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As we have discussed, Beilinson conjectureed that an L-value is a regulator on
motivic cohomology. The only case in which anything is known is for ζF for F an
imaginary quadratic field. By this we mean that Borel gave a relation between the
values of ζF at integers and regulators on K∗OF . (Some further work is required to
identify this with Beilinson’s conjecture, i.e. that the Borel regulator really is the
Beilinson regulator in this case.)

1 Hopf algebras

1.1 Cohomology of compact Lie groups

Recall that for the unitary group Un, the cohomology ring is an exterior algebra on
odd generators:

H∗(Un) = C[e1, e3, e5, . . . , e2n−1].

We will need this later so we review why this is true.

Example 1.1. Let A = Q[G] for a finite group G. This is a Hopf algebra. Let’s not
fuss about the general definition of a Hopf algebra; suffice it to say that it reflect
extra structure, which we can see because we can tensor and dualize representations
of A. The ability to tensor is explained by a coproduct

∆: A→ A⊗A

sending g 7→ g ⊗ g. The ability to dualize is explained by a map A → A sending
g 7→ g−1.

The dual algebra A∨ = Functions(G,Q) is also a Hopf algebra because the dual
of the coproduct is a product structure, and the dual of a product is a coproduct
structure.

Note that A is a non-commutative algebra, but has commutative coproduct. On
the other side, the product is commutative and the coproduct is non-commutative.

∗Notes by Tony Feng
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If G is a compact Lie group, then H∗(G,C) is a Hopf algebra. The coproduct
structure comes from the multiplication map

m : G×G→ G.

Also H∗(G,C) is a Hopf algebra, with product coming from m : G × G → G and
coproduct induced by

∆: G→ G×G

sending g 7→ (g, g).

Proposition 1.2. If G is compact connected then H∗(G,C) is commutative and
H∗(G,C) is co-commutative.

Proof. Fix a Riemannian metric on G which is left and right invariant. By de Rham
theory,

H∗(G,C) ∼= {harmonic forms on G}.

We claim that a harmonic form on a compact group must automatically be invariant;
denote the invariant forms by Inv(G). Why? Translation by G can only act trivially
on cohomology, but there is a unique harmonic representative for each de Rham
cohomology class. This shows that harmonic forms are contained in Inv(G).

We next claim that in fact this is an equality: {harmonic forms on G} = Inv(G).
How can we see this? We want to show that if ω ∈ Inv(G) then dω = 0. Well, an
invariant form is determined by its value at the identity, so it suffices to study the
Lie algebra. The effect of inversion i(x) = x−1 on the group acts by −1 on the Lie
algebra. Therefore, it acts by (−1)p on forms of degree p. Since d is equivariant for
it, we have

(−1)p+1dω = i∗dω = di∗ω = (−1)pω

which shows that dω = 0. Applying the same argument to ∗ω shows that ω is both
closed and coclosed, hence harmonic.

Now consider the commutative diagram

G×G xy //

i×i
��

G

i
��

G×G yx // G

Since we have identified the cohomology with invariant forms, we know that i acts
as (−1)deg on cohomology, this shows the graded commutativity of the Hopf algebra
structure.

Theorem 1.3 (Milnor, Moore). Suppose A =
⊕

i≥0Ai is a graded commutative,
graded cocommutative Hopf algebra over a field k in characteristic 0 (so A0 = k).
Then A is free on the subspace Prim(A), which is {a ∈ A : ∆a = a⊗ 1 + 1⊗ a}.

2



In particular, if A is finite-dimensional then there can be no generators in even
degree, so A must be a free exterior algebra on elements in odd degree. This explains
why the cohomology of a compact Lie group must be free on odd generators.

Example 1.4. If A were in even degree then Spec A would be a commutative algebraic
group G. Then G is a product of Ga’s and Gm’s but we claim that in fact G ∼= GN

a .
This is because the graded structure on A implies that there is a Gm-action on G,
and there cannot be a Gm-action on the toral part. So G ∼= GN

a . Therefore, Prim(A)
can be identified with {χ : G→ Ga}.

1.2 Invariant forms

Let’s go back to Inv(Un). These are completely determined by what happens at the
identity, and they have to be conjugacy-invariant there. In other words, they are
alternating j-forms

∧j un → C which are invariant under conjugation by Un. This
is the same as alternating forms

∧jMn(C)→ C which are invariant by GLnC.
Here is one such form: X 7→ Tr(X). More generally, for any k we can consider

Tr(X1, . . . , Xk) - this is a conjugacy-invariant form, but it is not alternating. To
amend that, we anti-symmetrize it; but that is automatically 0 if k is even. So the
candidate forms are vk(X1, . . . , Xk) = anti-symmetrization of Tr(X1, . . . , Xk). It
turns out that these are generators for Inv(Un).

Why are they primitive? Consider for instance v3 = Tr(XY Z)−Tr(XZY ). Pull
back this form via the multiplication map

Un × Un
x,y 7→xy−−−−−→ Un.

Unfortunately it is not clear that the pullback is still an invariant form. One would
like to argue this by saying that the diagram

Un × Un
tx×ty

��

m // Un

txy
��

Un × Un // Un

commutes, but actually it doesn’t (because of the non-commutativity of Un).
To fix this, consider embedding into a larger group

Un × Un
I×I
��

// Un

I
��

U2n × U2n
// U2n

with the embedding I : Un ↪→ U2n being

g 7→
(
g

1

)
.
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This is conjugate to the embedding

J : g 7→
(

1
g

)
.

So the diagram above is homotopic to

Un × Un
I×J
��

// Un

I
��

U2n × U2n
// U2n

Since the forms vn on Un are the restriction of the analogous U2n-invariantforms on
U2n, this shows that their pullbacks to Un × Un are in fact invariant.

2 K-theory of number fields

Let R be any commutative ring. Consider

GL∞(R) := lim−→GLN (R).

Then H∗(GL∞R,Q) is a graded commutative cocommutative Hopf algebra. The
point is that it has a product, via the construction

GLn×GLn → GL2n .

There is a map
KiR→ Prim(Hi GL∞(R),Q).

For i > 0, this is an isomorphism after tensoring with Q, at least when R = OF . So
for our purposes, we can think of K-theory as this piece of group homology.

Remark 2.1. The (group) homology of

. . .GLN OF ↪→ GLN+1OF ↪→

stabilizes. Quillen proved this to show that K-theory stabilizes, hence the K-theory
of rings of integers is finitely generated.

Let F be an imaginary quadratic field and O is the ring of integers. Borel showed
that

(KiO)Q =

{
Q i odd ≥ 3

0 other i > 0

Also, there is a natural map
(KiO)Q → R
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called the Borel regulator. (So called because K1 is the unit group, and for i = 1 this
specializes to the classical regulator.) Borel prove that the image is ∼ Q · ζF ( i+1

2 ).
These zeta values arise as the volumes of SLnOF \SLnC.

How do we computeH∗(SLN O,C)? We have an action of SLN O on SLnC/ SU(n),
which is a contractible symmetric space Sn of unitary forms. Then

H∗(SLnO,C) = H∗(Sn/ SLnO,C).

This Sn comes with an invariant metric, and for it Xn := Sn/SLnO has finite
volume (but it not compact). (This was the reason for switching from GLn to SLn.)
Consider Inv∗(Sn), the space of invariant forms on Sn. This sits inside differential
forms on Xn.

Borel showed that the inclusion of Invj (meaning left SLnC-invariant j-forms
on SLnC/ SUn) into differential forms on X induces an isomorphism in H∗ when
j ≤ n/4. As before, Invj ⊂ Harmj . The harmonic forms sit inside differential forms
on Xn. We’d like to use Hodge theory to go backwards, but here we can’t because
our X isn’t compact. What Borel does is to consider an intermediate space of forms
of “moderate growth”. More precisely, replace Xn by some truncation, and impose
growth conditions on forms so that they lie L2.

The inclusion Invj ⊂ Harmj is only an equality in low degree. Since Sn =
SLnC/ SUn, an invariant j-form in Invj(Sn) is a function

∧j Te → C which is
invariant by SUn, where Te = slnC/sun. Since sun is a real structure of slnC, we
can identify this with isun. Thus we are looking at {

∧j(isun) → C}SUn , and since
trace is no longer informative this is C[ν3, ν5, . . . , ν2n−1].

In conclusion, we have found that in low degree H∗(SLnO,C) is free exterior in
degrees 3, 5, . . .. ThereforeH∗(SL∞O,C) isC[e3, e5, e7, . . .]. So PrimHj(SL∞O,C) =
C for j = 3, 5, . . ..

We emphasize that the generators here are naturally indexed by the correspond-
ing cohomology classes of the unitary group. 1

The same discussion applies for homology.

3 The Borel Regulator

Now we come to the second part, which is the regulator map

(KiO)Q → R.

We have a map

PrimHj(SL∞OF ,Q)

∫
νj−−→ C

where νj is regarded as a cohomology class via

νj → Invj → Hj(SLnO,C).
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What is the image? We need to construct some explicit classes on the LHS. Where
can we get explicit cycles? If G is a group over F embedded in SLN , then we
get a map from the locally symmetric space for G to the locally symmetric space
for SLn =: XN . We can then push forward the fundamental class for the locally
symmetric space attached to G.

Example 3.1. Let D be a division algebra of rank 4 over F . Fixing an order OD,
consider the norm-1 units O(1)

D . We can embed this in SLnOF by its action on D.
This gives a map of symmetric spaces,

π : O(1)
D \SL2C/ SU2 → XN .

The left hand side is 3-dimensional; let the fundamental class be µ. Then the image
of the Borel regulator for i = 3 contains

〈π∗µ, ν3〉 =

∫
O(1)

D \ SL2 C/SU2

π∗ν3.

This is basically ζF (2), up to factors of π.
Now supposeD is a divison algebra of rank 9 over F . Then dimO(1)

D \SL2C/ SU2 =
8 = 3 + 5. The image of the Borel regulator for i = 9 contains

〈π∗µ, ν3 ∧ ν5〉 = ζF (2)ζF (3).

Let e3, e5 be generators for PrimHi(SL∞). Then π∗µ = e3e5 + . . . with the extra
stuff being higher-degree. (This happens in every degree by primitivity). So

〈π∗µ, ν3 ∧ ν5〉 = 〈e3, ν3〉〈e5, ν5〉.

We computed the first term to be ζF (2), and the product was computed to be
ζF (2)ζF (3), so we can deduce that 〈e5, ν5〉 ∼ ζF (3).
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