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1 Motivation

Let R be a discrete valuation ring, F = Frac(R), and k its residue field. Let A be
an abelian variety over F . There are two questions we can ask ourselves:

(1) Does A extend to a smooth proper R-scheme?

(2) Does A extend even to an abelian scheme over R? (An abelian scheme over
a base S is a smooth proper S-group with connected (geometric) fibers. The
commutativity is automatic, but non-trivial; it rests on deformation-theoretic
arguments given early in Chapter 6 of Mumford’s GIT book.)

Although the second question looks like a stronger request than the first, the theory
of Néron models will imply that they are equivalent.

Obstruction to (1). If the answer to (1) is affirmative, with smooth proper
R-model X, then the smooth and proper base change theorems for étale cohomol-
ogy imply upon choosing a place of Fs over that on F and letting Rsh denote the
associated strict henselization inside Fs (so Rsh has residue field ks that is a sepa-
rable closure of k); it is the “maximal unramified extension” of the henselization Rh

that the natural map H i
ét(Xks ,Q`) → H i

ét(AFs ,Q`) determined by Rsh ⊂ Fs is an
isomorphism, where ` is a prime not equal to char(k).

This map is equivariant relative to the action of the decomposition group D
in Gal(Fs/F ) attached to the chosen place on Fs (via D � Gal(ks/k) as usual),
so a consequence of the existence of such an X is that H i(AFs ,Q`) is unramified
as a Gal(Fs/F )-module. Hence, ramifiedness of such cohomology on the geometric
generic fiber is an obstruction to (1). This has nothing to do with abelian varieties.

∗Notes taken by Tony Feng
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1 MOTIVATION

Obstruction to (2). Since H1
ét(AFs ,Q`) = V`(A)∗, we can alternatively think

in terms of the Tate module. For any abelian scheme A/R and prime ` 6= char (k),
the R-group scheme A[`n] is finite étale and hence the Galois module of Fs-points
of A[`n]F ' A[`n] must be unramified. Hence, V`(A) is unramified in such cases, so
ramifiedness of V`(A) as a Gal(Fs/F )-module is an obstruction to (2) (more elemen-
tary than the obstruction to (1) since it doesn’t involve étale cohomology, though it
entails a stronger hypothesis than in (1)!).

Miracle. The fundamental Néron-Ogg-Shafarevich criterion asserts that these
are the only obstructions, and so (1) ⇐⇒ (2). The proof uses Néron models, as
we will indicate later. (Of course, the deeper part is that an unramifiedness Galois
hypothesis implies a structural property for a scheme.)

One of Néron’s key insights was that if you forget about properness and focus
on smoothness then there is a “best” integral model in general. (Note the contrast
with the theory of curves, for which one focuses on proper flat models with possibly
non-smooth fibers.) While understanding the construction of Néron models can
be psychologically comforting, and the techniques involved in it are very useful for
other purposes, in practice one typically only needs to know the general properties
and existence of Néron models and not the details of their construction. The main
reference for this lecture is the amazing book Néron Models by Bosch, Lütkebohmert,
and Raynaud, hereafter denoted [BLR].

Here is the main existence result:

Theorem 1.1 (Néron). Let S be a Dedekind scheme (i.e., a connected normal
noetherian scheme of dimension 1), F its function field, and A an abelian vari-
ety over F . There exists a smooth separated finite type S-scheme A with generic
fiber A such that for all smooth T → S, any map TF → A over F uniquely extends
to a map T → A over S:

TF

��

// A

��
T

∃!
// A

Example 1.2. If TF → A is an isomorphism, then T dominates A. Therefore, any
smooth model of A over S dominates the Néron model (although it is non-trivial
that any smooth models exist at all!). This alone implies that Néron models are
functorially unique if they exist, and it is trivial from the mapping property that
the formation of Néron models is compatible with direct products. However, beyond
that they tend to have weak functorial properties (such as relative to ramified base
change).

Remark 1.3. Let j : Spec(F )→ S be the canonical map. For any functor H on the
category of F -schemes, there is an associated “pushforward” functor j∗(H) on the
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category of S-schemes defined by

j∗(H)(S′ → S) = H(S′F ).

Restricting attention to smooth S-schemes and smooth F -schemes, the mapping
property of Néron models says exactly that j∗(A) on the category of smooth S-
schemes is represented by A (reproving functorial uniqueness, by Yoneda’s Lemma),
but the existence result gives more: A is separated and of finite type over S. Neither
of these properties is a formal consequence of the mapping property (and there is
a broader theory of Néron models that includes some tori, and there typically the
Néron model is merely locally of finite type).

Example 1.4. Taking T = S, the theorem implies that A(S) = A(F ), which looks
like what one would get from the valuative criterion of properness, but we are only
evaluating on S, not an arbitrary Dedekind scheme over S! The same applies for any
quasi-compact étale morphism S′ → S, so A(S′) = A(F ′) where Spec (F ′) = S′F .

Example 1.5. If S = Spec Z and K/Q is a finite extension, then A(K) = A(U)
where U ⊂ Spec (OK) is the maximal open subscheme unramified over S.

Remark 1.6. There is no analogue of the Néron model for general algebraic groups.
Indeed, it is a general fact (see [1.3/1, BLR]) that a smooth group scheme G of finite
type over the fraction field F of a discrete valuation ring R admits a Néron model
over R (i.e., a smooth R-model that is separated, of finite type, and satisfies the
Néron mapping property) if and only if G(F sh) is “bounded” in G, where F sh is the
fraction field of a strict henselization of R and “boundedness” is defined in terms
of coordinates in suitable affine charts; see [1.1, BLR] for a detailed discussion of
boundedness for general separated F -schemes of finite type.

Such boundedness never holds for nontrivial connected semisimple groups when
R is complete with perfect residue field, as such groups always become quasi-split
over F sh by a theorem of Steinberg. There is a rich theory of “good” smooth affine
models of connected semisimple groups, due to Bruhat and Tits, but it has nothing
to do with Néron models (though was likely inspired by it); the resulting “Bruhat–
Tits theory” is important in the representation theory of p-adic groups (providing
algebro-geometric models for certain compact open subgroups of the group of rational
points of a connected semisimple group over a local field).

2 Properties and examples

Properties of the Néron model.

1. It has an S-group structure extending from A. (This is immediate from the
mapping property, building on the compatibility with direct products.)

2. It is compatible with étale base change S′ → S and likewise localization at
closed points s ∈ S, and base change to ÔS,s as well as Oh

S,s and Osh
S,s.
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3. If a closed fiber As is k(s)-proper then AOS,s
is necessarily OS,s-proper (this

is not at all obvious; see [IV3, 15.7.10, EGA]) with connected special fiber
(by considerations with Stein factorization), so in such cases A is an abelian
scheme over some open neighborhood of s in S.

Example 2.1. If A → S is an abelian scheme, then it is the Néron model of its generic
fiber. This rests on the valuative criterion of properness and the Weil Extension
Lemma [4.4, BLR].

To be more specific, given a map TF → A, we can extend it across the generic
points of the special fiber by the valuative criterion (as the local ring of T at such
a point is a discrete valuation ring). Hence, the problem is to extend to T a map
U → A defined on an open subscheme U ⊂ T whose complement is everywhere of
codimension at least 2. Weil used translations in an artful way to make an extension
to all of T . (Weil’s proof was over fields, as he needed it in his work on Jacobian
varieties; the version over R is technically more involved but rests on similar ideas.)

Example 2.2. Let S = Spec (R) where R is a discrete valuation ring and E is an
elliptic curve with “split multiplicative reduction” over the function field F . The
Néron model E of E has special fiber Ek ' Gm × (Z/nZ), where n = − ordR(j(E)).

If R → R′ has ramification degree e, then the Néron model E ′ of EF ′ satisfies
E ′k′ ' Gm×(Z/neZ) since the j-invariant doesn’t change. So if e > 1 then the Néron
model “grows”. It is not obvious from this description, but these two identity com-
ponents are really the “same” Gm; i.e., the natural base change morphism ER′ → E ′
arising from the Néron mapping property and identification of generic fibers restricts
to an isomorphism between identity components of special fibers.

Example 2.3. Let X → Spec F be a smooth proper geometrically connected curve of
genus > 0. Lipman’s work on resolution of singularities for 2-dimensional excellent
schemes ensures that there exists a proper (flat) S-model (i.e., a proper flat S-scheme
with generic fiber X) which is regular (a trick of Hironaka with completions of local
rings on S reduces the task to the case of excellent S, so Lipman’s work is applicable).
Further work in the theory of fibered surfaces ensures (since the genus is positive)
that among these there is one such model X → S that it is dominated by all others;
it is called the minimal regular proper model. Since X is F -smooth, all but finitely
many fibers Xs are smooth, and all fibers are geometrically connected since X → S
is its own Stein factorization.

If J = Jac(X) then one could ask: how is X is related to the Néron model N(J)?
In general, for a smooth S-group G of finite type with (geometrically) connected
generic fiber (so all but finitely many fibers are geometrically connected) let us denote
by G0 the open subscheme given by removing the closed complement of the identity
component in the finitely many disconnected fibers; this is called the relative identity
component. (The scheme G itself is connected.) Then in turns out that N(J)0 has a
direct description in terms of X provided that for each of the non-smooth fibers Xs
the gcd of geometric multiplicities of its irreducible components is 1 (e.g., this holds
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whenever Xs has non-empty smooth locus): in such cases

N(J)0 ' Pic0
X/S .

Here, PicX/S is the relative Picard functor for X over S, and it is a deep result of
Raynaud that under the above hypotheses on X this is an algebraic space (usually
non-separated when there some geometric fibers Xs are not integral) and that its
open subspace Pic0

X/S which is the identity component on every fiber is a separated
scheme of finite type. Moreover, the component groups of the fibers of N(J) are
described completely by intersection theory on X/S. These matters are discussed
at length in [9.5–9.6, BLR].

The significance is that the fibers of Pic0
X/S are the Picard schemes Pic0

Xs/k(s)

that have moduli-theoretic meaning in terms of the geometry of Xs, so this makes it
possible in such cases to read off information about the geometry of N(J)0

s. Hence,
for Jacobians we can use the fibered surface X → S to understand the Néron model.
In the case of genus 1 with X(F ) 6= ∅ (i.e., X an elliptic curve, so J = X), N(J)
coincides with the maximal smooth open subscheme X sm of X .

Note that whenever there exists a section of X → Spec F then it extends to a
section of X → S (valuative criterion), and X is smooth along this section (since any
regular S-scheme of finite type equipped with a section is smooth along the section);
hence, a-priori X sm meets every fiber Xs in such cases. (When there is no section
then there could be fibers that are nowhere smooth.)

Definition 2.4. The component group of A at s is denoted Φs := As/A0
s.

This is a finite étale k(s)-group, so it can be “viewed” as the abelian group
Φs(k(s)sep) = A(k(s)sep)/A0(k(s)sep) equipped with its natural Gal(k(s)sep/k(s))-
action. Beware that in general the map As(k(s))→ Φs(k(s)) is not surjective (there
is an obstruction in the Galois cohomology group H1(k(s),A0

s)); for finite k(s) this
problem will not arise.

Example 2.5. Consider the elliptic curve 57C2 in Cremona’s tables:

E : y2 + y = x3 + x2 − 4390x− 113432.

Then E(Q) = {0}, j(E) = −(212 ·13171)/(32 ·195), E has good reduction away from
3 and 19, Φ3 ' Z/2Z, and Φ19 corresponds to the Galois module Z/5Z equipped
with a non-trivial GF19-action (given in fact by the unique quadratic Galois character
since the reduction type at 19 is multiplicative but non-split), so Φ19(F19) = 0.

Letting E denote the Néron model over Z, the natural map

E(Q) = E(Z)→
⊕
p

Φp(Fp) = Φ3(F3)× Φ19(F19) = Φ3(F3)

is not surjective. The significance of this failure of surjectivity (for relating the Néron
model to the Tate-Shafarevich group) will be addressed later.
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3 SEMISTABLE REDUCTION

3 Semistable reduction

We have noted above (with reference to EGA) the hard fact that if As is proper
then AOs is an abelian scheme (especially that it is proper over Os). Hence, the set
of s ∈ S for which As is proper coincides with those around which the Néron model
is an abelian scheme. In particular, if the fiber at some s is not an abelian variety
then it must be non-proper; we want to introduce a class of possibilities which are
still reasonably nice despite the loss of properness of the fiber.

One sense in which a smooth commutative algebraic group could be considered
to be “nice” is if we can probe its structure using torsion away from the characteristic
(providing a certain degree of rigidity, as such torsion is étale). Abelian varieties can
be probed in this way, as can tori. On the other hand, unipotent smooth connected
commutative k-groups cannot: they have no nontrivial torsion away from char (k)
and too much p-power torsion when char (k) = p > 0. There are many other reasons
why unipotent groups are worse than tori and abelian varieties (e.g., for deformation
theory, representability of automorphism functors, etc.). This brings us to:

Definition 3.1. A semi-abelian variety over a field k is a smooth connected (commu-
tative) k-group G such that there is an exact sequence

1→ T → G→ B → 1

with T a torus and B an abelian variety. (Such an extension structure is unique if
it exists, since there are no nontrivial homomorphisms from a torus to an abelian
variety.)

Exercise 3.2. Use étale torsion to show that if G is a smooth connected k-group and
Gk is semi-abelian then so is G. This is immediate via Galois descent if k is perfect,
but requires some thought more generally.

Why might one care about imperfect ground fields, even if only interested in
number theory in characteristic 0? Well, at the generic points of special fibers of
arithmetic surfaces over Z the local rings are discrete valuation rings whose residue
fields are global function fields over finite fields (function fields of irreducible com-
ponents of mod-p fibers), and those are never perfect!

Definition 3.3. We say that A has semistable reduction at a closed point s ∈ S if A0
s

is semi-abelian.

Example 3.4. The following fact [9.2/8, BLR] explains the terminology “semistable”:
if X → S is a proper flat S-curve with XF smooth and geometrically connected
and each of the finitely many non-smooth fibers Xs is semistable (i.e. geometrically
reduced with every geometric singularity a node) then Pic0

X/S has semistable reduc-
tion at all s ∈ S. The maximal torus in the fiber Pic0

Xs/k(s) at such s has geometric
character group controlled by the reduction graph of the geometric fiber at s.

The significance of semistable reduction in the general theory is due to:
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Theorem 3.5 (Grothendieck). For S = Spec R with R a discrete valuation ring
there exists a finite separable extension F ′/F such that AF ′ has semistable reduction
at all closed points of Spec R′. Explicitly, we can take F ′ to be the splitting field of
A[`] for any prime ` 6= char (k), where when ` = 2 we really use A[4] instead.

Proof. See the appendix to Expose I in SGA 7 for a beautiful proof due to Deligne
using monodromy, Néron smoothening, and the Riemann Hypothesis for abelian
varieties over finite fields.

It follows that we always acquite semistable reduction everywhere by splitting
the 15-torsion. Note in particular that if the dimension g > 0 of A is fixed then
[F ′ : F ] can thereby be chosen to divide the number #GL2g(Z/15Z) that depends
only on g and otherwise not on A at all. Such uniform control on the degree of
such an extension for attaining everywhere semistable reduction is used crucially in
Faltings’ proof of the Mordell Conjecture (to permit reducing all work to the study
of everywhere-semistable abelian varieties of a fixed dimension over a number field).

Definition 3.6. A semi-abelian scheme G → S is a commutative smooth separated
S-group of finite type with semi-abelian fibers.

Theorem 3.7 (7.4, BLR). If an abelian variety A over F extends to a semi-abelian
scheme A over S then the natural map A → N(AF ) is an isomorphism onto N(AF )0.

An interesting consequence is that if one has semistable reduction at all closed
points of S then for any finite separable extension F ′/F with associated finite (typ-
ically non-étale!) normalization S′ → S, the natural “base change morphism”

N(A)S′ → N(AF ′)

is an isomorphism between relative identity components (because N(A)0
S′ is a semi-

abelian scheme over S′ with generic fiber AF ′). This explains the precise sense
in which, once everywhere-semistable reduction is achieved, after any further finite
separable extension on F all change in the Néron model is concentrated in the com-
ponent groups of the non-proper fibers.

Remark 3.8. For the notions of “good reduction” (i.e., proper fiber) and “semistable
reduction” (i.e., semi-abelian identity component for the fiber), how does one work
with them in practice for a given abelian variety A over F? For instance, it is not
obvious from the definitions that these notions should be invariant under isogeny.
The key to such invariance is that each of these conditions on a fiber is equivalent to
a Galois-theoretic condition for the inertial action on V`(A) for a prime ` 6= char (k).

For “good reduction” there is the Néron-Ogg-Shafarevich criterion (equivalence
to unramifiedness of V`(A)), the proof of which treats the existence of N(A) as a
black box. Grothendieck used the semistable reduction theorem (and the black-box
existence of N(A)) to show that semistable reduction is characterized by unipotence
of the inertial action on V`(A); see [Exp IX, §3, SGA7].
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Let us indicate the key link between inertial action and the structure of the special
fiber. Suppose R is a henselian (e.g., complete) discrete valuation ring, and let Rsh

denote its strict henselization; i.e., the valuation ring of the maximal unramified
extension F sh/F inside Fs. For a prime ` 6= char (k) consider the unramified `n-
torsion points A[`n](Fs)

I (where I is the inertia subgroup of the Galois group of
F ). This is A[`n](F sh), which by the property of the Néron model coincides with
A[`n](Rsh). But A[`n] a quasi-finite separated étale R-scheme, so by Zariski’s Main
Theorem (or more specifically its application to the structure of quasi-finite separated
schemes over henselian local rings) the reduction map

A[`n](Rsh)→ Ak[`n](ks)

is bijective.
This gives control over the `-power torsion in the special fiber, which tells us

about the structure of A0
k if we know a general structure theorem for general smooth

connected commutative k-groups (e.g., we seek a way to show that if the size of the
`n-torsion grows on the order of `2n then the group must be an abelian variety).
Such a structure theorem was proved by Chevalley (who also went beyond the com-
mutative case, but we will not discuss that here): the Chevalley structure theorem
for commutative smooth connected group over a perfect field k says that any such
G can be presented (necessarily uniquely!) as an extension

1→ T × U → G→ B → 1 (3.1)

where B is an abelian variety, T is a torus (i.e., Tk ' GN
m), and U is a smooth

connected unipotent k-group (i.e., has a filtration over k with successive quotients
isomorphic to Ga).

The main work in the proof of Chevalley’s result is over k, and when k is perfect
we can bring the result down to k via Galois descent. A bonus of perfect fields k is
that smooth connected unipotent k-groups admit a composition series over k with
successive quotients isomorphic to Ga when k is perfect. Perfectness is crucial: over
every imperfect k with characteristic p > 0 there are 1-dimensional smooth connected
unipotent groups not isomorphic to Ga (e.g., yp = x − axp where a ∈ k − kp), and
Chevalley’s structure theorem is also false over such k (counterexamples are given by
the non-proper Weil restriction Rk′/k(A

′) for any nontrivial purely inseparable finite
extension k′/k and any nonzero abelian variety A′ over k′).

Let’s apply the snake lemma for [`n] on (3.1), with ` 6= char (k). Multiplication
by ` is an automorphism on U (look at the filration by Ga’s over k), and on T and
B it is surjective with finite kernel. Therefore, the snake lemma gives the exact
sequence of finite étale k-groups

1→ T [`n]→ G[`n]→ B[`n]→ 1.

Taking the inverse limit on ks-points and tensoring with Q` gives an exact sequence

0→ V`(T )→ V`(G)→ V`(B)→ 0. (3.2)
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Thus the unipotent part has dropped away!
We apply the preceding to study an abelian variety A over a field F = Frac(R)

where R is a discrete valuation ring with perfect residue field k (later to be finite).
We take G = A0

k. Since the `-adic Tate module of a finite étale k-group vanishes,
we have T`(G) = T`(Ak); hence, likewise V`(G) = V`(Ak). We have

V`(A)I ' V`(A(Rsh)) ' V`(Ak(ks)),

so since V`(Ak(ks)) = V`(A0
k(ks)) we may substitute into (3.2) to get an exact

sequence of Gal(F sh/F )/I = Gal(ks/k)-modules

0→ V`(T )→ V`(A)I → V`(B)→ 0 (3.3)

where T and B are from the Chevalley structure theorem for A0
k. For F a global

field, this will be the key to disposing of our independence-of-` problem at bad places
(for the definition of the L-function), as well as motivating how to define the volume
term ΩA (in a conceptual manner, inspired by an idea of Tamagawa).

4 L-factors via point-counting

Now consider a complete discrete valuation ring R with finite residue field k of size
q and fraction field F . Let φ ∈ Gal(ks/k) be the q-power Frobenius automorphism
of ks, and I ⊂ Gal(Fs/F ) the inertia subgroup. Let A be an abelian variety over
F , and ` a prime distinct from p := char (k). We are going to use Néron models to
settle various open issues in earlier lectures.

Application 1. Recall our first puzzle: for the linear dual W = V`(A)∗ =
H1

ét(AFs ,Q`), is the polynomial det(1 − φ−1t |W I) ∈ Q`[t] in Q[t], and as such
independent of `? Via the Weil pairing, W ' V`(Â)(−1) as Gal(Fs/F )-modules
where Â is the dual abelian variety, and Q`(−1) is unramified, soW I = V`(Â)I(−1).
Since A is F -isogenous to Â, so their V`’s are Gal(Fs/F )-equivariantly isomorphic,
W I ' V`(A)I(−1). The action of φ−1 on Q`(1) is multiplication by 1/q, so on
Q`(−1) it acts through multiplication by q. Hence,

L`(t) := det(1− φ−1t |W I) = det(1− qφ−1t |V`(A)I).

We want this to lie in Q[t] and to be independent of `. In view of the Gal(ks/k)-
equivariant (3.3), this reduces to the analogous statement for V`(T ) and V`(B) in
place of V`(A)I .

The rationality and independence-of-` for V`(B) is part of the theory of abelian
varieties over finite fields. Indeed, the Riemann Hypothesis tells us that λ 7→ q/λ
is a permutation of the roots (in an algebraic closure of Q`) of the characteristic
polynomial of φ on V`(B), so

det(1− qφ−1t |V`(B)) = det(1− φt |V`(B)),
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and the theory over finite fields tells us that this final polynomial has the desired
properties.

Let’s now pass to the torus. By definition the covariant geometric cocharacter
group X∗(T ) = Homks(Gm, Tks) has mod-`m reduction T [`m](ks)⊗ µ−1

`m as a Galois
module, and passage to the inverse limit over m (and then inverting `) gives a
Gal(ks/k)-equivariant isomorphism

V`(T ) = X∗(T )Q`
⊗Q`

Q`(1).

The `-adic representation X∗(T )Q`
of Gal(ks/k) is manifestly tensored up from the

rational representation X∗(T )Q (on which an open subgroup of Gal(ks/k) acts triv-
ially), so the relevant characteristic polynomial is obviously rational and independent
of `; the extra Tate twist by Q`(1) merely has the effect of scaling the variable in the
characteristic polynomial by q. So our independence-of-` problem is finally settled,
thanks to the magic of Néron models!

Application 2. Let’s prove a formula for #A0(k) in terms of

L(t) := det(1− φ−1t |H1
ét(AFs ,Q`)

I) = det(1− qφ−1t |V`(A)I) ∈ Q[t]

whose independence-of-` properties were analyzed above:

Theorem 4.1. We have
#A0

k(k) = qdimAL(1/q)

where L(t) is the “local L-function” attached to A.

Proof. Note that L(1/q) = det(1− φ−1 |V`(A)I). Consider the exact sequence

1→ T × U → A0
k → B → 0.

Lang’s theorem (the vanishing of degree-1 Galois cohomology of smooth connected
groups over finite fields) implies that the induced diagram of k-points is short exact,
so

#A0
k(k) = #B(k) ·#T (k) ·#U(k).

To analyze the torus contribution, we use the following formula from §1.5, Chap-
ter I of Osterlé’s awesome 1984 Inventiones paper on Tamagawa numbers:

#T (k) = det(q − φ | X∗(T )) ∈ Q>0.

The Gal(ks/k)-equivariant perfect duality

X∗(T )×X∗(T )→ End(Gm) = Z

defined via composition of cocharacters and characters implies that X∗(T )Q is the
Q-linear dual to X∗(T )Q in a manner that identifies the action of γ ∈ Gal(ks/k) on
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the rationalized geometric character group with the linear dual of the action of γ−1

(check!) on the rationalized geometric cocharacter group.
Since passage to the dual preserves the determinant, we conclude that

#T (k) = det(q − φ−1 |X∗(T )Q) = qdimT · det(1− (qφ)−1 | X∗(T )Q).

We can compute the determinant over Q` and use the Galois-equivariant isomor-
phism X∗(T )Q ⊗Q Q` ' V`(T )(−1) to get that

#T (k) = qdimT det(1− φ−1 |V`(T )).

To analyze the B-part, if {λi} is the set of roots (with multiplicity) of L(B, t) =
det(1−φt |V`(B)) then the Riemann Hypothesis over finite fields gives that λi 7→ q/λi
is a permutation of the roots, so

#B(k) = L(B, 1)

= qdimB
∏

(1− λi/q)

= qdimB
∏

(1− 1/λj)

= qdimB det(1− φ−1t |V`(B)).

Since dimB + dimT = dimA0
k − dimU = dimA− dimU we now get

#T (k)#B(k) = qdimA−dimU det(1− φ | V`(A)I) = qdimA−dimUL(1/q).

But recall that over a perfect field (such as k) a unipotent group U has a composition
series with successive quotients isomorphic to Ga, so #U(k) = qdimU . Multiplying
the previous equation by this one yields that #A0

k(k) = #U(k)#T (k)#B(k) is equal
to qdimAL(1/q).

So far we have only counted points of the identity component. But by Lang’s
theorem applied to A0

k we see that the exact sequence of smooth k-groups

0→ A0
k → Ak → Φ→ 0

gives an exact sequence

0→ A0
k(k)→ Ak(k)→ Φ(k)→ 0.

Hence,
#Ak(k) = #Φ(k) ·#A0

k(k) = #Φ(k)qdimAL(1/q).

The factor #Φ(k) is called the Tamagawa factor, usually denoted cv when F = Kv

for a global field K and non-archimedean place v of K.
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4 L-FACTORS VIA POINT-COUNTING

Example 4.2. For the elliptic curve 57C2 from Example 2.5, we have Φ3 ' Z/2Z and
Φ19(F19) ' Z/5Z with nontrivial Galois action, so c3 = 2 and c19 = 1 but as a finite
étale F19-group the “order” of Φ19 is 5. So don’t mix up the Tamagawa factor with
the order of the component group (as a finite étale group scheme over the residue
field)!

Now we switch gears to consider volumes and measures, again using the Néron
model. Since R is complete, for any R-smooth scheme X the natural map X (R)�
X (k) is surjective due to the Zariski-local structure of smooth schemes (étale over
an affine space). Moreover, since A0 is open in A, if a section Spec R→ A takes the
closed point into A0 then it must factor through A0. Hence, we have a fiber square

A0(R)

��

// A0(k)

��
A(R) // // A(k)

so Φ(k) = A(R)/A0(R). But A(R) = A(F ) by the Néronian property, and usually
the open finite-index subgroup A(R)0 is denoted A(F )0 (strictly meaningless since
A(F ) is totally disconnected), so one may also write A(F )/A(F )0 = Φ(k).

Fix the standard Haar measure µ on F (normalized so that µ(R) = 1, and
hence µ(m) = 1/q). The Change of Variables Formula and Inverse/Implicit Function
Theorems from multivariable calculus also hold over any non-archimedean local field
(using the normalized absolute value in the Change of Variables Formula); this is
an extended exercise for the reader (though for the Inverse and Implicit Function
Theorems over an arbitrary non-archimedean field one can find a complete discussion
in Serre’s book Lie groups and Lie algebras). This allows us to define a measure
|ω|µd on X(F ) for any smooth F -scheme X with pure dimension d and top-degree
differential form ω on X. (There is no relevance for “orientations” since we work
with |ω|; we do not care about additivity in ω, in contrast with integration on usual
smooth manifolds.) If we scale ω by c ∈ F× then this measure scales by |c|.

Now consider the case X = A. The Néron model defines a preferred R-line Ωtop
A/R

inside the F -line Ωtop
A/F of top-degree differential forms on A. Choose ω to be a gen-

erator of this R-line; this choice is unique up to R×. Using this choice, the measure
|ω|µd on A(F ) is independent of such ω, so it is truly canonical (but with definition
resting crucially on A to pick out a preferred R-line inside Ωtop

A/F ). This is quite
remarkable: in contrast with the situation over R and C, over a non-archimedean
local field the group of rational points of an abelian variety has a canonical measure!
Moreover, this is a Haar measure because any such ω is translation-invariant (in the
scheme-theoretic sense, over R).

Exercise 4.3. Using this canonical measure, what is vol(A(F ))? We claim it is equal
to #Φ(k)L(1/q), where L(t) ∈ Q[t] is the local L-function attached to A.

12



5 THE TATE-SHAFAREVICH GROUP

To prove this, the key point is the second equality in:

vol(A(F )) = #Φ(k) · vol(A0(R)) = #Φ(k)q− dimA#A0(k).

One establishes the second equality by rigorously proving (using the Zariski-local
structure of smooth morphisms) that for any smooth R-scheme X (e.g., A) with
relative dimension d and any top-degree differential form ω on X that is nowhere-
vanishing on Xk (if one exists, as is the case for A!), the fibers of X (R)� X (k) are
analytically isomorphic to md carrying |ω|µd to the standard Haar measure obtained
from Rd.

With that second equality established, the formula #A0(k) = qdimAL(A, 1/q)
from Theorem 4.1 then gives the desired result.

5 The Tate-Shafarevich group

Definition 5.1. Let K be a global field. Let S = Spec (OK) in the number field case,
and let S be the associated smooth proper curve over a finite field in the function
field case. Consider an abelian variety A over K and let A be its Néron model over
S. The Tate-Shafarevich group X(A) is defined to be

X(A) = ker(H1(K,A)→
∏
v

H1(Kv, A)).

We make some remarks on deciphering this definition. By Galois descent, the
cohomology group H1(K,A) := H1(Ks/K,A(Ks)) is identified with the set of iso-
morphism classes of A-torsors X over K. For such a torsor to be trivial in H1(Kv, A)
is exactly to say that it has aKv-point. Hence, X(A) classifies torsors with a rational
point over all completions of K. That is:

X(A) ' {A-torsors X such that X(Kv) 6= ∅ for all v}.

In [6.5, BLR] it is proved that the torsorsX classified byX(A) (or more generally
admitting a point over the maximal unramified extension of Kv for all v) also admit
a (separated and finite type) Néron model X which is moreover a torsor for A. The
same goes if X arises from the modified (and more “algebro-geometric”) subgroup

X(A)′ ⊂ H1(K,A)

defined similarly to X(A) but without local triviality conditions at archimedean (or
equivalently, real) places (it agrees with X(A) in the function field case and contains
X(A) with finite 2-power index in the number field case). The operation X  X
defines a map of sets

X(A)′ → H(S,A) (5.1)

that is easily seen to be a homomorphism by using the “contracted product” de-
scription of the group law on H1 in terms of torsors. The kernel is trivial since if
X (S) 6= ∅ then certainly X(K) 6= ∅. What is X(A)′ as a subgroup of H1(S,A)?

13
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Proposition 5.2 (Mazur). For any A as above,

X(A)′ = Im (H1(S,A0)→ H1(S,A)). (5.2)

Before we give the proof of this result, we note that it really is necessary to speak
of “image” on the right side of (5.2) because the map of H1’s induced by A0 ↪→ A
can fail to be injective. Indeed, by consideration with Osh

S,s-points for s in the finite
locus Σ of bad fibers in S we get (exercise!) an exact sequence

1→ A0 → A→
⊕
s∈Σ

(js)∗(Φs)→ 0 (5.3)

for the étale topology on S, where js is pushforward along Spec (k(s)) ↪→ S. Hence,
the obstruction to injectivity of the map of H1’s on the right side of (5.2) is precisely
the cokernel of

A(K) = A(S)→
⊕
s∈Σ

Φs(k(s)).

In Example 2.5 (with S = Spec Z) we saw an example in which this latter map fails
to be surjective (i.e., has nonzero cokernel), using an explicit elliptic curve over Q.

Now we turn to the proof of Proposition 5.2

Proof. Let T (A) denote the right side of (5.2). By (5.3), we have

T (A) := ker(H1(S,A)→
⊕
s∈Σ

H1(s,Φs)). (5.4)

We will show that the right side of (5.2) is contained in X(A)′ and that the right
side of (5.4) contains X(A)′. (Note that H1(s,Φs) is finite for each s, as is Φs(s),
so T (A) is off from H1(S,A) by a “finite amount”; in particular, finiteness for X(A)
will be equivalent to finiteness of H1(S,A).)

We begin with (5.2), but must first address a delicate technical question: does
every class in H1(S,A) actually arise from a A-torsor? The C̆ech-cohomology inter-
pretation in degree 1 identifies such cohomology classes with (an equivalence class
of) étale descent data for such a torsor, but effectivity of étale descent is not obvious
since A is not affine. The effectivity is a hard theorem, generally applicable with
A replaced by any smooth separated group schemes of finite type over a Dedekind
base, and is proved in [6.5/1, BLR] (the main point of which is a quasi-projectivity
result for torsors over a Dedekind base); the same holds for A0.

To analyze the right side of (5.2), we may now consider an A0-torsor Y over S,
and let X be its pushout along A0 → A to an A-torsor over S. We want to show
that the class of the generic fiber X = XK in H1(K,A) lies in X(A)′. Note that
X = YK since A0 has the same generic fiber as A. Our problem then is to prove
that Y(Kv) is non-empty for all v. For that purpose it is suffices to prove Y(OKv)
is non-empty for all v. Since Y is S-smooth and OKv is henselian, it is sufficient

14



5 THE TATE-SHAFAREVICH GROUP

to show that the special fiber Yv at each closed point v ∈ S has a rational point
over the finite field k(v). But Yv is a torsor for the smooth finite type k(v)-group
A0
v that is connected. Lang’s theorem gives that a torsor for a smooth connected

group scheme over a finite field is always trivial, so we win: the right side of (5.2) is
contained inside X(A)′.

Now consider an A-torsor X arising from X(A)′, and let X be its Néron model,
which we have noted earlier exists and is an A-torsor (due to the hard work in [6.5,
BLR]). Our task is to show that the class of X in H1(S,A) lies inside the right side of
(5.4). This is now an entirely local problem: for each bad place s, is the image of this
global class in H1(s,Φs) trivial? It is an instructive exercise to check that the class
obtained in H1(s,Φs) is exactly the Φs-torsor Xs/A0

s. Hence, we want this latter
torsor to be trivial. Even better, Xs as an As-torsor is trivial! This does not come
for free from Lang’s theorem (as As is generally disconnected), but rather is due to
the magic of the Néronian mapping property: it suffices to show that X (O∧S,s) is non-
empty (as then passing to the special fiber gives a rational point on Xs), but by the
very construction of X as a Néron model it retains the Néronian mapping property
after base change to the completion O∧S,s. Hence, X (O∧S,s) = X (Ks) = X(Ks), and
by our hypothesis involving X and X(A)′ we know that X(Ks) is non-empty.

Considering X(A)′ as a subgroup of H1(S,A), clearly X(A) is obtained from
this subgroup by imposing the further condition on an A-torsor that it admit a local
point at all real places of K (a vacuous condition unless K is a number field with
a real embedding). The ability to interpret classes in X(A)′ in terms of A-torsors
over the global base S yields an alternative description of X(A)′ as follows.

Under the restriction map H1(S,A)→ H1(Ks, A), the image lies inside the sub-
group

H1(Ksh
s /Ks, A(Ksh

s )) = ker(H1(Ks, A)→ H1(Ksh
s , A))

of “unramified torsors” (where the fraction fieldKsh
s of the strict henselization (O∧S,s)sh

is the maximal unramified extension ofKs = Frac(O∧S,s)). Indeed, if X is an A-torsor
over S with generic fiber A-torsor X then the set X(Ksh

s ) = X (Ksh
s ) is non-empty

because X ((O∧S,s)sh) is non-empty (as for any smooth scheme with non-empty fiber
over a strictly henselian local ring, by lifting any separable closed point in the non-
empty smooth special fiber). This leads to:

Corollary 5.3. Let U ⊂ S be a dense open subscheme whose complement contains
the set Σ of bad places for A. Then the kernel of the natural map

H1(S,A)→
⊕

s∈S−U
H1(Ksh

s /Ks, A(Ksh
s ))

is equal to X(A)′.

Proof. Composing with the injective map from unramified classes of A-torsors over
Ks into the group of (isomorphism classes of) all A-torsors over Ks, it is equivalent
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5 THE TATE-SHAFAREVICH GROUP

to show that X(A)′ consists of the classes in H1(S,A) that have trivial restriction
over Ks for all s ∈ S − U . Certainly if X is an A-torsor coming from X(A)′ and X
is its associated A-torsor Néron model then XKs = XKs has a Ks-point for all closed
points s ∈ S. Thus, the kernel in the statement of the Corollary contains X(A)′.

Conversely, if X is a representative of a class in that kernel then we want to show
that X arises from X(A)′, which is to say that its generic fiber X has a Ks-point
for all closed points s ∈ S. If s is a point of good reduction for A (such as anything
outside S − U) then As is an abelian variety, and in particular is connected, so its
torsor Xs has a rational point by Lang’s theorem. Thus, by smoothness this lifts to
an O∧S,s-point of X . Passing to the generic fiber gives a Ks-point of X for such s. It
therefore remains to consider bad s, all of which are contained in S−U . But by the
choice of X we know X(Kv) is non-empty for all v ∈ S − U , so we are done.

The displayed map in Corollary 5.3 has a cohomological interpretation as follows.
Let j : U ↪→ S be the natural open immersion, so AU is an abelian scheme over U ,
and its associated sheaf on Uét is precisely j∗(A) (why?). The pushforward sheaf
j∗(AU ) on Sét is precisely the functor of points of A by the Néronian mapping
property (exercise!). Consider the resulting short exact sequence of abelian sheaves

0→ j!(AU )→ j∗(AU ) = A → G → 0

on Sét where the first map is the natural inclusion (an isomorphism over U !) and G
is defined to be the cokernel.

Note that G is a skyscraper sheaf supported at the finite set S − U of closed
points. Its stalk at each s ∈ S−U is the discrete Galois module (at s) associated to
the global sections of its pullback over Osh

S,s (as for computing the stalk of any étale
sheaf on any scheme whatsoever). But that stalk is the same as for j∗(AU ) (by how
j! is defined, with vanishing stalks outside U), and the formation of j∗ commutes
with ind-étale base change (such as pullback to Spec (Osh

S,s)), so we conclude that Gs
corresponds to the discrete Galois module

AU (Ksh,s) = A(Ksh,s),

where Ksh,s denotes the fraction field of a strict henseliization of OS,s.
Thus, passing to the long exact cohomology sequence yields an exact sequence⊕

s∈S−U
A(Kh,s)

δ→ H1(S, j!(AU ))→ H1(S,A)→
⊕

s∈S−U
H1(Ksh,s/Kh,s, A(Ksh,s))

where Kh,s is the fraction field of the henselization of OS,s. The final term in this
long exact sequence classifies unramified A-torsors over Kh,s, and we claim that this
H1 injects into the analogue over the completion Ks (of K at s, or equivalently of
Kh,s). Unramified torsors admit Néron models with non-empty special fiber (again,
by the hard work in [6.5, BLR]), and by the Néronian property triviality of such a
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torsor is equivalent to the special fiber of its Néron model having a rational point,
so we have established injectivity of the natural map

H1(Ksh,s/Kh,s, A(Ksh,s))→ H1(Ksh
s /Ks, A(Ksh

s )).

Consequently, we get an exact sequence⊕
s∈S−U

A(Kh,s)
δ→ H1(S, j!(AU ))→ H1(S,A)→

⊕
s∈S−U

H1(Ksh
s /KsA(Ksh

s ))

where now the final map is exactly what arose in Corollary 5.3. So applying that
corollary now gives two descriptions of X(A)′: it is a cokernel⊕

s∈S−U
A(Kh,s)

δ→ H1(S, j!(AU ))→X(A)′ → 0 (5.5)

as well as a kernel:

X(A)′ = ker(H1(S,A)→
∏

s∈S−U
H1(Ks, A)).

The cokernel presentation ofX(A)′ in (5.5) underlies a very conceptual definition
of the Cassels–Tate pairing

X(A)×X(Â)→ Q/Z

by means of étale cohomology over open subschemes of S (though other definitions
will be useful too). There is yet another description of X(A)′ is useful when con-
structing this conceptual construction of the Cassels–Tate pairing and when relating
Tate–Shafarevich groups to Brauer groups in the setting of the Artin–Tate conjecture
(as we will see in a later lecture):

Proposition 5.4. The natural restriction map H1(U,A) → H1(K,A) is injective
and its image contains X(A)′. Under this identification of X(A)′ as a subgroup of
H1(U,A), we have

X(A)′ = ker(H1(U,A)→
∏

s∈S−U
H1(Ks, A)).

Proof. We have seen that every class in H1(U,A) is represented by an AU -torsor X
(this was discussed over S, but the same reasoning applies over any non-empty open
subscheme of S), and this inherits properness from AU . Hence, by the valuative
criterion for properness applied over the Dedekind base U we have X (U) = X (K),
so injectivity is clear.

We have identified X(A)′ with the image of H1(S,A0) in H1(S,A) via the for-
mation of Néron models of A-torsors unramified at all finite places, so composition
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with the restriction map H1(S,A)→ H1(K,A) amounts to forming the generic fibers
of such torsors; that recovers the definition of X(A)′ as a subgroup of H1(K,A).
This shows that H1(U,A) as a subgroup of H1(K,A) contains X(A)′ as a subgroup
killed by the restriction map to H1(Ks, A) for all s ∈ S − U .

To show that the local triviality condition at all s ∈ S−U already cuts H1(U,A)
down to X(A)′, it suffices to prove that for all s ∈ U the restriction map H1(U,A)→
H1(Ks, A) vanishes. This factors through H1(O∧S,s,A), so it is enough to prove that
this latter H1 vanishes. More generally, if R is a complete (or henselian) discrete
valuation ring with finite residue field κ and fraction field F , and if B is an abelian
scheme over R, then we claim that H1(R,B) = 0.

Since every étale cover of R is dominated by a finite étale cover (as R is local
henselian), and that in turn is dominated by one which is Galois, it suffices to fix
an unramified finite Galois extension F ′/F with associated valuation ring R′ over
R and show that the C̆ech cohomology group H1(R′/R,B) vanishes. This classifies
Galois descent datum for a B-torsor, and such descent is effective since B is quasi-
projective over R. Hence, such cohomology classes correspond to B-torsors X over
R that split over R′. But then Xκ is a Bκ-torsor, so by connectedness of Bκ and
Lang’s theorem we see that the set X(κ) = Xκ(κ) is non-empty. By smoothness of
X and the henselian property of R, such a κ-point lifts to an R-point of X, so we
are done.

Remark 5.5. The preceding considerations identifyX(A)′ as the image of an excision
map H1

c(U,AU ) → H1(S,A) for any dense open U ⊂ S avoiding the bad points, up
to the caveat that a good definition of H•c(U, ·) when K admits real places requires
some modification of H•(S, j!(·)). We will return to this matter after setting up Tate
global duality by means of étale cohomology on open subschemes of S.

6 The volume factor

Finally, for an abelian variety A of dimension d > 0 over a global field K, we wish
to discuss ΩA appearing in the BSD conjecture. This is most elegantly defined to
be vol(A(AK)) where the volume is with respect to the “Tamagawa measure”, a
God-given Haar measure on the locally compact group A(AK). (See my expository
paper on Weil and Grothendieck approaches to topologies of adelic points beyond the
affine case for a discussion of putting a topology on the AK-points of any separated
K-scheme of finite type, especially going beyond the affine case.)

We will build this measure using a global top-degree differential form. There
is a subtlely, only apparent when Pic(S) is non-trivial: the line bundle Ωtop

A/S on S
of top-degree differential forms on A (this line bundle is the top exterior power of
the cotangent space along the identity section, using relative translation arguments)
may not be globally free, so we may not be able to choose a global generator ω of
the sheaf of top-degree differential forms on A.
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Pick an arbitrary nonzero ω ∈ Ωtop
A/K . For all but finitely many closed points

s ∈ S, this is a generator of the Os-line Ωtop
AOs/Os

inside the K-line Ωtop
A/K . In general,

for a general closed point v ∈ S (viewed as a non-archimedean valuation on K), ω
defines a global nowhere-vanishing top-degree differential form on A(Kv), If ηv is a
global generator of top-degree differential forms on AOKv

then ω = avηv for some
av ∈ K×v .

For the normalized measure µv on Kv, the Haar measure |ω|vµdv is equal to
|av|v|ηv|vµdv, which is to say it is equal to |av|v times the canonical Haar measure
of A(Kv) considered earlier. For archimedean places v on K there is no canonical
measure on A(Kv), but we do get an associated Haar measure |ω|vµdv where µv is
taken to be the Lebesgue measure on Kv in the real case and twice the Lebesgue
measure on Kv in the complex case, and likewise | · |v is the standard absolute value
on Kv at real places and the square of the standard one at complex places (so the
product formula holds when using these and the normalized valuation at the finite
places, and the scaling effect on all additive Haar measures under multiplication by
c ∈ K×v is |c|v). The factor of 2 in the normalized Haar measure at complex places
will emerge in an adelic calculation later on. Note that for complex v, our convention
for the meaning of |·|v implies that |ω|v coincides with what is usually denoted |ω∧ω|
on a complex manifold.

What happens if we change the choice of ω? The possible choices are cω for
c ∈ K×, so the associated Haar measure on A(Kv) for any place v of K changes
by |c|v. Hence, the product of such discrepancy factors over all places is equal to 1.
Thus, if we could make sense of a (restricted) product measure

∏
v |ω|vµdv on A(AK)

then it would be independent of ω!
However, such a product measure does not make sense because the volume of

A(Kv) = A(OKv) under such measures is generally not equal to 1 for all but
finitely many v. More specifically, for all but finitely many v (namely, for the
non-archimedean v such that ω generates the OKv -line of top-degree v-integral dif-
ferential forms) this volume has already been computed (in Exercise 4.3) to be
#Φv(k(v))Lv(1/qv) where qv = #k(v) and Lv(t) is the local L-function at v. For
such v which are good-reduction places, this is equal to

Lv(1/qv) = q−dv Lv(1) = #A(k(v))/qdv ,

and by the Riemann Hypothesis this is on the order of 1 + O(1/
√
qv) with an O-

constant that is uniform across all such v. The product of such terms is generally
divergent, so we make an adjustment as follows.

For each non-archimedean place v of K, define the “convergence factor”

λv = 1/Lv(1/qv) = qdv/#A(k(v)).

For archimedean v, define λv = 1. Upon choosing ω, we get the associated Haar
measures

mv = λv|ω|vµdv
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on A(Kv) that assign total volume 1 for all but finitely many v (but which “all but
finitely many v” now depends on ω!). Thus, it makes sense to define the product
measure

mA =
∏

mv (6.1)

on the (topological!) product A(AK) =
∏
A(Kv) (not just restricted product), and

this is independent of the choice of ω due to the product formula. Hence, it is truly
canonical.

Remark 6.1. For finite places v of K, the convergence factor λv is the value at s = 1
of the reciprocal 1/Lv(q

−s
v ) of the local factor at v in the L-function L(A/K, s).

Remark 6.2. Consider a finite separable extension of global fields K ′/K and assume
A = RK′/K(A′) for an abelian variety A′ over K ′. For each finite place v of K we
claim that λv =

∏
v′|v λv′ . Néron models are compatible with Weil restriction due

to the mapping property. That is, the respective Néron models over valuation rings
satisfy the relation

Av '
∏
v′|v

ROv′/Ov
(A′v′),

so
Av(k(v)) =

∏
v′|v

A′v′(Ov′/mvOv′).

Letting ev′ and fv′ denote the ramification index and residual degrees for v′ over v,
so qv′ = qfvv , we have by smoothness of the Néron model that

#A′v′(Ov′/mvOv′) = #Av′(k(v′))q
d′(ev′−1)
v′ = q

d′ev′
v′

#A′v′(k(v′))

qd
′
v′

= q
d′ev′
v′ /λv′

where d′ = dimA′. Thus,
qdv
λv

=
∏
v′|v

q
d′ev′
v′

λv′
.

But qd
′ev′
v′ = q

d′fv′ev′
v , so the product of these numerators over all such v′|v is equal

to q
d′[K′:K]
v = qdv (as RK′/K multiplies the dimension of a smooth K ′-scheme by

[K ′ : K]). Comparing denominators now gives the desired result.

It is convenient to make one final adjustment in this construction, essential to
satisfy compatibility of the associated volume relative to Weil restriction through a
finite separable extension of global fields. Observe that in the preceding we have
always worked with the normalized Haar measures µv on the local fields Kv. Such
normalized measures interact poorly with finite separable Weil restriction in the
presence of ramification, so it is better to make a construction that uses an arbitrary
choice of such local Haar measures µ′v on each Kv provided that it is the normalized
choice for all but finitely many v (without needing to specify which ones).
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In other words, we choose an arbitrary Haar measure µ′ on the adele ring AK ,
which in turn always decomposes as a restricted product measure of such a collection
of local Haar measures {µ′v}; this local collection has scaling ambiguity for any
particular local measure, but the overall scaling ambiguities (all but finitely many of
which are 1) multiply to 1. Also choose a nonzero top-degree differential form ω on
A. Consider the associated Haar measure m′v = λv|ω|vµ′v

d on A(Kv) for all v. These
assign volume 1 to A(Kv) for all but finitely many v, so it makes sense to form the
product measure

mA,µ′ =
∏

m′v.

This is independent of ω due to the product formula, and is indeoendent of the
collection of measures {µ′v} as above whose restricted product is the chosen µ′, but
mA,µ′ depends on µ′. (This refines (6.1) because it rests on an arbitrary Haar measure
µ′ on the adele ring.)

We make the dependence on µ′ cancel out with the following scaling trick. The
Haar measure µ′ induces a quotient Haar measure µ′ on the compact quotientAK/K
compatibly with µ′ on AK and with counting measure on the discrete closed sub-
group K ⊂ AK . The resulting volume µ′(AK/K) is a finite positive real number,
and µ′(AK/K)d scales under a change in µ′ exactly the same way that mA,µ′ does
under a change in µ′. Voila, so we define the Tamagawa measure on A(AK) to be
the Haar measure

mA := µ′(AK/K)−dmA,µ′ (6.2)

on A(AK). This Haar measure is also independent of µ′, so it will provide more
robustness with respect to change in K below.

In the special case of our initial construction using the normalized local measures
µv as the choice of measures µ′v for all places v of K, the effect of this new scaling
factor in (6.2) is to multiply by µ(AK/K)−d, where µ is the measure on AK/K
induced by counting measure on K and the restricted product µ of the measures
µv as a measure on AK . It is well-known that µ(AK/K) is equal to disc(K)1/2 in
the number field case (here using our convention to insert the factor of 2 at complex
places for the definition of µv) and qg−1 in the function field case (withK the function
field of a geometrically connected genus-g smooth proper curve over a finite field of
size q).

Definition 6.3. The volume factor ΩA in the BSD Conjecture is

ΩA = mA(A(AK)).

Exercise 6.4. Suppose K is a number field. A given choice of ω satisfies aω · ω =
Ωd
A/OK

for a (generally non-principal!) fractional ideal aω of K that depends on ω.
Then

ΩA = N(aω)disc(K/Q)−d/2
∫
A(K∞)

|ω|∞ ·
∏
v bad

cv (6.3)
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where cv := #Φ(k(v)) for the finitely many bad places v and integration on A(K∞) =∏
v|∞A(Kv) is defined using the product of the measures |ω|v built from ω on each

A(Kv) and the standard Haar measure on Kv for each v|∞. Note that for complex v,
the measure |ω|v is precisely the traditional |ω ∧ ω| on A(Kv) with Kv ' C. This is
especially classical for K = Q and ω a choice of “Néron differential”; i.e. generator of
the Z-line of top-degree global differential forms on the Néron model (so aω = (1)).

The formula in (6.3) is given as a definition out of thin air at the end of §5 in
Ch. III in Lang’s book Number Theory III.

Recall that since L-functions are invariant under induction, the invariance of the
BSD-coefficient under finite separable extension of global fields is a (weak) necessary
test of the well-posedness of the conjecture. We have already seen that all pieces of
the coefficient individually satisfy such invariance except for possibly #X(A) (whose
finiteness is not known in general) and ΩA (which we have only now finally defined).
We conclude our discussion by addressing the invariance for both of these terms.

For X(A) one can say something with content about invariance even though we
do not know it to be finite: if K ′/K is a finite separable extension of global fields
and A = RK′/K(A′) for an abelian variety A′ over K ′ then we claim that naturally
X(A′) 'X(A). Shapiro’s Lemma gives

H1(K ′, A′) ' H1(K,A);

this can be defined on the level of cocycles, but it is described more conceptually in
the language of torsors: X ′  RK′/K(X ′)! (Exercise: prove these two definitions
coincide.) The advantage of the torsor description is that

RK′/K(X ′)(Kv) = X ′(K ′ ⊗K Kv) =
∏
v′|v

X ′(K ′v′)

for any place v of K. Hence, it is then immediate that X comes from X(A) if and
only if X ′ comes from X(A′), which is to say that the above Shapiro isomorphism
restricts to an isomorphism X(A′) 'X(A) (which can of course also be proved in
cocycle language via more notation and bookkeeping of places).

The equality between ΩA′ equal ΩA is much harder, as we now explain. First, note
that this is certainly sensitive to the fact that we introduced the factormµ′(AK/K)−d

into the definition of the Tamagawa measure on A(AK)! Moreover, the equality is
really not obvious at all, and if one tries to attack it using the explicit formula in
Exercise 6.4 in the number field case then probably one gets mired in a mess.

The essential difficulty is that tracking the behavior of local measures through
Weil restriction gets caught up in the Exercise at the end of last time concerning how
determinant of vector bundles and norm of line bundles interact with pushforward
through a finite flat map (such as an extension of valuation rings of non-archimedean
local fields). This matter is addressed in elegant detail in §4–§5 of Ch. II of Oesterlé’s
paper, and the technique in §6 of Ch. II of that paper with abelian varieties in place
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of smooth connected affine groups (using Remark 6.2!) gives that the volumes of

A(AK) = A′(K ′ ⊗K AK) = A′(AK′)

associated to the respective Tamagawa measures arising from A and A′ satisfy

ΩA = cd · ΩA′

for some constant c > 0 determined solely by considerations with local extensions
arising from K ′/K and has nothing to do with the abelian variety A′ over K ′.

The way that c emerges from calculations with local Haar measures on the com-
pletions of K and K ′ shows that the same c arises in the analogous considerations
with smooth connected affine groups in place of abelian varieties (using a theory of
convergence factors {λv} for that case too, all trivial unless the group has nontrivial
geometric character group). As in §6, Ch. II of Oesterlé’s paper, we can then focus
on the K ′-group Ga (!), whereupon we see that c = 1 due to the scaling factor in
(6.2). Hence, amusingly the invariance of ΩA relative to finite separable Weil restric-
tion comes down to a universal identity that we check by a calculation with smooth
connected affine groups.
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