The Bloch-Kato Tamagawa Number Conjecture

Jesse Silliman

1 Introduction

Bloch and Kato originally thought of their conjectures as a version of the Tamagawa number
conjecture for algebraic groups, replacing the algebraic group by a pure motive.

algebraic groups < — — —— > abelian varieties < — — —— > motives

Abelian varieties are the prototypical motive. We recall how the BSD conjecture for abelian
varieties equals a Tamagawa number conjecture.
First, we recall the theorem for algebraic groups:

Theorem 1.1 (?) For a connected algebraic group G over a number field K, we have

|Pic’(G)]

)= ey

Here, 7(G) is roughly the volume of G(Ak)/G(K) with respect to Haar measures on G(K,) for all
places v, where we have to use L-functions to make the product measure converge, and also have to
restrict to measuring some “compact part” of G(K,), by taking the kernel of all |x|,, x: G = G,,

Now, let’s formulate a version of this for abelian varieties. For simplicity, assume that E is
an elliptic curve over Q, with F(Q) finite. There is a Neron model & for E, with Neron form w.
This induces a measure on E(Q,): one way to formulate this is that the map log = [w: E(Z,) —
Lie(€)q, (multiply till you land in “kernel of reduction” £(pZ,), then evaluate power series) induces
a measure on &£(Z,) by declaring that it preserves measure and that Lie(€)z, has volume 1.

A calculation shows that vol(E(Q,)) = 17 Fp - |®,(F,)|, where ®, is the component group-
scheme. Define ¢, = |®,(F,)|, the Tamagawa factor at p. Also, vol(E(R)) = | B @ is the real

period.
The product [],vol(E£(Q,)) does not converge. However note that L(E,1) = [, det(1 —

p A(VE)))~ =[], det(L=fFI(ViI(E) ™) = T, e |E0(F jj» using the Cartier duality 7, (E) (1) =
T,(E).

Thus we can define the renormalized adelic volume to be

vol(E(A)) = L(E, 1) vol(ER)) [ ¢

p
The Tamagawa number conjecture then becomes

ol (E(A)) _ L(E,l)—lvol(E(R))Hp % 2 |E(Q)]
E(Q) |E(Q)| (k)
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This is evidently equivalent to BSD. More generally, if £(Q) is not finite, L(£, 1) should vanish, and
|E(Q)], |Pic°(E)| are not finite. However, if we replace L(E, 1) by the leading term L*(E, 1) and
introduce height pairings to measure, not the covolume of E(Q)/tors in E(A), but its “density”,
we again recover BSD.

How do we generalize this to other motives?

e Global points modulo torsion via K-theory

e Torsion in global points, Pic®, II1, via global etale cohomology

e Local nonarchimedian points via local etale cohomology

e Local nonarchimedean volumes via Bloch-Kato exponential

e Local real volumes via period map, real regulators, as in Beilinson conjecture

e Height pairings to make sense of quotienting adelic points by global points, when not just
torsion

Once we make precise what all this means, we will have, for a motive M = h*(X)(j), the exact
same conjecture:

vol(M(A))Reg(M) _ L*(M,0)" ! Reg(M)vol (M (R)) [], ¢ i |(M*(1))(Q)sors|
|M(Q)tors| |M(Q)tors| ’H—I(M>tors|
One convenient way to formalize this was found by Fontaine and Perrin-Riou.

First, recall that, in formulating Beilinson’s conjecture, we had, for a motive M of weight
w < —1, an injective real period map

o (ME)R — (MdR/FOMdR)R =: LZ@(M)R
and a conjectural isomorphism

HFL(X,Q())r = coker(a) =2 H5™ (X, R(5)).

Using these, we obtain, denoting [-] := det(:) for the top exterior power of a vector space,
division meaning tensor with dual,
Lie(M
bR (Dl ) oo
[HM,Z(Xv@(j))HMB]

Beilinson’s conjecture (not the rank part) is equivalent to the claim that
O (1/L*(M)) € Z(M).

In other words L*(M) should measure how far 6, is from respecting the rational structures Q C R,
=E(M)CEM)®R.

Fontaine and Perrin-Riou generalize this for all w, defining Q-vs H}(M), * = 0,1,2,3, and
define
[HF(M)][Lie(M)]

[M] ’

=(M) =



as well as an isomorphism
Os: R = Z(M)g,

and still conjecture
O (1/L*(M)) € Z(M).

We think of this canonical element in Z(M) as defining a Z-integral structure. Using etale
cohomology, we can define Z,-integral structures

Qpi A — E(M)Qp,

(A = Z,, but not canonically so)
The Bloch-Kato conjecture is then:

Conjecture 1.2 ([2]) The Z,-integral structures
Zy - 0(1/L*(M)) € Z(M)g, > 6,(A)
agree for all p.
In terms of volumes, this says, roughly, that

Conjecture 1.3 For all primes p,

Reg(M)uvol(M(R)) [M(Q) oM (1) (@rons
”%( () >:”%< ()| T, e, )

Remark 1.4 We could make sense of the p-adic valuation of all the invariants on the RHS in
terms of p-adic etale cohomology.

2 Determinants

Motivation This is mostly just book-keeping.

Given a (finite dimensional) vector space V, define [V] = A'? V. Note that if V' = 0, then
[V] 2 Q, canonically. Given an exact sequence 0 - A — B — C' — 0, we have [B] = [A][C].
We will need to keep track of isomorphisms, or else this is useless. We consider integral structures
T on Q,-vector spaces V, by which we mean finitely-generated Z, modules 7" with a canonical
isomorphism 7" ® Q, = V. An integral structure 7" on V' determines a Z,-submodule [T'] C [V] as
follows:

If T'C V is torsion-free, then [T] C [V] is what you expect. If V =0, T' =0, then [T] = Z, C
Q,=1[V]. tV =0,T =Z/pZ, then [Z/pZ] = %Zp C Q, = [V]. ie. torsion groups have larger
volumes than trivial groups.

For a general integral structure T, [T] = [T'/tors|[Tiors] = |Ttors|p[T'/tors] C [V], where | - |, is

the valuation with [p|, = %.

Given a a finite complex C': Ay — A; — ... = A, of Q,-vs, we define [C]

We can deduce: [C] = [H*(C)].

Consider an integral structure X C C. The cohomology complex H*(X) is an integral structure
of H*(X). Thus we obtain [H*(X)] C [H*(C)] = [C].

~ [Ao][A]
= [Ad][As]




Consider f € Aut(V), such that f(T) C T for T C V a lattice. Consider the complexes
(T EN T)C(V EN V). Now, [V = V] =[H*(V = V)] =10 — 0 =Q, D Z, has a canonical
integral structure. We compare this to the integral structure [H*(T — T)]:

[H*(T — T)] = [coker(f|T)]™" = |det(f)|," - Z,

Similarly, the complex (T EN (1) c (v EN V) has [H*(T — f(T))] C [H*(V = V)] = [0] =
Qp C Zy,.
3 Motivic f-cohomology

Motivation We need rational structures to compare the p-adic, co-adic computations.
For a motive M = h'(X,Q(j)), with weight w = i — 2j, we define

o HY(M) = CH/(X)g/hom.equiv. if i = 27, 0 otherwise

o 10 = § AR Q) = Im(Kayia ()G = Kajmina(X)), 0725~ 1,
! CH](X)homNOa 1= 2] —1 ’
for X a regular proper model of X over Z (what if this doesn’t exist?)
o H}(M)= (Hy(M*(1)))"
o H}(M) = (Hy(M*(1))

Note that H? =0ifw # 0, H} = 0 if w # —2 (immediately right and left of the point of
symmetry w = —1).

Conjecture 3.1 ([2])
ords—o(L(M, s)) = dimg H ;(M*(1)) — dim H}(M*(1))

Remark 3.2 This is, conjecturally on the isomorphism of the p-adic regulator (see below), the
same conjecture as in Tony’s talk in terms of Bloch-Kato selmer groups.

Remark 3.3 This conjectures possible poles for w = —2, possible zeros for w > —1, and ord =0
forw < —2. Note, for ezample, that ((r) relates to the motives Q(r) of weight —2r.

We use these groups to define the fundamental Q-line

[H}(M)][Lie(M)g]
[M]

(1]

(M) =

Remark 3.4 The definition of H; is convenient, but it is bad: Ext}(Spec(Q)mor, M) = 0 according
to Beilinson’s conjectures (Scholl says this). Further, these groups definitely do not have the correct
torsion even if you decide not to ®Q: Should have class groups for number fields.



4 Real Volumes

Motivation: Incorporate Beilinson’s conjecture, including height pairings.
We have a real period map

[ (ME)R — (MdR/FOMdR)]R = (LZ@(M))R

A motive is called “critical” when « is an isomorphism. For example, motives of weight -1,
such as H'(E,Z(1)) = H,(FE,Z), are always critical.

In this case, we obtain an isomorphism

o
R = [Lie(M)g]/[(Mf)z].

Also, when the weight is —1, we have the possibility of height pairings:

Conjecture 4.1 When w = —1, the height pairing
h: Hy(M)g x Hf(M*(1))r — R

18 nondegenerate.

Assuming the conjecture, we obtain

R 2 (H(M*(1))")/[HA (M)

In combination, these give an isomorphism

9002 R E(M)R

Now we deal with the noncritical case, and assume the weight is < —1. Here H}(M) =
H} (M) = 0.

Conjecture 4.2 When w < —1, the real requlator
H (M) — coker(c)

18 an isomorphism.

[Lie(M)g]
[(M#)e]

Since [coker (a)] = we again obtain

O: R = Z(M)g.

Remark 4.3 When the weight is > —1, we need to use factors from the functional equation to
define the map O« in terms of that for its dual motive M*(1). See Fontaine and Perrin-Riou.

Remark 4.4 All cases can be combined into the conjectural exactness of the sequence
* * h * *
0 — HY(M) — ker(a) — Hj(M*(1))* = Hp(M) — coker(a) — Hj(M*(1))* — 0,

which perhaps suggests that Hy, x = 0,1, is dual to a cohomology theory which is “compactly
supported at infinity”. See Deninger-Nart.

The map 6., can also be defined for w > —1. For all weights w we have the following conjecture:

Conjecture 4.5 (Beilinson)

0o (1/L7(M)) € Q



5 Local f-cohomology and the Bloch-Kato Exponential

Motivation Local conditions, being unramified, analogous to Hj; ;.
Fix a prime p. We define complexes

v=o00: RI'(R,M,)
1—
RT4(Qy, M) = Qv p:  Mb = Mb :
17f,71'
v=p: Dais(M) " Dopis(M,) ® Dan(M,)/FODar(M,)

with f the geometric Frobenius.
Their cohomology groups H} are the same as those in Tony’s talk, as we will shortly see.
Local L-complexes (This is just notation for later.)
We have the complexes for v # oc:

We define LV(M,) = L*(T,,) ® Q,.

We also define [L¥(M,)] = Ques—{oo} [ LY (M,)], with integral structure [L*(T},)] = ®yes— (oo} [L*(T))].

Note that if L*(M,) is acyclic, then [L*(T,)] = [det(1 — f|M_)]"", like a local L-factor. This
explains the notation.

Recall that f-cohomology is a “self-dual Selmer condition”:

Proposition 5.1 H}(Qp, M,) is the exact annihilator of H}(Qp,M;(l)) under the Tate local du-
ality pairing.

We want to define the Bloch-Kato exponential
erPBK : DdR(Mp>/FODdR(Mp) — H}(Qp, Mp)

It arises from the “fundamental exact sequence of p-adic Hodge theory”:

0= Qp = Beris 5" Berss ® Bar/ B, = 0.

A sequence similar to this was in Tony’s talk.
Tensoring this with our representation M, (which is assumed to be de Rham), and taking the
LES of Galois cohomology

0 — H°(M,) = Dyis(M,) = Deris(M,)®Dar(M,)/F°D(M,) — ker(H"(M,) — H"(M,®B.s)) — 0,

Note that this verifies that the definition of H} in Tony’s talk agrees with the 1st cohomology of
the above complex.

We can also express the BK exponential in terms the Ext!'-consequence of the crystalline
comparison theorem.

Proposition 5.2 ([1]) For M, crystalline, we have the following isomorphism:
D(Mp)/(l - f)FOD(Mp) = Ext:]l”,Fz’l(Qp? D(Mp)) = Ewt}(p (@pa Mp)f'

In other words, crystalline extensions of galois representations are identified with extensions of

(f, F'il)-modules.



An aside on Fontaine-Lafaille Theory([1])
If the lattice D(1,) C D(M,) is “Fontaine-Lafaille” (strongly divisible and with weights in
[0, p — 1]), we have an integral comparison theorem

D(T,)/(1 - f)FOD(Tp) = Ext},Fil(Zpa D(Ty)) = E‘Tt}(l, (Zy, Tp) -
In this case, we have the following:

D(T,)/FOD(T;) ——*— H'(K,,T)

1-f lﬁ

D(T,)/(1 = f)F°D(T,)

This implies that when a lattice is Fontaine-Lafaille, that the local volume agrees with the local
L-factor. Morally, this means that we have good reduction, in some strange new sense, since the
Tamagawa factor at p is then 1.

For example, Bloch-Kato shows that the lattice D(Z,(r)) is not Fontaine-Lafaille for p < r,
contributing an extra factor of 1/(r — 1)! to the adelic volume as we vary over all such primes.

Bloch-Kato Exponential and Kummer Theory([I])

For abelian varieties and tori, the Bloch-Kato exponential agrees with the Kummer map. We
first show it for G,,, using the following diagram:

0 —— Zy(1) —— Lm0y,
p

0 ———0

log[] log

~

0 —— Q,(1) —— B/ n B, 6 C, 0

cris

~

0 —— Qy(1) — (BL; 1)(1) — (Bar/Bjp)(1) —— 0

cris

To get the result for abelian varieties, use that H OmForma[Group(A\, @;)(OCP) = T,(A)*(1) by
Cartier duality. For any choice of x € T,(A)*(1), we get a map (not galois equivariant) from the
sequence

0— T,(A L ,) = A(Oc,) —

to the last row of the above diagram, i.e. we get a (galois equivariant) map from this sequence to
the last row tensor V,(A)(—1).
Bloch-Kato claim this proof works, in some sense, for abelian varieties with bad reduction.

6 Global f-cohomology

There is a homological algebra construction, which, given a map of complexes, formally create a
complex fitting into a long-exact sequence:

.— H'(A) = HY(B) = H'(Cone(A — B)) — ...,
Note that this implies the determinant formula
[B]

[Cone(A — B)] = Al



Let S = {oo,p,v s.t. VI* #£ V}. Let RI'(Z[1/S],N) be the complex computing global galois
cohomology, for N any reasonable Galois module. Similarly we use RI'(Q,,V,) for local galois
cohomology.

We first define the “quotient” of local cohomology by local f-cohomology, RI'/¢(Q,, M,), as

RE1(Qu, M) = Cone(RI 1 (Qu, M) — RI(Qy, M)
We define compactly supported cohomology, global f-cohomology, as
RT.(Z[1/S],N) = Cone(RI(Z[1/S], N) = ®uesRL(Qy, N))[—1]

RT¢(Z[1/5], My) = Cone(RT(Z[1/S], Mp) = @ves R ¢(Qu, My))[—1]

Note that we defined compactly-supported cohomology for any reasonable coefficients but f-
cohomology only for the galois representation V), associated to our motive.
We obtain, beyond the defining triangles, a triangle relating H} and H (Flach)

RI.(Z[1/5]) — RT;(Q) = @uesRI(Qy)

We also have compactly supported cohomology with integral coefficients RI'.(Z[1/5],T},), using
that on local etale cohomology RI'(Q,,T},).

Proposition 6.1
1. For N finite, the Euler characteristic of HX(Z[1/S],N) is 1.

2. The integral structure

[HZ(Z[1/S],Tp)] C [HZ(Z[1/S], My)]
is independent of choice of lattice T, C V.

3. The integral structure
[L3(T;)] € [L°(M,)]

is independent of choice of lattice T, C M,.

Proof. i) We use Tate’s Euler Characteristic formula. x(N) = |H0|@+"N)‘, for x the Euler charac-

H°(Z[1/S],N)H°(Z[1/S],N)

teristic

H(Z[1/S].N)

0
The local Euler characteristic formula, for v # oo, says x,(N) = % = |N|, = 1/|N[v>]|.
For v = 00, Xoo(N) = |H*(R, N)| - igfg%;l = |H°(R, N)|, where the last equality is because

the Herbrand quotient is 1 for finite modules.
ii) We can assume that 7, C 7). Then

T\ [H:(T;/Tp)] = Zpa

where the final isomorphism is not becaue H; (7T} /T),) is torsion, but because its Euler characteristic
is 1. A little thought shows that this means the integral structures agree, not up to finite difference,
but exactly, with changes in an individual H!(7},), say, being cancelled by changes in H(T}),
H?, H? as well.



iii) When the L-complex L(M,) is acyclic, note that [L*(T},)] = [det(1 — f|M*)]"" does not
depend on the lattice at all.
More generally, we can use the exact sequence

0T/~ - T, > T,/T/=" -0

to obtain [L°(T,)] = [L°(T,/T{=")]- [L*(T{=")]. By the acyclic case, we have that [L*(T,/T/=")] C
[L¥(M,/MI=")] is independent of choice of T),.

Further, the determinants [L¥(T,~/)] and [L"(M,~/)] have canonical elements due to the mor-
phism 1— f in the complexes being zero. These canonical elements are the same, hence the integral
structure [LV(T) /)] € [L*(M)~7)] is independent, of T},.

([l

Conjecture 6.2 The map
Hi(M) — H'(M,)

lands in the subspace H}(M,).

A preprint by Nekovar ([4]) claims to prove the above conjecture for p a prime of potentially good
reduction.

Conjecture 6.3 The p-adic requlators
H}(M)@p — H}(Mp),z' =0,1,2,3
are 1somorphisms.

Recall that [HF(M)][Lie(M)]
M) = ="

Assuming these conjectures, we have the following isomorphism

[1]

Op: [HZ(Z[1/S], My)][L*(M,)] 2 E(M)q

.
This uses the isomorphism

[HF(Q, M,)][L5(M,)] ™ [H}(Qp, My)]

[H(Z[1/5), M,)] = (Mf)g,]

followed by the Bloch-Kato exponential
cxppri: D(M,)/F'D(M,) = Hy(Qp, M,)
and the de Rham comparison theorem

D(M,) = (Mar)g,, F*D(M,) = (F°Mag)qg, -



7 Statement of Conjecture
Recall that Beilinson’s conjecture predicts that 6, : R — Z(M)g has 0 (L(M)™') € Z(M)q.

Conjecture 7.1 (Bloch-Kato) For all p, the following holds:
Let S = {p, primes of bad reduction }. Then the following Z,-integral structures agree:

Oso ([H:(Z[1/S], T)IL(T,)]) € E(M)g, D Ouo(L(M)7') - Z,

Note that both integral structures are isogeny-invariant: the LHS by Euler characteristic and
the RHS by definition.

8 Comparison with BSD
Let E/Q be an elliptic curve.
Assumption 8.1 III(E) is finite.

Remark 8.2 There is no reason to restrict to E an elliptic curve, except to avoiding discussing
Neron models. (This is silly, and we should change it, especially since we use Neron forms below)

We consider the motive T = H'(E,Z(1)) = H,(E,Z). We will show that the Bloch-Kato
conjectures for the motive M =T ® Q is equivalent to BSD.

The associated L-function is L(FE, s) at the point s = 1. The [-adic representation is the Tate
module T, = T,(F), and the Hodge realization is the first homology H(F,Z), which has type
(—=1,0)+(0, —1). This implies that Mygr/F° = Lie(E) = (H°(E, Q"))*.

Note that H}(M) = E(Q) ® Q. This shows that

[(E(Q)/tors)p]  [Lie(E)]
[(E(Q)/tors)q] [(H1(E(C), Z))*)]

Note that =Z(M) actually has a Z-integral structure we do not have for the general motive,
by using a canonical integral structure on de Rham cohomology. It is generated by 5 = (Av}) ®
(Av) P @w* @7t € Z(M), where {v;} is a basis for E(Q)/tors, {v}} the dual basis, w* is dual
to a Neron form, and Z - v = H{(E(C),Z)".

With respect to this integral structure, we will (roughly) measure both the real volumes and
v-adic volumes, and, assuming the BK conjecture, show that their product is £1, by comparing
p-adic valuations.

=(M) =

8.1 Real Stuff

We have two maps:
a: Hi(E,Z)* — Lie(E)

with a(v) = ([, w)w*, and
h: E(Q)/tors x E(Q)/tors — R

the canonical height pairing.
Together, these give a canonical element Reg(E)Qg - 5 € Z(M )g.
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8.2 Integral Structures

For the sake of computation, we must find some ad-hoc integral structures on the H7(V;) groups.
Abusing notation, we will denote them as H7(7}).
We define, for all places v, all primes p,

H}(@va Tp) = E(Q’U)ZP)

and
H:(Q,T,) = E(Q)z,.

We can also define a “co-integral structure” H(Q,V,/T,) to be the direct limit of the Selmer
groups

Selyn(E) = {x € HY(Q, E[p"])) | * € Im(E/p"E(Q,) — H'(Q,, E[p"])) for all places v}.

Then, using the global duality H7(Q,V,) x H;(Q,V,) — Q,, we verify that H}(Q,T}) :=
(H}(Q,V,/T,))" is an integral structure on H7(Q, V},).
We similarly define H}(Q,T,) := H(Q,V,/T,)".

Remark 8.3 It would have been preferable to have define these integral structures at the level of
complexes, but there are issues with doing this when p is a prime of bad reduction.

Theorem 8.4 ([3]) [H;(Zs,T,)] = [H}(Q,T})][Boes H} (Qy, T,)] "

Proof. The point is to use local Tate duality for abelian varieties to show that the ad-hoc Selmer
conditions above are “integrally self-dual”. As we have stated it, we are also using the compatibility
of Cartier duality with local Tate duality ([5]), but that is just for convenience. 0

We also need the exact sequence

0 — E(Q)/tors — H}(Q,V,/T,) — II[p>] — 0,

noting that the direct limit along E/p™"E(F) Lt E/p"E(F) is E(F)/tors ® Q,/Z, for any field F.

8.3 Computation

[1;(Q,T,)]
[©ucs 3@, Ty)]
[H}(Q, T,)|[H;(Q. T,)] ' [H}(Q,T,)]
[T,f] [@v€§H} (Qu, Tp)] !

[H:(Zs, Tp)] =

Global f-cohomology:
° H})(@,Tp) =0
o [H;(Q T))] = [EQ)z,] = [E(Q)iors][(E(Q)/tors)z,]

11



o [H}(Q T,)] = [(E)][((E(Q)/tors)z,)"]

o [H}(QT))] = [E(Q)rors]

Local f-cohomology:

o v=o0: [Hi(R,T})] = [Po]

o v#p: [Hi(Qy 1)) = [E(Qu)z,] = [Pu][E°(F,)]

e v=p: [H}(Q,T)] = [B(Q)s,] = [@,][EXF,)[EGE,)] = LATEND(T,)/FOD(T,)

[H:(Zs,T,)] YO T [H (R, Ty)] TToes,0mtp,00 Po] - [E°(Fo)]
A ENEQ:, o], — 7@ Tp)] [HO(R, T,)]
( [EQ@ o P[EWQ)z, ftors] ) faemee

_ [D(Tp)/FOD(Tp)] [(I)OO] HUES,v;éoo [q)v] ' [EO(FU)]
- 7] Z/pZ)

EF)) )
Note LS E.1)] ( vESw#oo [L/pZ) ) '
H

[

(Zs, LS (B, 1)] _ [(E(Q@

(E(Q)/tors)
() (el
c (E@/tors)y, ] [Lie(E)q,]
[(E(Q)/tors)g,] [(H1(E(C),Z)) ),
= E(M)q,
Thus Bloch-Kato reduces to the claim that, for each p, the integral structure given by [H?(Zs, T,,)|[L°(E, 1)]

agrees with the integral structure given by R%’((EE)I?R - . This is equivalent to

o () ot )

which implies the BSD conjecture.

Remark 8.5 Some formulations of BSD do not use the component group at infinity ®,, combin-
ing it into the period integral:
O - [Bo| = / W
E(R)
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