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1 Overview

1.1 Vague form of the conjecture

Let E be an elliptic curve over Q. I am going to describe a conjecture of Mazur and
Tate which is in some sense a sequel of their investigation (together with Teitelbaum)
of a “p-adic BSD conjecture”. However, while this conjecture involves some ideas in
the spirit of p-adic L-functions, it is of a completely different nature.

There will be an input integer M (whiich can be composite), which has some
constraints coming from E but can be significantly varied even for any given E. We
let KM := Q(µM )+ and

GM := Gal(KM/Q) ∼= (Z/M)∗/{±1}. (1.1)

The eventual conjecture will make a prediction of the form

[“Mazur-Tate derivative” of L(E, s) at 1] ∼ [“discriminant of E(Q)”] (1.2)

Here the squiggle means equal up to some factors (such as X(E).)
Explaining what we mean by the left and right hand sides will take up the rest of

the talk, but this vague form highlights the similarity to BSD. However, we should
at least say in what ambient object this comparison is taking place. First of all, the
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“critical rank” at which the derivative is taken is not rankE(Q); depending on our
choice of M it lies in the range

rankE(Q) ≤ r ≤ rankE(Q)+#{places where E has split multiplicative reduction}.

In particular, the conjecture gives information beyond the rank. We should remark
that the “p-adic BSD conjecture” of Mazur-Tate-Teitelbaum already exhibits this
intriguing phenomenon of reaching beyond the usual leading order.

Let Z[GM ] be the group algebra of GM and I ⊂ Z[GM ] the augmentation ideal.
Then the left side of (1.2) lives in Ir/Ir+1.

Obviously this mean that the right hand side of (1.2) is also in Ir/Ir+1, but
we shall see that the discriminant of the pairing is naturally valued in some larger
group.

2 The Mazur-Tate Derivative

2.1 General Outline

The “Mazur-Tate derivative” is not a literal derivative, but rather a kind of equiv-
ariant derivative. To motivate our construction, we recall that one interpretation
of a p-adic L-functions is as an object that interpolates special values of the usual
L-functions.

To describe this, we begin by considering the rational group ring Z[GM ]. We
seek to interpret an L-function as a “thing” that interpolates L-values:

χ 7→ L(E ⊗ χ, 1).

More precisely, we seek an element θE,M ∈ Q[GM ] such that for all χ ∈ ĜM ,

χ(θE,M ) ∼ L(E ⊗ χ, 1).

Why have we put a squiggle above instead of an equality? The value L(E⊗χ, 1) can
be transcendental, and the left side could only be algebraic. So what we’ll actually
seek is to interpolate is the “algebraic part” of L(E ⊗ χ, 1).

χ(θE,M ) ≈ L(E ⊗ χ, 1)

ΩE

where ΩE is a period making the ratio algebraic. (Ultimately this picture will have
to be adjusted a tiny bit.)

We think of this θE,M as literally being our L-function. With this in hand, we
can make sense of its “derivatives”. For instance, we can say that θE,M “vanishes to
order r” if θE,M ∈ Ir, where I is the augmentation ideal of Q[GM ]. You can think
of this as the literal order of vanishing of θE,M at point of Spec Q[GM ] represented
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by the trivial character. If θE,M vanishes to order r, then its “rth derivative” is the
value of θE,M in Ir/Ir+1.

More generally, we can make sense of order of vanishing “at χ” for any character
χ of GM , and speak of its “rth dervative at χ” as the value in Irχ/Ir+1

χ .

Example 2.1. We will actually work not with the full rational group ring Q[GM ],
but a finitely generated subring R which contains the coefficients of θE,M .

To get a feeling for what kinds of objects these derivatves are, we consider some
special cases. Pretend for now that R = Z. For r = 0 we have I0/I1 ∼= Z. For
r = 1 we have I1/I2 ∼= GM , thanks to the long exact sequence of group homology
associated to 0→ I → Z[G]→ Z→ 0:

0 = H1(G,Z[G])→ H1(G,Z)→ H0(G, I)→ H0(G,Z[G]) = 0

2.2 Twisted L-values

We said that we (roughly) wanted our element θE,M to interpolate L(E⊗χ, 1). The
correct result ends up being to take

θE,M =
1

2

∑
a mod M

[ a
M

]
E
σa

where σa ∈ GM corresponds to ζ 7→ ζa, and
[
a
M

]
E

is the (positive) modular symbol
associated to E; we will elaborate on this later.

We give a heuristic derivation of the expression to motivate where this comes
from. The χ-twisted L-function of E is

L(E ⊗ χ, s) =
∞∑
n=1

anχ(n)

ns
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so we have

L(E ⊗ χ, 1) =
∞∑
n=1

anχ(n)

n

=
∑

m mod M

χ(m)
∑

n≡m mod M

an
n

=
∑

m mod M

χ(m)
∑
n

an
n

(
1

M

∑
a mod M

e2πia(m−n)/M

)

=
∑

a mod M

(
1

M

∑
m mod M

χ(m)e2πiam

)∑
n

an
n
e−2πian/M

=
τ(χ)

M

∑
a mod M

χ(a)
∑
n

an
e−2πian/M

n

=
τ(χ)

M

∑
a mod M

χ(a)
∑
n

an

(
2πi

∫ −a/M
∞

e2πinz dz

)

=
τ(χ)

M

∑
a mod M

χ(a)2πi

∫ −a/M
∞

f(z) dz.

2.3 Modular symbols

The quantities ∫ −a/M
∞

f(z) dz.

obtained in the preceding calcluation are examples of modular symbols. In the weight
2 case, a modular symbol for the congruence subgroup Γ is simply a map

HomΓ(Div0(P1(Q)),C)

where Γ acts by translation on Div0(P1(Q)). For our purposes, we can think of a
modular symbol as a combinatorial gadget that encodes L-values.

Example 2.2. For f ∈ S2(Γ), we get a modular symbol given by

[a/M ]− [∞] 7→ 2πi

∫ a/M

∞
f(z) dz.

However, there are other kinds of modular symbols which don’t come from cusp
forms. (They are instead related to Eisenstein series.)

Let E/Q be an elliptic curve of conductorN . Attached to E we have a normalized
cusp form f of level N , which induces a modular symbols as above. This is what we
see appearing in the expression for L(E ⊗ χ, 1).
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Now, if we consider the integrals

2πi

∫ a/M

∞
f(z) dz

for all a/M in Q the values that appear will be special: they will form a lattice
containing with finite index the lattice associated to E by complex uniformization
of elliptic curves. (The latter lattice is what you get by integrating only over Γ0(N)-
equivalent cusps.)

Since E is in particular defined over R, its lattice will have a special shape. It will
be either a square lattice, or index 2 inside a square lattice. The usual normalization
is to write

ΛE = {aΩ+
E + biΩ−E}

where either a ≡ b (mod 2) or a, b ∈ Z (unrestricted). Here

Ω+
E =

1

2

∫
E(R)

|ω|

where ω is the Néron form on E (so this is only a half-period when E(R) has one
connected component).

Therefore, ∫ a/M

∞
f(z) dz =

[ a
M

]+

E
Ω+
E +

[ a
M

]−
E

Ω−Ei

with
[
a
M

]+
E
and

[
a
M

]−
E
rational numbers. (There is some content here, which is that

ω pulls back to f(q)dqq under the modular uniformization.)
Now, recall that in our computation of L(E⊗χ, 1) we found a sum of the quantity

2πi

∫ a/M

∞
f(z) dz

over all a modM . We claim that this is real. The reason comes from the observation
that f(−z) = f(z), since q = e2πiz has this property and the Fourier expansion of f
in q has real coefficients. So

2πi

∫ a/M

i∞
f(z) dz = −2πi

∫ a/M

i∞
f(z) dz

= −2πi

∫ a/M

i∞
f(−z) dz

= −2πi

∫ a/M

−i∞
f(−z) dz

= 2πi

∫ −a/M
∞

f(z) dz
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Thanks to this, we can consider only the + part of the modular symbol, so from now
one we define [ a

M

]
:=
[ a
M

]
+
.

To sumarize, we have found that

L(E ⊗ χ, 1) =
τ(χ)

M

∑
a mod M

χ(a)
[ a
M

]
E

Ω+
E .

Now, Mazur and Tate define the modular element

θE,M :=
1

2

∑
a mod M

σa

[ a
M

]
.

It turns out that this is slightly different than the object which interpolates L(E ⊗
χ, 1); this element interpolates τ(χ)L(E⊗χ,1)

2Ω+
E

.

Conjecture 2.3. For every χ, the element θE,M vanishes to order at least

dimQE(KM )[χ]⊗Q.

3 Height pairings via bi-extensions

We will now describe global pairings onE(K) through the framework of bi-extensions.
In this section we let A be an elliptic curve and B its dual elliptic curve. Of course
A = B = E, but we adopt this notation for two reasons. The first is that the dis-
cussion can be extended to abelian varieties, and the second is that these will play
asymmetric roles in the pairings, which we emphasize through this notation.

3.1 Motivation

The point of the bi-extension formalism is to provide a convenient setting for global
pairings. The simplest global pairings (e.g. the Néron-Tate height pairing) is sim-
ply a sum of local height pairings, but we will consider more complicated types of
pairings.

To illustrate the role of the bi-extensions, we’ll imagine rephrasing the global
pairings without them. Roughly speaking, we want to define a pairing on A(K) ×
B(K) where K is some global field. To do so, we consider each completion A(Kv)×
B(Kv) and try to assign a local pairing value. However, to do so we’ll have to make
some additional choice, so that the value is not well-defined. The ambiguity in this
choice is up to some group Gv. But we would find that when we sum up the local
pairings, any global ambiguity in the choices cancels out because of a “product rule”.

For reasons you can imagine, carrying around “not-well-defined local pairings” is
unwieldy. Instead, we’re going to replace this notion with a function on the space
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of all possible choices, which forms a Gv-torsor over A(Kv)×B(Kv). Globally, this
defines a function on some object bigger than A(K)×B(K), but then we can clealy
talk about it descending.

3.2 Bi-extensions

Let us first discuss bi-extensions at the level of groups. Let A,B,G be three groups.
Informally, a bi-extension is a “bilinear form valued in extensions”. This is some set
E with a G-action, such that for each a ∈ A the fiber Ea over a has the structure
of group making Ea an extension of B of G, and similarly for each b ∈ B. The
extensions need to satisfy a bilinearity property:

Ea1+a2,b
∼= Ea1,b + Ea2,b

where Ea1,b + Ea2,b is the addition of extensions in the sense of groups, and some
cocycle and compatibility conditions. Then a bi-extension of group schemes will be
defined in the obvious way in terms of the functor of points. That is, an extension of
A×B by G will be a G-torsor E over A×B, which when considered as an A-scheme
is an extension of B by G, and when considered as a B-scheme is an extension of A
by G.

Example 3.1. The ur-example of a bi-extension is the Poincaré bundle PA on A×B
(viewed as aGm-torsor rather than a line bundle). The general definition is modelled
on the properties of this example.

Definition 3.2. Let A,B,G be group schemes. A bi-extension of A × B by G is a
G-torsor E over A×B with isomorphisms of torsors:

αa1,a2;b : Ea1+a2,b
∼−→ Ea1,b + Ea2,b

βa;b1,b2 : Ea,b1+b2
∼−→ Ea,b1 + Ea,b2

satisfying certain cocycle and compatibility conditions.
Instead of describing these conditions in general, we do it in the special case

of G = Gm where the language become more familiar. If G = Gm, then by the
equivalence between Gm-torsors and line bundles we can also think of a bi-extension
of A×B by G as a line bundle L on A×B with a bilinearity structure

αa1,a2;b : La1+a2,b
∼= La1,b ⊗ La2,b

βa;b1,b2 : La,b1+b2
∼= La,b1 ⊗ La,b2

However, there should be some compatibility conditions. For a1, a2, a3 ∈ A we have
several possible isomorphisms

La1+a2+a3,b
∼= La1,b ⊗ La2,b ⊗ La3,b
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by first combining a1 + a2 or a1 + a3 or a2 + a3; we demand that these should be
the same.

Similarly, there two possible isomorphisms

La1+a2,b1+b2
∼= La1,b1 ⊗ La1,b2 ⊗ La2,b1 ⊗ La2,b2

depending on whether we first apply α or β; we demand that these agree.
We remark that checking these conditions for abelian varieties amounts to check-

ing that some line bundle on A×A×B×B, etc. is trivial; which follows from results
sometimes referred to as “rigidity” or the “Theorem of the Cube” or the “Theorem of
the Square”.

In the case of general G the story is essentially the same; one simply replaces the
tensor product with the natural addition for extensions, which is a combination of
pushout and pullback along the diagonal.

All of our bi-extensions will be obtained as modifications of the Poincaré bi-
extension. We now go on to describe the technical meaning of “modification”.
Definition 3.3. A modification of a bi-extension E(K) of A(K)×B(K) by G(K) is
a tuple (E′, α : P → A, β : Q→ B, ρ : G(K)→ H) where

• α : P → A(K) and β : Q→ B(K) are group homomorphisms, and

• E′ is a bi-extension of P × Q by H obtained by pushout of E|P×Q along
ρ : G(K)→ H.

E|P×Q

��

// P ×Q

α×β
��

E // A×B

 E′ = (E|P×Q)×G,ρ H.

3.3 Trivializations of of bi-extensions

We now define a “trivialization” of a modification of a bi-extension, which in the
context of height pairings plays the role of the “not-well-defined local height pairing”.
Definition 3.4. Keep the notation of Definition 3.3. A trivialization of E′ is a map
ψ : E′ → H giving a bilinear splitting of the extensions. In other words, each E′a is
a group extension of B(K) by H, so ψ|E′

a
is a group homomorphism E′a → H; we

demand that
ψ|E′

a1+a2
= ψ|E′

a1
+ ψ|E′

a2
.

By the pushou property, a trivialization may be equivalently thought of as a map
ψ : E(K)→ H such that

ψ((a, b, c)) = ρ(c) + ψ(a, b)

and satisfying a similar bilinearity (which is the point of view we will adopt in
discussing height pairings).
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To reiterate, in the language without bi-extensions we would be describinga triv-
ialization of a ρ-modification as a “pairing on A(K)×B(K) valued in H which is not
quite well-defined.” Namely, we declare 〈a, b〉 = ψ(e) where e lies over (a, b). This is
ambiguous up to translating the fiber by some element of g ∈ G, which changes the
result by ρ(g).

3.4 Reformulation in terms of symbols

We give a parametrization of elements of E(K) that will be more concrete to work
with. Let Pic0(A) be the space of divisors on A algebraically equivalent to 0.

We consider the set of triples {a, D, c} where

1. a =
∑
nx[x] is a zero-cycle on A(K) of degree 0, i.e.

∑
nx = 0 (implicitly

requiring that all but finitely many coefficients vanish.)

2. D ∈ Div0(A) is a divisor (algebraically equivalent to 0) with disjoint support
from a,

3. c ∈ K∗.

We then define a symbol [a, D, c] ∈ E(K). This lies over (a, b) ∈ A(K)×B(K),
where

a = s(a) :=
∑

nxx (in the group law of A(K))

and b is the line bundle corresponding to the divisor D. Furthermore, D describes
a meromorphic section O(D) (the function 1) which gives a trivialization f of the
fiber (up to scalar). The coordinate in this trivialization is cf(a), where

f(a) =
∏

f(x)nx .

The scalar ambiguity is killed by the fact that a has degree 0.
The properties of the symbol are the following:

1. [a, D, c] = c+ [a, D, 1],

2. [a, D1, 1] + [a, D2, 1] = [a, D1 +D2, 1],

3. [a1, D, 1] + [a2, D, 1] = [a1 + a2, D, 1],

4. [a, (f), 1] = [a, 0, f(a)].

These properties characterize the symbol [a, D, c], because the difference of any
two such symbols is

δ(a, D, c) = [a, D, c]1 − [a, D, c]2 ∈ K∗

which as D varies glues to a map A→ Gm, which is necessarily constant.
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A bonus consequence of this is that

[aa, Da, c] = [a, D, c]

where the subscript a denotes translation by a ∈ A(K), since this satisfies the same
properties.

Reformulation of trivialization. We can now also reformulate the notion of
trivializations in terms of these symbols. A trivialization will be a map

[a, D]ψ := ψ([a, D, 1]).

The conditions that this satisfies are

1. [a, D]ψ is bi-additive,

2. [a, (f)]ψ = ρ(f(a)),

3. [aa, Da]ψ = [a, D]ψ.

Conversely, any splitting can be obtained from this symbol by

ψ([a, D, c]) = ρ(c) + [a, D]ψ.

3.5 Examples

Let K be a local field and O = OK is its ring of integers. If A is an abelian
variety over K, then we denote by A its Néron model over OK and A0 as its relative
connected component. We have a filtration

A(K) ⊃ A0(K) ⊃ A1(K) ⊃ . . .

where Ai(K) corresponds to the subset of A0(O)

Ai(K)↔ ker
(
A(O)→ A(O/$i)

)
.

In the examples we will discuss, the trivialiations exist and are unique by generalities,
but instead of proving this we will give explicit “geometric” descriptions of them.

3.5.1 The finite unramified trivialization

Let v be a finite place. We take P = A(K) and Q = B0(K), and define

ψ([a, D]) = deg(a′ ·D′)

where a′ and D′ are interpreted as divisors on A whose generic fibers are a and D,
and such that for each component Fi of the special fiber Ak the degree D′ · Fi = 0
(this is the meaning of the condition D ∈ B0(K)).

Proposition 3.5. The pairing − log |ψ[a, D]| is the Néron-Tate pairing.

Indeed, the latter is uniquely characterized by bilinearity, symmetry, 〈a, (f)〉 =
log |f(a)|, and a continuity property which we leave as an exercise.
Exercise 3.6. Check it.
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3.5.2 The finite tamely ramified trivialization

We define a modification (A(K), B1(K),K∗/U1) where

U1 = {x ∈ O∗ : x ≡ 1 (mod mv)}.

The target group is non-canonically isomorphic toZ× F∗v, where we can think of Z
as being the same as in the previous case. The subgroup of K∗/U1 having valuation
0, namely O∗/U1, does map isomorphically to F∗v, and here the F∗v component is the
canonical splitting of E(k) (which exists by generalities).

This can be described more concretely in term of symbols as follows. For a pair
(a, D) having Z-value 0 we choose a′, D′ extending to the Néron model, as before.
Then D|k is principal, say (f) and we define the k∗ component to be f(a).

3.5.3 The finite split multiplicative trivialization

We use a rigid-analytic uniformization of A and B by rigid-analytic tori. In the
setting of elliptic curves that we are considering, the results can be stated in a very
elementary manner in the language of Tate’s curve, but because of the asymmetric
roles of A and B we think it clearer to give the general formulation.

Let X and Y be the character group of the split tori A0/k and B0/k. Then we
have uniformizations TX � A and TY � B by rigid-analytic tori. We then have an
embedding Y ↪→ TX = X∗ ⊗Z Gm induced by the duality

X × Y → K∗

which fit into the short exact sequences

0→ Y → TX
α−→ A→ 0

and
0→ X → TY

β−→ B → 0.

We will show that there is a unique splitting.
Remark 3.7. At the level of rigid analytic spaces, the uniqueness of the splitting
follows from

Hom(Gm,Gm) = Z

and
Hom(Gm,Z) = 0

in the rigid analytic category, so

Hom(Gm,Hom(Gm,Gm)) = 0.

To construct the splitting we use theta functions. Recall that E(K) could be
represented by symbols [a, D, c]. We will parametrize E′(K) by symbols [a′, θ, c]
where
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1. a′ =
∑
nx[x] is a zero-cycle of degree 0 on TX(K),

2. θ is a meromorphic theta function on TX(K) such that for each y, the ratio
θ(t+y)
θ(t) is independent of t, and the divisor of θ is disjoint from a′.

3. c ∈ K∗.

Given such a datum, how can we get an element of E′(K)? We need to specify
elements of TX(K)× TY (K) and E(K) that it lies over.

• We have s(a′) :=
∑
nxx ∈ TX(K).

• We have a function uθ(y) := θ(y+t)
θ(t) ∈ TY (K) = Hom(Y,K∗),

• We have the symbol [α(s(a′)), αDiv θ, c] ∈ E(K).

There is an implicit claim here that we can arrange a′ to map to an arbitrary
degree 0 zero-cycle on A(K) and Dθ be an arbitrary divisor with disjoint support.
We shall see this explicitly in an example soon.

In terms of this, the splitting is

ψ([a′, θ, c]) = cθ(a′).

What do we need to check in order to ensure that this is well-defined? First, suppose
θ is replaced with another theta function θ′ having the same cocycles. Then θ/θ′ is
invariant under translation, so descends to a meromorphic function on A(K). From
the rule

[a, D + (φ), c] = [a, D, cφ(a)]

we deduce that
[a′, θ′, c] = [a′, θ, c

θ1(a′)

θ(a′)
] for uθ1 = uθ.

Next suppose that we choose some a′′ with the same sum as a′ in the group law.
Then a′′ − a′ is built out of zero-cycles of the form at − a, so it suffices to assume
that a′′ − a′t. Then

[a′t, θ, c] = [a′, θ−t, c] = [a′, θ, c
θ−t(a

′)

θ(a′)
] = [a′, θ, c

θ(a′t)

θ(a′)
].

Example 3.8. Write in terms of the usual Tate uniformization TX = TY = Gm and
q ∈ K∗ = Gm(K) with |q| < 1. Then Y = X = qZ.

E′(K) //

��

K∗ ×K∗

(α,β)

��
E(K) // A(K)×B(K)
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The basic theta function, having zeros along qZ, is

θ(t) = (1− t)
∞∏
n=1

(1− qnt)(1− qnt−1).

It is easily checked that
θ(qt) = −t−1q(t).

Let a′ =
∑
mi[ai] and b′ =

∑
nj [bj ] be zero-cycles of degree 0 on K∗ with images

in A(K) = B(K) having disjoint supports (which amounts to saying that no ai/bj
is a power of q.) Let a = α(a′) and b = β(b′). Then set

θb′ =
∏
j

θ

(
t

bj

)nj

.

This has divisor β∗b, and satisfies

θb′(qt) = s(b′)θb′(t).

Then we have a point [a, θb′ , 1] ∈ E′(K).
So this represents [a, b, 1] ∈ E(K) and s(a′)× s(b′) in K∗ ×K∗. The splitting is

then
ψ[a′, b′, 1] =

∏
i,j

θ(
ai
bj

)minj .

4 The global height pairing

4.1 The global pairing associated to a family of local trivializations

Let A = E be an elliptic curve over a global field K and B its dual elliptic curve;
let E/K be the universal Gm-biextension of A×B.

We are now ready to define the global pairing associated to a family of local
trivializations δ = (δv) consisting of

• αv : Av → A(Kv),

• βv : Bv → B(Kv),

• ρv : K∗v → Cv,

• ψv : Ev → Cv

with almost all of them being the finite unramified local trivialization.
We define groups Aδ, Bδ, Cδ and a pairing

〈·, ·〉δ : Aδ ×Bδ → Cδ.
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Basically each Av is a modification of A(Kv), and Aδ is obtained by putting these
modifications together. The Cδ is basically the product of the local value groups,
with a global product formula is enforced.

Aδ //

��

A(K)

∏
iv

��∏
Av αv

//
∏
A(Kv)

Bδ //

��

B(K)

∏
iv

��∏
Bv

βv
//
∏
B(Kv)

We can think of an element of Aδ as an element A(K) together with (av) such that
their images in each A(Kv) agree, and similarly for Bδ. So we have a short exact
sequence

0→
∏

kerαv → Aδ → A(K)→
∏

cokerαv → 0

and
0→

∏
kerβv → Bδ → B(K)→

∏
cokerβv → 0.

The value group Cδ is defined by the pushout diagram

I =
∏
K∗v

��

//
⊕
Cv

��
I/K∗ // Cδ

so we have a product rule by definition

K∗
∑

v ρv◦iv−−−−−−→
⊕
v

Cv
θ−→ Cδ → 0.

The pairing can then be defined as follows. Let (P, (av)) ∈ A(K) and (Q, (bv)) ∈
B(K). Then choose some e ∈ E(K) lying over (P,Q). Then iv(e) lives over
(iv(P ), iv(Q)) for each v.

Ev //

��

E(Kv)

��
Av ×Bv // A(Kv)×B(Kv)

We let ev ∈ Ev to be the point lying over iv(e) and (av, bv). Then we define

〈(P, (av)), (Q, (bv))〉 = θ(
∑
v

ψ(ev)).

We need to check that this is well-defined; the ambiguity is up to an element of
c ∈ K∗, which is killed by definition in our value group Cδ.
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4.2 S-pairings

Let S be a finite set of places of K and Sm ⊂ S be the subset of places where A has
split multiplicative reduction. We define a global pairing data δS as follows:

1. For archimedean v the Cv = 0 and αv, βv are identity,

2. For v /∈ S, the pairing is the unramified one,

3. For v ∈ S \ Sm, the pairing is tamely ramified,

4. For v ∈ Sm, the pairing is the split multiplicative trivialization.

This defines a pairing
〈·, ·〉S : AS ×BS → CS .

The target group CS is I/K∗
∏
v Uv where

Uv =


K∗v v archimedean,
O∗v v unramified,
O1
v v ∈ S − Sm

1 v ∈ Sm

Note then that AS and BS are finitely generated of rank r = rankA(K) + #Sm.
In our case of interest K = Q, the value group is

CS =

 ∏
p∈S−Sm

F∗p ×
∏
p∈Sm

Z∗p

 /{±1}.

4.3 Discriminant

We begin with a general discussion. If M,N are free Z-modules of rank r then we
can discriminant of a pairing

〈·, ·〉 : M ×N → R

valued in a commutative ring to be

disch := det
1≤i,j≤r

h(Pi, Qj)

which is a priori defined up to sign. If M,N are not free, then they have free
submodules M ′ and N ′ of finite index and we define

disch =
1

[M : M ′][N : N ′]
disch′

as long as the orders of the torsion subgroups are invertible in R (we will force this
to be the case).
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Definition 4.1. We define discS(E) to be the discriminant of the pairing

〈·, ·〉S : AS ×BS → R⊗ Sym•ZCS

in the above sense, where R is some subring of Q in which #E(K)tors is invertible.

This is well-defined up to sign. However, in the special setting of abelian varieties,
one can remove this ambiguity. Given an orientation equivalence class of bases for
A(K)⊗Q R, one can choose a polarization to get a bases for B(K)⊗R. But what
happens for a difference choice of polarization? The key point is that if φ, φ′ : A→ B
are two polarization defined over K then detφ−1 ◦ φ′ is positive.

To check this, it suffices to show that the characteristic polynomial of φ−1 ◦ φ
acting on T`(A)⊗Q has positive roots. But this characteristic polynomial P has the
property that P (n) = det(n+ φ−1φ′), which by results of Mumford has the desired
property.

4.4 Corrected discriminant

It turns out that we need to work not with discS but with a “corrected discriminant”.
The basic idea is to “average” in some way over the T -pairings for all Sm ⊂ T ⊂ S.
It is unclear how to give a conceptual explanation for the need to average in this
way. In a simplified setting (where enough things are invertible in our group ring),
the corrected discriminant just multiplies by∏

p∈S−Sm

(p− 1− np)

where np = #B0(Fp).

5 Formulation of the conjecture

We now assemble these ingredients into a conjecture. Let E/Q be an elliptic curve,
A = E and B = Ê = E. Let S be a finite set of finite primes, and Sm ⊂ S be the
subset of primes where A has split multiplicative reduction.

For each p ∈ Sm we choose an integer ep ≥ 0, and we set

M :=
∏

p∈S−Sm

p
∏
p∈Sm

pep

Then we have the modular element θE,M ∈ Z[GM ]. Let R be a subring of Q in
which #A(Q)tors is invertible and the modular element is defined. We can consider
θE,M ∈ Ir/Ir+1 where

r = rankE(Q) + #Sm.
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Now for the right hand side, we have the S-pairing

AS(K)×BS(K)→ CS =
∏

p∈S−Sm

F∗p ×
∏
p∈Sm

Z∗p/{±1}.

Then the discriminant
discS(A) ∈ R⊗ Symr CS .

The map CS � GM ∼= I/I2 induces a map

ηr : Symr CS � Ir/Ir+1.

(We choose CS → GM to send a ∈ (Z/M)∗ to the element σa.) Finally, let

φSm = # coker(B(Q)→
∏
p/∈Sm

(B/B0)(Fp)).

Conjecture 5.1 (Mazur-Tate). We have

θE,M = #X(E) · φSm · ηr(discS(A)) ∈ Ir/Ir+1.
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