maps in degrees ≤ 0; i.e., from degree p to degree p + 1 for
p < 0. Recall that the pairing in negative degrees has only been defined for constructible F .
For p < −1 this expresses the basic fact that cup product in Tate cohomology is δ-functorial
(in all degrees). Hence, it remains to analyze the connecting map from degree −1 to degree 0.
This is proved in Proposition B.2.1.

The proof of Artin–Verdier duality will involve pulling down results from a finite extension of K
that is totally imaginary (over which the theorem has been proved in [Ma, Thm. 2.4]). In addi-
tion to the δ-functoriality already established, we also require compatibility with pushforward
along finite maps. More specifically, let K ′/K be a finite extension, U ⊂ Spec(OK) a dense
open subset, and U ′ ⊂ Spec(OK′) the preimage of U . We get a finite morphism f : U ′ → U
and will use the following preliminary result:
Lemma 5.4.10 For any abelian sheaf F ′ on U ′ and p ≥ 0 we have canonical isomorphisms

Ĥp(U ′, F ′) ' Ĥp(U, f∗(F
′)).

This isomorphism in nonnegative degrees is also δ-functorial by construction, but we won’t
need that. Such isomorphisms also exist for p < 0 (and δ-functoriality holds in all integral
degrees). We discuss these further aspects in §B.2, where we establish a result that is crucial in
subsequent arguments: the isomorphism is compatible with the Yoneda pairing in Proposition
5.4.9 (under a constructibility hypothesis when p < 0).

Proof. We need to compare Hp(U
′
, F̂ ′) and Hp(U, f̂∗(F ′)). Using the map f : U

′ → U that
is “finite” in the sense of Definition 2.5.6, the functor f∗ as in Definition 2.5.1 is exact by
Proposition 2.5.7 and it preserves injectivity (since its left adjoint f

∗
is exact), so

Hp(U
′
, ·) ' Hp(U, f∗(·)).

Hence, it suffices to construct a natural isomorphism

f∗(F̂
′) ' (f∗(F

′))∧.

Over U this is tautological, so we just need to compare stalks at real points v ofK along with the
associated maps ϕv. With the help of Remark 2.5.2, this amounts to elementary bookkeeping
with real and complex places (such as factor fields of K ′⊗K Kv = (K ′⊗K Kv)⊗Kv Kv for real
places v of K) that we leave to the reader.
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5.5 Proof of Artin–Verdier duality

We are ready to prove Theorem 1.2.6. By definition, for the case p < 0 this amounts to the
statement that if v is a real place and M is a finite Iv-module with dual M∨ = Hom(M,K

×
)

then
H2−p
T (Iv,M)×Hp

T (Iv,M
∨)→ H2(Iv,K

×
) = H2(Iv, µ2) = (1/2)Z/Z

is a perfect pairing. This is exactly Remark 1.1.1.

Now consider the case p ≥ 0. This was settled by Mazur for totally imaginary K in [Ma] using
a massive amount of class field theory. (In such cases H0

c(X, ·) = H0(X, ·) is left exact!) We
will establish the general case by induction on p ≥ 0, using the settled cases of p < 0 and of
totally imaginary K (for all p ∈ Z) to get the induction started. That induction is the following
lemma, which concludes the proof.
Lemma 5.5.1 Assume that for some p0 ≥ 0 the pairing is perfect for any K and any con-
structible sheaf F with any p < p0. Then it is also perfect in general for p = p0.

Proof. We choose a finite extension L/K which is totally imaginary, and let Y := Spec(OL).
Let ν : Y → X the projection map. Consider the natural map over X:

F → ν∗ν
∗(F ).

This has trivial kernel, so it fits into a short exact sequence

0→ F → ν∗ν
∗(F )→ G→ 0.

For any abelian group M , denote by MD its Pontryagin dual HomZ(M,Q/Z). The pairing
gives a natural map:

µp(F ) : Ĥp(X,F )→ Ext3−p
X (F,Gm,X)D

that is δ-functorial by Proposition 5.4.9. We know the source is a finite group, and the Ext-
group is torsion (since F is constructible), so the Ext is finite if and only if its Pontryagin dual
is finite, in which case their sizes agree. Thus, our task is equivalent to proving that µp0(F ) is
always an isomorphism.

Since ν∗ is exact (as ν is finite) and carries injectives to injectives, we have for any abelian
sheaf F ′ on Y a natural map

ExtpY (F ′,Gm,Y )→ ExtpX(ν∗(F
′), ν∗(Gm,Y ))

and then we compose this with the natural norm map ν∗(Gm,Y )→ Gm,X on Xet to get

ExtpY (F ′,Gm,Y )→ ExtpX(ν∗(F
′),Gm,X);

this is an isomorphism for any F ′ by [Ma, Thm. 2.7].
Remark 5.5.2 The proof of [Ma, Thm. 2.7] uses δ-functoriality excision arguments to reduce
to separate arguments for finite étale f and F ′ with supported at finitely many closed points.
The latter case ultimately reduces to Shapiro’s Lemma for Galois cohomology via Tate local
duality. There is a fair amount of work involved in this proof!

By Lemma 5.4.10 we have naturally

Ĥp(X, ν∗F
′) = Ĥp(Y, F ′).
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These identifications are compatible with the Yoneda pairings for X and Y by Proposition
B.2.4, and the Duality Theorem is true for Y (as L is totally imaginary), so µp(ν∗F ′) is an
isomorphism for all p ∈ Z (this has no content for p < 0).

From the above short exact sequences of sheaves on X we get a commutative diagram with
exact rows:

· · · → Ĥp0−1(X, ν∗ν
∗(F ))

��

// Ĥp0−1(X,G) //

��

· · · → Ext3−p0

X (ν∗ν
∗(F ),Gm)D // Ext3−p0

X (G,Gm)D //

· · · → Ĥp0(X,F )

µp0 (F )

��

// Ĥp0(X, ν∗ν
∗(F )) //

µp0 (ν∗ν
∗(F ))

��

Ĥp0(X,G) −→

µp0 (G)

��

· · · → Ext3−p0

X (F,Gm)D // Ext3−p0

X (ν∗ν
∗(F ),Gm)D // Ext3−p0

X (G,Gm)D →

The first and fourth vertical arrows are isomorphisms (setting F ′ = ν∗(F ) above). The second
arrow µp0−1(G) is an isomorphism by induction. It follows by a diagram chase that µp0(F ) is
injective. That proves the injectivity in general for µp0 , so therefore µp0(G) is injective! We
run the same diagram chase with this extra information to deduce that the injective µp0(F ) is
bijective.

6 Global duality and the finite ramification exact sequence

In this section we prove that Theorem 1.2.6 is basically equivalent to Tate’s global duality, and
we deduce Tate’s long-exact sequence for finite ramification. Equivalence with Tate’s duality
is an immediate consequence of the following comparison result between étale cohomology and
continuous cohomology.

6.1 Tate’s theorems

We fix a non-empty open set U in X and let S be the finite set of places of K consisting of the
set X∞ of archimedean places and those corresponding to points in X − U . We denote by GS
the étale fundamental group πét

1 (U) of U ; this coincides with the Galois group of the maximal
extension of K unramified outside S.
Theorem 6.1.1 Let F be a locally constant and consrtructible sheaf on U whose fiber-rank is
a unit on U . There is a canonical isomorphism of δ-functors

Hp(GS , Fη) = Hp(U,F )

for p ≥ 0, and it is compatible with cup products.

In Appendix A we give a proof of Theorem 6.1.1, which relies on class field theory, among the
other ingredients.

We now construct Tate’s 9-term long-exact sequence for finite ramification from Artin–Verdier
duality. Let M be a finite discrete GS-module. For any closed point s ∈ X, denote by
Hp(Ks,M) the group Hp(Ds,M) if s is a finite point and the Tate cohomology group Hp

T (Is,M)
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if s is a real point (this is a quotient of H0(Is,M) for p = 0 and agrees with usual Is-cohomology
if p > 0).
Theorem 6.1.2 Let M be a finite discrete GS-module whose order is a unit on U . Then there
exists an exact sequence:

0 // H0(GS ,M) //
⊕

s∈S H0(Ks,M) // H2(GS ,M
∨)D // H1(GS ,M)

//
⊕

s∈S H1(Ks,M) // H1(GS ,M
∨)D // H2(GS ,M) //

⊕
s∈S H2(Ks,M)

// H0(GS ,M
∨)D // 0

naturally in M , where M∨ := Hom(M,Gm,η) is the Cartier dual Galois module and we denote
by (·)D the Pontryagin dual.

Proof. Since GS is the fundamental group of U , M defines a locally constant sheaf FM on U .
We denote by j : U → X the inclusion. By Lemma 5.4.6, we have canonical isomorphisms:

ExtpX(j!(FM ),Gm,X) ' ExtpU (FM ,Gm,U ) ' Hp(U,Hom(FM ,Gm,U )).

We denote the dual sheaf Hom(FM ,Gm,U ) by F∨M . Since the order of FM is a unit on U , F∨M
is locally constant on U ; its generic fiber is M∨. By Theorem 6.1.1 applied to FM , we get an
isomorphism:

ExtpX(j!(FM ),Gm,X) ' Hp(GS ,M
∨). (12)

The local cohomology sequence of §3.2 becomes

· · · →
⊕
s∈S

Hp
s(X, j!(FM ))→ Ĥp(X, j!(FM ))→ Hp(U,FM )→

⊕
s∈S

Hp+1
s (X, j!(FM )). (13)

This sequence will be the desired 9-term long-exact sequence for finite ramification upon un-
raveling its terms and some maps (e.g., to ensure that X1

S(K, ·) and X2
S(K, ·) and the perfect

duality between them can be extracted from the long exact sequence).

By Theorem 6.1.1 we have
Hp(U,FM ) = Hp(GS ,M).

Moreover, by Artin–Verdier duality (!) and dualizing (12) we get:

Ĥp(X, j!(FM )) ' Ext3−p
X (j!(FM ),Gm,X)D ' H3−p(GS ,M

∨)D.

We are left to interpret Hp
s(X, j!(FM )) and some of the maps in the long exact sequence (13).

Suppose s is a real point. From Definition 5.3.1, we have:

Hp
s(X, j!(FM )) = Hp−1

T (Is,M) = Hp−1(Ks,M)

(where the final equality is our definition of H•(Ks, ·) for real s, coinciding with usual Galois
cohomology in positive degrees). Let us now assume s ∈ S is a finite point, and denote by
fs : Xh

s → X the henselization of X at s. By Lemma 4.1.3 we have:

Hp
s(X, j!(FM )) = Hp

s(X
h
s , f

∗
s j!(FM )).
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The latter group can be computed from the local cohomology sequence for a henselian discrete
valuation ring A (such as that of X at s), giving an isomorphism

Hp
s(X, j!(FM )) ' Hp−1(Ds,M) = Hp−1(Ks,M)

because of the vanishing of the the flanking terms Hp(Spec(A), j′!(G)) for the open immersion
j′ : Spec(L) ↪→ Spec(A) of the generic point and an étale sheaf G on the generic point (since
the degree-p cohomology of a sheaf on Spec(A) coincides with the degree-p cohomology of the
fiber sheaf at the closed point due to A being henselian, so it vanishes when that fiber sheaf is
0).

Next, we describe some of the maps that emerge via these identifications:
Lemma 6.1.3 For M as in Theorem 6.1.2 and p ≥ 0, the composite isomorphism

Hp(GS ,M) ' Hp(U,FM )→
⊕
s∈S

Hp+1
s (X, j!(FM )) '

⊕
s∈S

Hp(Ks,M)

is the restriction map and moreover the map
⊕

s∈S H1(Ks,M) → H1(U,M∨)D defined via
identification with the outer terms in⊕

s∈S
H2
s(X, j!(FM ))→ Ĥ2(X, j!(FM )) ' Ext1

X(j!(FM ),Gm,X)D ' H1(GS ,M
∨)D

is Pontryagin dual to the map H1(GS ,M
∨)→

⊕
s∈S H1(Ks,M)D defined by Tate local duality

H1(Ks,M)×H1(Ks,M
∨)→ Q/Z for all s ∈ S (including real s!).

These descriptions ensure that the 9-term exact sequence we will build yields perfect pairings
between X1

S(K,M∨) and X2
S(K,M) (entirely opposite to Tate’s approach that directly con-

structed such perfect pairings and used that to define parts of the 9-term exact sequence).
The degree-1 identification is not entirely a tautology, since (for non-real s) the degree-1 local
duality pairing changes by a sign if we swap the factors in the pairing!

Proof. Consider the s-component of the first assertion. If s is real then is reduced to the
description for p ≥ 0 of connecting maps from global to local cohomology at a real point
for arbitrary abelian sheaves on X as in the proof of Theorem 4.3.1. The case of finite s is
handled by a simpler version of the same limit trick as in the case of real points, namely we use
compatibility with residually trivial pointed étale neighborhoods of s to reduce to the analogous
identification when X is replaced with Spec(Oh

X,s), in which case our task is a tautology in
view of how Hp+1

s (X, j!(FM )) is identified with Hp(Ks,M) via a local cohomology sequence
on Spec(Oh

X,s). The link to Tate local duality in degree 1 lies deeper, and we address it in
Proposition B.3.1.

It remains to check exactness at the endpoints of the 9-term sequence; i.e., that (13) is injective
from H0(U,FM ) and is surjective onto Ĥ3(X, j!(FM )). By Lemma 6.1.3, the injectivity expresses
the obvious fact that the natural map H0(GS ,M)→

⊕
s∈S H0(Ks,M) is injective: if S contains

a finite point s0 then even the projection to the s0-factor is injective, and if S consists only of
the real places then U = X yet the order of M is a unit on U , forcing M = 0. By Lemma 6.1.3
the surjectivity is the assertion that the natural restriction map

H3(GS ,M)→
⊕
s∈S

H3(Ks,M)

is injective, and even its projection to the direct sum over the real points is injective (in fact,
an isomorphism!) due to Theorem 4.3.1. This completes the proof.
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A Relating Galois cohomology and étale cohomology

A.1 A global comparison

We begin by proving Theorem 6.1.1, which we restate here for convenience.
Theorem A.1.1 Let F be a locally constant constructible sheaf on U whose fiber-rank is a
unit on U . There is a natural isomorphism of δ-functors

Hp(GS , Fη) = Hp(Uet, F )

for p ≥ 0, and it is compatible with cup products.

Proof. We consider Uet, which is equivalent to the category of finite étaleK-algebras unramified
outside S. Therefore, H•(Ufét, ·) is GS-cohomology on discrete GS-modules. We consider the
functor

Ufét → Uet

assigning to each finite étale U -scheme the same scheme viewed as an étale U -scheme. This
yields a morphism of categories of sheaves of sets

µ = (µ∗, µ
∗) : Shv(Uet)→ Shv(Ufét)

for which µ∗ sends an étale sheaf of sets on Uét its restriction on Ufét and the corresponding
pullback µ∗ assigns to each sheaf of sets F on Ufét the sheafification of the presheaf V 7→ F (V ′)
where V ′ is the unique maximal finite étale U -scheme dominated by V . (If V = ∅ then V ′ = ∅.)

Since µ∗ is exact, implying that µ∗ preserves injectives, the equality

Γ(Uét, ·) = Γ(Ufét, ·) ◦ µ∗

yields a Grothendieck spectral sequence

Hp(Ufét,R
qµ∗(A))⇒ Hp+q(Uét, A)

for any étale abelian sheaf A on U . We shall prove that the edge map

Hp(GS , µ∗(F )η) = Hp(Ufét, µ∗(F ))→ Hp(Uet, F )

is an isomorphism when F is lcc with order a U -unit (and then at the end we will address
why this is a map of δ-functors compatible with cup products). It suffices to prove that for
every such F , µ∗(F )η = Fη and Rqµ∗(F ) vanishes for all q > 0. The equality µ∗(F )η = Fη
is immediate from the definition of µ∗ since the lcc hypothesis on F implies that Fη as a
Gal(Ks/K)-module is a GS-module. (In general, if F is an arbitrary abelian sheaf on Uet then
µ∗(F )η = F

Gal(K/KS)
η .)

Higher direct images are always computed as “sheafified cohomology”, so upon renaming a
connected finite étale cover of U as U it suffices to show that

lim−→Hp(U ′fét, F ) = 0

for all p > 0, the colimit running over all connected finite étale covers U ′ → U dominated by
the chosen KS .

Up to replacing again U with a suitable connected finite étale cover, we reduce to the case
F = Z/nZ with n invertible on U such that the function field K of U contains the n-th roots of
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unity and is totally imaginary. For any connected finite étale U ′ → U we will use the Kummer
sequence

0→ Z/nZ→ Gm,U ′
×n−−→ Gm,U ′ → 0

that yields the exact sequence:

0 // H0(U,Z/nZ) // O×K,S
tn // O×K,S //

H1(U,Z/nZ) // Pic(U)
×n

// Pic(U) // H2(U,Z/nZ) //

H2(U,Gm,U )
×n
// H2(U,Gm,U ) // H3(U,Z/nZ)

SinceK is totally imaginary, so U = U , Theorem 4.1.1 and Proposition 4.2.2 imply Hp(U,Z/nZ) =
0 for all p ≥ 3.

To show lim−→Hp(U ′,Z/nZ) = 0 for p = 1, 2 as U ′ varies through the connected finite étale covers
of U dominated by KS , first note that lim−→O

×
U ′ = O×KS ,S is n-divisible (as n is an S-unit), and

lim−→Pic(U ′) = 1 due to the Principal Ideal Theorem (as we saw in the proof of Proposition
1.2.2); this gives the vanishing for p = 1.

To settle p = 2 it suffices to prove

lim−→
U ′

H2(U ′ét,Gm,U ′)[n] = 0,

By Grothendieck’s work on Brauer groups in the case of Dedekind schemes (applying the end
of [Mi, Ch. 13] to a connected Dedekind scheme), H2(U ′ét,Gm,U ′) is the group of Brauer classes
of the function field K ′ which are locally trivial at all places corresponding to closed points.
Hence, it suffices to show that every class in Br(K ′)[n] locally trivial outside S is split by some
finite extension of K ′ unramified outside S.

Let L/K ′ be an extension which is unramified along U ′. Let w be a place of K ′ over a place
u ∈ S. By local class field theory we get a commutative diagram:

Br(K ′u)

��

inv // 1
nZ/Z

[Lw:K′u]

��

Br(Lw)
inv
// 1
nZ/Z

It is sufficient to construct an extension L/K ′ such that it is unramified along U ′ and all local
degrees [Lw : K ′u] are divisible by n for all u ∈ S and w|u. If we let H ′ be the Hilbert class field
of K ′ then all maximal ideals q ∈ S become principal in H ′ by the Principal Ideal Theorem ,
say generated by some fq. The extension

L := H ′({f1/n
q , q ∈ S})

does the job. Indeed, passing to L makes all classes in Br(K ′)[n] locally trivial at all places
(he archimedean ones being complex), hence globally trivial. This completes the proof of the
desired natural isomorphism.
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It remains to show that the edge-map isomorphisms fpF : Hp(GS , Fη) ' Hp(Uet, F ) for lcc
F constitute a map of δ-functors compatible with cup products. The compatibility with δ-
functoriality is a special case of a general property of edge maps along the bottom in the
Grothendieck spectral sequence: if G : C → C ′ and G′ : C ′ → C ′′ are left-exact functors
between abelian categories with enough injectives and G carries injectives to G′-acyclics then
we claim that the edge map

Rp(G′) ◦G→ Rp(G′ ◦G)

respects the δ-functor structure on both sides when applied to a short exact sequence 0→ F1 →
F2 → F3 → 0 in C for which applying G preserves short-exactness (we apply this with G = µ∗,
G′ = Γ(Ufét, ·), and the Fj an abelian sheaf on Uet arising from a discrete GS-module Mj).
This is an elementary diagram-chasing exercise in reviewing how the Grothendieck spectral
sequence is constructed by means of Cartan–Eilenberg resolutions, so it is left to the interested
reader.

For any discrete GS-moduleM and the associated abelian sheaf FM on Uet, we have µ∗(FM )η =
M as discrete modules over Gal(K/K) (acting onM through its quotient GS). Hence, we have
edge maps

fpM : Hp(GS ,M) = Hp(Ufét, µ∗(FM ))→ Hp(Uet, FM )

for any suchM . (This edge map is not claimed to be an isomorphism for all suchM , especially
without torsion hypotheses.) The δ-functoriality argument just given applies to all suchM ; i.e.,
there no need to assume M is finite with order a unit on U . But in that generality the class of
M ’s under consideration is far richer than just finite discrete GS-modules with order a unit on
U . In particular, H•(GS , ·) is a derived functor on this huge class of such M ’s, so we can apply
Grothendieck’s theorem on the universality of erasable δ-functors to conclude that the collection
of edge maps {fpM}p is the unique such map of δ-functors. Hence, to establish compatibility
with cup products it suffices to produce some map of δ-functors H•(GS ,M)→ H•(Uet, FM ) in
discrete GS-modules M such that it is compatible with cup products. (The point is that for
M of finite order that is a unit on U such an alternative map must recover the isomorphisms
that are the focus of interest in the statement of Theorem A.1.1, so these isomorphisms would
be compatible with cup products as desired.)

The key observation is that if we view M as a sheaf on Ufét then via the natural isomorphism
M ' µ∗(FM ) we get an adjoint map hM : µ∗(M)→ FM and the latter is also an isomorphism.
To check this latter isomorphism property we may use compatibility with direct limits in M
to reduce to the case when M is finitely generated as a discrete GS-module, so M is split by a
connected finite étale cover of U . The formation of the map hM is compatible with pullback
to a connected finite étale cover of U , so we may reduce to the case when the GS-action on M
is trivial, so M on Ufét is a constant sheaf and hence µ∗(M) is the “same” constant sheaf on
Uet because if V → U is étale with V connected (and non-empty) then the maximal finite étale
U -scheme V ′ through which V → U factors is also connected. Since FM is also the “same”
constant sheaf, in this way we see that hM is identified with the identity map on that constant
sheaf and so it is an isomorphism.

Now our aim is to give an “alternative” construction of a map of δ-functors H•(Ufét, ·) →
Hp(Uet, µ

∗(·)) which is compatible with cup products. But for any map of topoi (such as
(µ∗, µ

∗)!) there is an associated δ-functorial pullback map in abelian cohomology, and it is
always compatible with cup products (as cup products may always be computed in terms of
composition of maps in derived categories, as an instance of Ext-pairings).
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A.2 Local computations

Now let A be a discrete valuation ring with fraction field K and residue field k. For the open
immersion j : Spec(K) → Spec(A) and its closed complement i : Spec(k) → Spec(A) we have
the usual exact sequence

(∗) 0→ Gm,A → j∗(Gm,K)→ i∗(Z)→ 0

as in Artin’s calculation of cohomology on smooth curves over a field.
Proposition A.2.1 Assume A is henselian, its residue field k is perfect, and K̂ is separable
over K. Then

Rpj∗(Gm,K) = 0, p > 0.

The separability of K̂ over K is automatic in characteristic 0 and in general says that A is
excellent.

Proof. The stalk at the generic point vanishes, ultimately because j∗ carries injectives to in-
jectives and j∗j∗ ' id (good exercise). Thus, we need to compute the stalk at a geometric
closed point. As for higher direct images in general, this is the direct limit of the cohomologies
of the K-fibers of local-etale neighborhoods of the closed point, which is to say Hp(Ksh,Gm)
where Ksh is the fraction field of Ash, or equivalently the maximal unramified extension of K.
We may rename Ash as A to reduce to the case that k is algebraically closed. Hilbert 90 gives
vanishing for p = 1, and for p = 2 the assertion is that Br(K) = 1.

Granting the vanishing of the Brauer group of such K in general, the same then holds for
all of its finite separable extensions too. Consequently, by the criterion in §3.1 of Chapter II
of Serre’s Galois Cohomology, the field K has cohomological dimension ≤ 1 (i.e., its Galois
cohomology vanishing beyond degree 1 on torsion discrete Galois modules). But then it is
strict cohomological dimension ≤ 2 (i.e., vanishing Galois cohomology beyond degree 2 on all
discrete Galois modules), by §3.2 in Chapter I of Serre’s book. Hence, we would get the desired
vanishing for all p > 2.

It remains to prove that Br(K) = 1 when k is algebraically closed. If A is complete then this
is Example (b) in §7 of Chapter X of Serre’s “Local Fields”. To settle the general case, first
note that since A is henselian, by Krasner’s Lemma completion defines an equivalence between
the finite separable extensions of K and K̂. Hence, the Galois groups of K and K̃ coincide. In
particular, for any n > 0 not divisible by char(K) the natural map

H2(K,µn)→ H2(K̂, µn)

is an isomorphism. But this is the map between n-torsion in the Brauer groups, so it follows
that the map

Br(K)→ Br(K̂)

is an equality if char(K) = 0 and away from p-primary parts if char(K) = p > 0.

To settle the case p = char(K) > 0, we will use Artin approximation (which applies to systems
of polynomial equations over the henselian local A since it is excellent); one can avoid Artin
approximation by instead appealing to the deep result in Lang’s thesis that such fields K are
C1-fields. More specifically, one of the several sufficient conditions for the Brauer groups of all
finite separable extensions of K to vanish is that for every finite separable extension K ′/K and
finite Galois extension L/K ′ the norm map L× → K ′

× is surjective. It is harmless to rename
such K ′ as K and we want to show that the norm map L× → K× is surjective. The completion
L̂ coincides with K̂ ⊗K L, and the settled result in the complete case ensures that the norm
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map L̂× → K̂× is surjective. In particular, for every c ∈ K× the norm equation NL/K(x) = c

viewed as a polynomial equation over K (via a K-basis of L) has a solution in K̂ = K ⊗A Â.
This norm equation is easily rewritten as a polynomial equation over A which has a solution
in Â− {0}, so by Artin approximation there exists a nearby solution in A.

Finally, we recall that there is a right adjoint i! to i∗ (i.e., Hom(i∗(M), F ) = Hom(M, i!(F )) for a
discrete Gk-module F and étale sheaf F on Spec(A)). In the language of Artin’s decomposition
lemma applied to Spec(A), it is easily checked that

i!(M,N,ϕ : M → N I) = kerϕ

has the correct adjunction property. Since j∗(N) = (N I , N, idNI ) it follows that i! ◦ j∗ = 0.
Likewise, since i∗(M) = (M, 0, 0), clearly i!i∗ = id. Using this, we shall prove:
Proposition A.2.2 We have:

Rpi!(Gm,A) =

{
0 if p 6= 1
Z if p = 1

Proof. To prove this we use the exact sequence (∗), and compute the outer terms. We claim:

(Rpi!)j∗(Gm,K) = 0, p ≥ 0.

Indeed, j∗ preserves injectives, and hence by Grothendieck’s composition of functors sequence:

(Rpi!)(Rqj∗)(Gm,K)⇒ Rp+q(i!j∗)(Gm,K).

Next we use the fact that i!j∗ = 0, and deduce the claim from Proposition A.2.1.

Now it suffices to show
(Rpi!)i∗(Z) =

{
Z if p = 0
0 if p 6= 0.

Indeed, i∗ is exact and preserves injectives, and then we have:

(Rpi!)i∗ = Rp(i!i∗) = Rp(id).

This gives the result.

B Homological compatibilities

To avoid disrupting the exposition with long compatibility checks that may not be so interesting,
we place some of those verifications in this appendix.

B.1 Global to local restriction maps

Proposition B.1.1 The isomorphism fpM in (4) for p ≥ 3 is the natural restriction map.

Proof. To determine fpM , we consider it as a special case of a much more general problem,
going far beyond isomorphisms and locally constant sheaves. In Lemma 3.2.3 we computed
the δ-functor H•ṽ(U,G) in a general abelian sheaf G on U . The local cohomology sequence for
U ↪→ U provides connecting maps

Hp(U,G|U )→
⊕
ṽ

Hp+1
ṽ (U,G)
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for p ≥ 0 that are δ-functorial by Remark 3.2.2 (where the sign problem doesn’t arise at real
points since Tate cohomology at real points is 2-torsion and hence insensitive to signs!). In
view of how fpM was built for p ≥ 3, it therefore suffices to show that for all such G and all
p ≥ 1 the composite map

Hp(U,G|U )→
⊕
ṽ

Hp+1
ṽ (U,G) '

⊕
ṽ

Hp(Iv, Gη)

is the natural restriction map.

By standard dimension-shifting arguments (using crucially that we allow arbitrary G so that we
may avail ourselves of the existence of enough injectives in the category of all abelian sheaves
on Ũ), the δ-functoriality in Remark 3.2.2 (again, no sign problem with Tate cohomology at
real places) and the δ-functoriality in Lemma 3.2.3 reduce this task to the case p = 1. We need
to push one step further into degree 0, as follows.

In Lemma 3.2.3 we identified the δ-functor H•ṽ(U,G) in degree 1 with the quotient

coker(ϕṽ : Gṽ → H0(Iv, Gη))

of H0(Iv, Gη). Moreover, by construction, the δ-functor structure on the concrete side of the
statement of Lemma 3.2.3 is induced in degree 0 by the usual connecting map in group cohomo-
logy. Hence, running the same argument once again reduces our task to checking for arbitrary
abelian sheaves G on U that the composite map

fG : H0(U,G|U )→
⊕
ṽ

H1
ṽ(U,G) '

⊕
ṽ

coker(ϕṽ : Gṽ → H0(Iv, Gη))

is equal to the composition of the natural restriction map H0(U,G|U )→
⊕

ṽ H0(Iv, Gη) followed
by the natural quotient map.

We may and do focus on describing the composition fG,v of fG with projection to the v-
component for a fixed choice of real place v of K. It is easy to check from the construction
that fG,v is compatible with pullback to a connected étale U -scheme U ′ arising from a number
field K ′/K inside Kalg

v (equipped with the induced replace place over v), and the concrete map
we want to prove coincides with fG,v is also compatible with such pullback. Hence, we can
pass to the limit over such U ′ to reduce to the analogous compatibility question when U is
replaced with Spec(Kalg

v ), we use the real place v′ on the real closed field Kalg
v arising from its

tautological inclusion into the completion Kv = R, and H•ṽ(U, ·) is replaced with the derived
functor of the analogue of H0

ṽ(U, ·) for Spec(Kalg
v ) equipped with v′. Note that Iv is naturally

identified with the Galois group of Kalg
v , so the role of GIvη collapses to the global sections over

Kalg
v !

Our new setup is as follows. We have a (real closed) field E, the category AbY of abelian étale
sheaves on Y = Spec(E), and an “extended” category AbY consisting of triples G = (G0, Gη, ϕ)
where Gη ∈ AbY , G0 is an abelian group, and ϕ : G0 → Gη(E) is a homomorphism into the
global sections. By the analogue of Example 2.4.5, the functor Γ(Y , ·) assigns to G the fiber
product Gη(E) ×Gη(E),ϕ G0 = G0 and the restriction functor Γ(Y ,G) → Γ(Y,G) is ϕ : G0 →
Gη(E). Hence, the role of H0

ṽ(U, ·) is played by the functor H0
∗ : G kerϕ. Our task is to prove

that via the isomorphism H1
∗(G) ' coker(ϕ) provided by (the proof of) the analogue of Lemma

3.2.3 for the present setting, the natural connecting map Gη(E) = Γ(Y,G)→ H1
∗(G) ' coker(ϕ)

is exactly the canonical quotient map.

Consider the initial short exact sequence 0 → G → I → N → 0 arising from an injective
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resolution of G. This yields a commutative diagram with exact rows and columns as indicated:

0

0 // kerϕN // N0

OO

ϕN // Nη(F )

0 // kerϕI

f

OO

// I0

OO

ϕI // Iη(F ) //

OO

0

0 // kerϕG //

OO

G0
ϕG //

OO

Gη(F )

OO

0

OO

0

OO

0

OO

Applying the snake lemma to the diagram given by the right two columns provides a connecting
isomorphism cokerf ' cokerϕG that is exactly the isomorphism H1

∗(G) ' cokerϕG provided by
the proof of Lemma 3.2.3. Applying the snake lemma to the diagram given by the upper two
rows provides a connecting isomorphism cokerϕG ' cokerf whose composition with the natural
quotient map Gη(F ) → cokerϕG is the definition of the connecting map Gη(F ) → H1

∗(G) in
the “local cohomology” exact sequence.

Our task is now reduced to showing that the connecting isomorphisms that we have just con-
structed in opposite directions between cokerϕG and cokerf (one using the right two columns,
the other using the upper two rows) are inverse to each other. As an assertion in homolo-
gical algebra for any such commutative diagram with the indicated exactness in the rows and
columns, this is a trivial diagram chase (traversing in opposite directions along the same zig-zag
staircase path between Gη(F ) and kerϕN passing through Iη(F ), I0, and N0).

B.2 Properties of some pairings

For a dense open U ⊂ X = Spec(OK) and an abelian sheaf F on Uet, in §5.4 we defined general
pairings

Hp
c(U,F )× Ext3−pU (F,Gm,U )→ Q/Z (14)

naturally in F for any p ∈ Z, assuming F is constructible when p < 0. This relied on Ext-
pairings on X for p ≥ 0 (using the extension-by-zero of F to X) and an entirely different
procedure with Tate cohomology when p < 0 (using Corollary 5.4.7 and (11)). In this section
we establish some properties of (14) that underlie how it is analyzed in proofs (such as for
Artin–Verdier duality).

The proof of Proposition 5.4.9 addresses the δ-functoriality of (14) except for the case that
links up the two aspects of how the pairing is defined (i.e., relating p ≥ 0 and p < 0), which we
now address:
Proposition B.2.1 The pairing (14) is δ-functorial from degree −1 to degree 0 for constructible
abelian F .

Proof. 1

1To be filled in.
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Now we turn to refinements of the isomorphism in Lemma 5.4.10: defining it in all degrees p ∈ Z
(not just p ≥ 0), establishing its δ-functoriality, and especially proving that it is compatible
with pairings as in (14) on U and U ′ via the composite map

ExtiU ′(F
′,Gm,U ′)→ ExtiU (f∗(F

′), f∗(Gm,U ′))→ ExtiU (f∗(F
′),Gm,U )

(first step using exactness of f∗, and second step using the evident “norm” map); this composite
map is an isomorphism for constructible F ′ by [Ma, Thm. 2.7] (see Remark 5.5.2) but that is not
relevant to the compatibility assertion. This compatibility with finite pushforward is essential
for bootstrapping the proof of Artin–Verdier duality from the totally imaginary case.

The definition of (14) rests on the global trace isomorphism TrU : H3
c(U,Gm,U ) ' Q/Z whose

compatibility with shrinking U was addressed in Remark 5.4.3. A further compatibility we
shall require involves comparing local and global trace maps, in the sense of a commutative
diagram

Br(Kv)

��

invv // Q/Z

H3
c(U,Gm) '

TrU // Q/Z

(15)

for all points v ∈ X − U . This will be largely a matter of review of definitions (such as of TrU
in terms of TrX), and is especially useful for finite v (i.e., v ∈ X − U) since in such cases invv
is an isomorphism (thereby making the left side of (15) an isomorphism).

We first define the map along the left side of this diagram before we prove that it commutes.
It is convenient to initially work with a general abelian sheaf F on U rather than specifically
with Gm,U . Letting j : U ↪→ X be the open immersion, the local cohomology sequence (7) for
j!F relative to the dense open inclusion of U into X has the form

· · · →
⊕

v∈X−U

Hp
v(X, j!(F ))→ Hp

c(U,F )→ Hp(U,F )→ · · · (16)

where the local term at real v coincides with Hp
v(U,F ) as in Definition 5.3.1 (using (6)).

For any v ∈ X−U , the v-term in this local cohomology sequence is Hp−1(Kv, Fη) by arguments
treating real points and points of X−U separately; this is shown the proof of Theorem 6.1.2 in
a special case, and for the convenience of the reader we now reproduce the argument in general.
If v is real then by Definition 5.3.1 we have

Hp
v(X, j!(F )) = Hp−1

T (Is, Fη) = Hp−1(Ks, Fη)

(where the final equality is our definition of the notation H•(Ks, ·) for real s, coinciding with
usual Galois cohomology in positive degrees). For x ∈ X−U and fx : Xh

x → X the henselization
of X at x, by Lemma 4.1.3 we have

Hp
x(X, j!(F )) = Hp

x(Xh
x , f

∗
xj!(F )).

The latter group can be computed from the local cohomology sequence for a henselian discrete
valuation ring A (such as that of X at x), giving an isomorphism

Hp
x(X, j!(F )) ' Hp−1(Dx, Fη) = Hp−1(Kx, Fη)

because of the vanishing of the the flanking terms Hp(Spec(A), j′!(G)) for the open immersion
j′ : Spec(L) ↪→ Spec(A) of the generic point and an étale sheaf G on the generic point (since
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the degree-p cohomology of a sheaf on Spec(A) coincides with the degree-p cohomology of the
fiber sheaf at the closed point due to A being henselian, so it vanishes when that fiber sheaf is
0).

The left vertical arrow in (15) is defined to be the “v-summand” of the resulting map⊕
v∈X−U

Br(Kv) =
⊕

v∈X−U

H2
v(X, j!(Gm,U ))→ H3

c(U,Gm).

Via the definition of TrU in terms of TrX and the computation of H3(X,Gm,X) performed in
§3.3, the invariant map invv : Br(Kv)→ Q/Z makes (15) commute. This local-global compat-
ibility will have a very useful consequence for the global trace relative to finite pushforward, as
we shall see in Example B.2.3.

Now let K ′/K be a finite extension, and U ′ the K ′-normalization of U , with ν : U ′ → U the
resulting finite surjection. For any abelian sheaf A on U ′ét and p ∈ Z we aim to construct an
isomorphism

ων,A,p : Hp
c(U, ν∗A)→ Hp

c(U
′, A)

that is δ-functorial in A.

For X ′ := Spec(OK′), the open immersion j′ : U ′ → X ′, and the normalization map νX : X ′ →
X, the following diagram is cartesian:

U ′

ν

��

j′
// X ′

νX

��

U
j
// X

Since the natural map j!ν∗ → νX∗j
′
! is an isomorphism (as can be checked on stalks) and νX is

finite, we obtain a composition of natural maps

Hp
c(U, ν∗A) := Ĥp(X, j!ν∗A) = Ĥp(X, νX∗j

′
!A) ' Ĥp(X ′, j′!A) =: Hp

c(U
′, A)

(using Lemma 5.4.10 for the third identification). For p ≥ 0, we define ων,A,p to be this
composite isomorphism.

Now consider p < 0, so by definition Hp
c(U, ν∗A) =

⊕
v∈X∞ Hp−1

T (Iv, (ν∗A)η). Denoting by
η′ ∈ U ′ the generic point, we have Hp

c(U
′, A) =

⊕
w∈X′∞

Hp−1
T (Iw, Aη′). Tate cohomology in

degree < −1 is positive-degree group homology, and for any real place v the étale sheaf (ν∗A)η
viewed as an Iv-module is the pushforward of A through∐

v′|v

Spec(K ′v′) = Spec(K ′ ⊗K Kv)→ Spec(Kv).

The contributions from complex places over v are induced Iv-modules, so their higher group
homology vanishes. The contributions to this pushforward from real places w of K ′ over v
contribute A viewed as an Iw-module. Thus, for p < 0 we have natural isomorphisms

ων,A,p : Hp
c(U,A) := Hp−1

T (Iv, (ν∗A)η) =
⊕
w∈X′∞

Hp−1
T (Iw, Aη′) =: Hp

c(U
′, A)

(dropping the vanishing contribution from complex places of K ′ over real places of K!).
Lemma B.2.2 The isomorphisms ων,A,p for p ∈ Z are δ-functorial in A.
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Proof. We need to check compatibility with connecting maps Hp
c → Hp+1

c arising from every
short exact sequence of abelian sheaves

0→ A′ → A→ A′′ → 0

on U ′ and its short exact ν-pushforward on U . The case p < −1 is a trivial assertion in higher
group homology. For p ≥ 0, since j!ν∗ → νX∗j

′
! is an isomorphism of exact functors and the

isomorphism H•(X, νX∗(·)) ' H•(X
′
, ·) (as in the proof of Lemma 5.4.10) is visibly δ-functorial,

a review of how Ĥ•(X, ·) and Ĥ•(X ′, ·) are made into δ-functors in §5.2 gives the result.

It remains to consider p = −1. By definition of Hp
c(U, ·) and Hp

c(U
′, ·) we reduce to the case

U = X (so U ′ = X ′). Let
0→ A′ → A→ A′′ → 0

be a short exact sequence of abelian sheaves on X ′, so we get a diagram of long exact sequences

· · · //
⊕

v H−2
T (Iv, (ν∗A

′′)η)

ων,A′′,−1

��

// Ĥ0(X, ν∗A
′)

α //

ων,A′,0

��

Ĥ0(X, ν∗A) //

ων,A,1

��

· · ·

· · · //
⊕

v

⊕
w|v H−2

T (Iw, A
′′
η′)

// Ĥ0(X ′, A′)
β
// Ĥ0(X ′, A) // · · ·

where v and w vary through real places. Defining M := ker(α) and M ′ := ker(β), it suffices to
check commutativity of the resulting diagram⊕

v H−2
T (Iv, (ν∗A

′′)η)

ων,A′′,−1

��

// M

ων,A′,0

��⊕
v

⊕
w|v H−2

T (Iw, A
′′
η′)

// M ′

As we saw in §5.2 when making Ĥ•(X, ·) into a δ-functor, by design of (̂·) we have

M ⊂
⊕
v

H−1
T (Iv, (ν∗A

′)η), M ′ ⊂
⊕
v

⊕
w|v

H−1
T (Iw, A

′
η′)

intertwining ων,A′,0 with the naturally induced map between H−1
T ’s (via the description of

(ν∗A
′)η as a Galois module for Kv using pushforward through Spec(K ′ ⊗K Kv) → Spec(Kv)

and the vanishing of H•T (Iv, ·) on induced Iv-modules arising from complex places of K ′ over
v). Thus, it suffices to check the commutativity of the diagram⊕

v H−2
T (Iv, (ν∗A

′′)η)

��

//
⊕

v H−1
T (Iv, (ν∗A

′)η)

��⊕
v

⊕
w|v H−2

T (Iw, A
′′
η′)

//
⊕

v

⊕
w|v H−1

T (Iw, A
′
η′)

where the maps are the obvious ones. Hence, for each real place w of K ′ and its induced real
place v of K it remains to note that the diagram of group homologies

H1(Iv, (ν∗A
′′)η)

��

// H0(Iv, (ν∗A
′)η)

��

H1(Iw, A
′′
η′)

// H0(Iw, A
′
η′)

(using evident vertical maps, via the isomorphism Iw ' Iv) obviously commutes.
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Example B.2.3 The natural “norm” map ν∗Gm,U ′ → Gm,U yields a map

NU ′/U : H3
c(U

′,Gm,U ′)→ H3
c(U,Gm,U )

given by composing the inverse of ων,Gm,U′ ,3 : H3
c(U, ν∗Gm,U ′)

'−→ H3
c(U

′,Gm,U ′) with the map
H3
c(U, ν∗Gm,U ′) → H3

c(U,Gm,U ) induced by H3
c(U, ·)-functoriality. It will be important that

this is compatible with global trace maps:

TrU ◦NU ′/U = TrU ′ .

To prove that identity, we shall use the local-global compatibility in (15) to reduce the problem
to a fact in local class field theory. For dense open V ⊂ U and its preimage V ′ ⊂ U ′, it is easy
to see from the definitions of the isomorphisms

H3
c(V,Gm,V ) ' H3

c(U,Gm,U ), H3
c(V

′,Gm,V ′) ' H3
c(U

′,Gm,U ′) (17)

that they intertwine NU ′/U and NV ′/V . The isomorphisms (17) also respectively intertwine
global traces by Remark 5.4.3, so to prove the desired compatibility of NU ′/U with global
traces it is equivalent to do the same for NV ′/V . Hence, we may assume that U 6= X, so there
exists a point x ∈ X − U .

Rather generally, for any v ∈ X −U (which exists!) and w ∈ X ′−U ′ over v, we claim that the
diagram

Br(K ′w)

Norm
��

// H3
c(U

′,Gm,U ′)

NU′/U
��

Br(Kv) // H3
c(U,Gm,U )

(18)

commutes, where the left vertical map is induced by the usual norm map between local Brauer
groups (defined similarly to NU ′/U , using Shapiro’s Lemma) and the horizontal maps are the
ones defined in (15). Once this is proved, since we have isomorphisms along the horizontal
sides of (18) (due to the commutativity of (15)) it will follow that the compatibility of NU ′/U

with global traces is reduced to the compatibility of norm maps between Brauer groups with
local invariant maps in local class field theory. This local compatibility is a well-known fact:
see Prop. 1(ii) in §2 of Chapter XI in Serre’s book “Local Fields” (applicable since the norm
map between Brauer groups is an instance of “corestriction” in Galois cohomology).

To check commutativity of (18), if we go back to how the horizontal maps in (18) are defined
via local cohomology sequences and we use that

X ′ ×X Xh
v '

∐
w|v

X ′
h
w

then we are reduced to proving the commutativity of

H2(K ′
h
w,Gm)

��

' // H3
w(Spec(Oh

X′,w), jw!(Gm))

N
��

H2(Kh
v ,Gm) '

// H3
v(Spec(Oh

X,v), jv!(Gm))

where jv : Spec(Kh
v ) ↪→ Spec(Oh

X,v) is the open generic point and likewise for jw. This fi-
nal commutativity is an immediate consequence of the compatibility of the local cohomology
sequence with respect to finite pushforward and the functoriality of the local cohomology se-
quence in the sheaf (such as with respect to the norm map νv∗(jw!Gm) → jv!Gm defined by
applying jv! to the “w-component” of the Kh

v -pullback of the norm ν∗Gm,U ′ → Gm,U ).



58 brian conrad alessandro maria masullo

The following refinement of Lemma B.2.2 is crucial in the proof of Artin–Verdier duality beyond
the totally complex case:
Proposition B.2.4 For any abelian sheaf F ′ on U ′, the natural δ-functorial isomorphisms

ων,F ′,p : Hp
c(U, ν∗(F

′))
'−→ Hp

c(U
′, F ′)

are compatible with the Yoneda pairing (14) and its analogue on U ′ for all p ∈ Z, assuming F ′
is constructible when p < 0.

The Yoneda pairing for p < 0 is only defined for constructible F ′.

Proof. In Example B.2.3 we defined a natural “norm” map

NU ′/U : H3
c(U

′,Gm,U ′)→ H3
c(U,Gm,U )

and proved that it is compatible with global traces. To define what it means to say that ων,F,p
is compatible with the Yoneda pairing, we shall use NU ′/U and the natural composite map

ExtqU ′(F
′,Gm,U ′)→ ExtqU (ν∗F

′, ν∗Gm,U ′)→ ExtqU (ν∗F
′,Gm,U )

(with q = 3 − p) that we also call the “norm” and denote as N. We claim commutativity (in
the evident sense) of the diagram

Hp
c(U

′, F ′) × Ext3−p
U ′ (F ′,Gm,U ′)

N
��

// H3
c(U

′,Gm,U ′)

N
��

Tr
'
// Q/Z

Hp
c(U, ν∗F

′)

'ων,F ′,p

OO

× Ext3−p
U (ν∗F

′,Gm,U ) // H3
c(U,Gm,U )

Tr
'

// Q/Z

where the abelian sheaf F ′ is assumed to be constructible when p < 0. Commutativity of the
right square allows us to reduce our considerations to checking commutativity of

Hp
c(U

′, F ′) × Ext3−p
U ′ (F ′,Gm,U ′)

N
��

// H3
c(U

′,Gm,U ′)

N
��

Hp
c(U, ν∗F

′)

'ων,F ′,p

OO

× Ext3−p
U (ν∗F

′,Gm,U ) // H3
c(U,Gm,U )

where F ′ is any abelian sheaf on U ′, with F ′ constructible when p < 0.

For p ≥ 4 the Ext’s vanish and there is nothing to do. Next, consider 0 ≤ p ≤ 3. In view of
how the Yoneda pairing and Hp

c(U, ·) (for p ≥ 0) are defined by using an extension by zero to
X ′, the problem for F ′ is equivalent to the same for its extension by zero to X ′. Hence, we
may assume U = X.

The Yoneda pairing over X is initially valued in H3(X, j∗(Gm,X)) (with j : X → X the
canonical “morphism”), and is then made to take values in H3

c(X,Gm,X) = H3(X,Gm,X)

via inverting the isomorphism obtained by applying H3(X, ·) to the map Gm,X → j∗(Gm,X)

adjoint to the natural isomorphism j
∗
Gm,X ' Gm,X .

Using j′ : X ′ ↪→ X
′
, we get a natural “norm” homomorphism

N : ν∗(j′∗Gm,X′) = j∗(ν∗Gm,X′)→ j∗Gm,X
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over X, and applying H3(X, ·) defines the left side of the diagram

H3(X ′, j′∗Gm,X′)

N
��

H3
c(X

′,Gm,X′)
'oo

N
��

H3(X, j∗Gm,X) H3
c(X,Gm,X)'

oo

that is easily verified to commute. Thus, we are reduced to proving the commutativity of the
diagram

Extp
X′

(Z, F̂ ′) × Ext3−p
X′

(F̂ ′, j′∗Gm,X′)

N
��

// Ext3
X′

(Z, j′∗Gm,X′)

N
��

Extp
X

(Z, ν∗F̂ ′)

'ων,F ′,p

OO

× Ext3−p
X

(ν∗F̂ ′, j∗Gm,X) // Ext3
X

(Z, j∗Gm,X)

whose vertical maps are defined via composition in the derived categories of abelian sheaves
on X ′ and X. The inverse to ων,F ′,p is the map that applies the exact (injective-preserving)
functor ν∗ to a morphism Z → F ′[p] in the derived category over X

′
, and the two other

maps are computed by applying ν∗ and then composing with (a shift of) N, so the desired
commutativity is just a special case of the functoriality of ν∗ between the derived categories.

Finally, we address the case p < 0, so assume F ′ is constructible. Letting η′ ∈ U ′ be the
generic point, by the definition of the Yoneda pairing in negative degrees via cup products in
Tate cohomology (using Corollary 5.4.7!) we are reduced to checking that for v ∈ X∞ and
w ∈ X ′∞ over v, the diagram

Hp−1
T (Iw, F

′
η′) × H3−p

T (Iw, (F
′
η′)
∨)

N
��

// H2
T (Iw,Gm,η′)

N
��

Hp−1
T (Iv, (ν∗F

′)η)

OO

× H3−p
T (Iv, (ν∗F

′)∨η ) // H2
T (Iv,Gm,η)

commutes, where the left map is the projection onto the w-summand as in Shapiro’s Lemma
and we have used Remark 5.4.8 to identify the map between H3−p

T ’s.

The Hi
T ’s on the bottom are identified as a direct sum of analogous terms for F ′η′ relative to the

real places of K over v, and the two norm maps are isomorphisms onto the w-factors of such
direct sums via the isomorphism Iw ' Iv. The pushforward of the duality between F ′η′ and
(F ′η′)

∨ has Kv-pullback that is the direct sum of the duality pairing for F ′η′ over K
′
v′ indexed

by the real places v′ over v, so the desired commutativity is now obvious.

B.3 A duality comparison

The construction of Tate’s 9-term exact sequence via local cohomology requires identifying
many of the abstract maps with something concrete. This is recorded in Lemma 6.1.3, whose
proof has a loose end that we address here:
Proposition B.3.1 In the setting of Lemma 6.1.3, the map H1(GS ,M

∨)→
⊕

s∈S H1(Ks,M)D

is the one defined by the local duality pairings H1(Ks,M)×H1(Ks,M
∨)→ Q/Z.

Proof. 2

2To be filled in, treating real s separately.
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