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1 Introduction

Bloch and Kato originally thought of their conjectures as a version of the Tamagawa number
conjecture for algebraic groups, replacing the algebraic group by a pure motive.

algebraic groups < −−−− > abelian varieties < −−−− > motives

Abelian varieties are the prototypical motive. We recall how the BSD conjecture for abelian
varieties equals a Tamagawa number conjecture.

First, we recall the theorem for algebraic groups:

Theorem 1.1 (?) For a connected algebraic group G over a number field K, we have

τ(G) =
|Pic0(G)|
|X(G)|

.

Here, τ(G) is roughly the volume of G(AK)/G(K) with respect to Haar measures on G(Kv) for all
places v, where we have to use L-functions to make the product measure converge, and also have to
restrict to measuring some “compact part” of G(Kv), by taking the kernel of all |χ|v, χ : G→ Gm.

Now, let’s formulate a version of this for abelian varieties. For simplicity, assume that E is
an elliptic curve over Q, with E(Q) finite. There is a Neron model E for E, with Neron form ω.
This induces a measure on E(Qp): one way to formulate this is that the map log =

∫
ω : E(Zp)→

Lie(E)Qp (multiply till you land in “kernel of reduction” E(pZp), then evaluate power series) induces
a measure on E(Zp) by declaring that it preserves measure and that Lie(E)Zp has volume 1.

A calculation shows that vol(E(Qp)) = |Ẽ0(Fp)|
p
· |Φp(Fp)|, where Φp is the component group-

scheme. Define cp = |Φp(Fp)|, the Tamagawa factor at p. Also, vol(E(R)) =
∫
E(R)

ω is the real

period.
The product

∏
p vol(E(Qp)) does not converge. However, note that L(E, 1) =

∏
p det(1 −

p−1f |((VlE)∗)Iv)−1 =
∏

p det(1−f |(Vl(E))Iv)−1 =
∏

p
p

|Ẽ0(Fp)| , using the Cartier duality Tp(E)∗(1) ∼=
Tp(E).

Thus we can define the renormalized adelic volume to be

vol(E(A)) = L(E, 1)−1vol(E(R))
∏
p

cp

The Tamagawa number conjecture then becomes

vol

(
E(A)

E(Q)

)
=
L(E, 1)−1vol(E(R))

∏
p cp

|E(Q)|
?
=
|E(Q)|
X(E)

.
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This is evidently equivalent to BSD. More generally, if E(Q) is not finite, L(E, 1) should vanish, and
|E(Q)|, |Pic0(E)| are not finite. However, if we replace L(E, 1) by the leading term L∗(E, 1) and
introduce height pairings to measure, not the covolume of E(Q)/tors in E(A), but its “density”,
we again recover BSD.

How do we generalize this to other motives?

• Global points modulo torsion via K-theory

• Torsion in global points, Pic0, X, via global etale cohomology

• Local nonarchimedian points via local etale cohomology

• Local nonarchimedean volumes via Bloch-Kato exponential

• Local real volumes via period map, real regulators, as in Beilinson conjecture

• Height pairings to make sense of quotienting adelic points by global points, when not just
torsion

Once we make precise what all this means, we will have, for a motive M = hi(X)(j), the exact
same conjecture:

vol(M(A))Reg(M)

|M(Q)tors|
=
L∗(M, 0)−1Reg(M)vol(M(R))

∏
p cp

|M(Q)tors|
?
=
|(M∗(1))(Q)tors|
|X(M)tors|

.

One convenient way to formalize this was found by Fontaine and Perrin-Riou.
First, recall that, in formulating Beilinson’s conjecture, we had, for a motive M of weight

w < −1, an injective real period map

α : (M+
B )R → (MdR/F

0MdR)R =: Lie(M)R

and a conjectural isomorphism

H i+1
M,Z(X,Q(j))R ∼= coker(α) =: H i+1

D (XR,R(j)).

Using these, we obtain, denoting [·] := det(·) for the top exterior power of a vector space,
division meaning tensor with dual,

θ∞ : R ∼=

(
[Lie(M)]

[H i+1
M,Z(X,Q(j))][M+

B ]

)
=: Ξ(M)⊗ R

Beilinson’s conjecture (not the rank part) is equivalent to the claim that

θ∞(1/L∗(M)) ∈ Ξ(M).

In other words L∗(M) should measure how far θ∞ is from respecting the rational structures Q ⊂ R,
Ξ(M) ⊂ Ξ(M)⊗ R.

Fontaine and Perrin-Riou generalize this for all w, defining Q-vs H∗f (M), ∗ = 0, 1, 2, 3, and
define

Ξ(M) :=
[H∗f (M)][Lie(M)]

[M+
B ]

,
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as well as an isomorphism
θ∞ : R→ Ξ(M)R,

and still conjecture
θ∞(1/L∗(M)) ∈ Ξ(M).

We think of this canonical element in Ξ(M) as defining a Z-integral structure. Using etale
cohomology, we can define Zp-integral structures

θp : Λ ↪→ Ξ(M)Qp ,

(Λ ∼= Zp, but not canonically so)
The Bloch-Kato conjecture is then:

Conjecture 1.2 ([2]) The Zp-integral structures

Zp · θ∞(1/L∗(M)) ⊂ Ξ(M)Qp ⊃ θp(Λ)

agree for all p.

In terms of volumes, this says, roughly, that

Conjecture 1.3 For all primes p,

ordp

(
Reg(M)vol(M(R))

L∗(M)

)
= ordp

(
|M(Q)tors||M∗(1)(Q)tors|

|X(M)|
∏

v cv

)
Remark 1.4 We could make sense of the p-adic valuation of all the invariants on the RHS in
terms of p-adic etale cohomology.

2 Determinants

Motivation This is mostly just book-keeping.
Given a (finite dimensional) vector space V , define [V ] =

∧top V . Note that if V = 0, then
[V ] ∼= Qp canonically. Given an exact sequence 0 → A → B → C → 0, we have [B] ∼= [A][C].
We will need to keep track of isomorphisms, or else this is useless. We consider integral structures
T on Qp-vector spaces V , by which we mean finitely-generated Zp modules T with a canonical
isomorphism T ⊗Qp

∼= V . An integral structure T on V determines a Zp-submodule [T ] ⊂ [V ] as
follows:

If T ⊂ V is torsion-free, then [T ] ⊂ [V ] is what you expect. If V = 0, T = 0, then [T ] ∼= Zp ⊂
Qp
∼= [V ]. If V = 0, T = Z/pZ, then [Z/pZ] = 1

p
Zp ⊂ Qp

∼= [V ]. i.e. torsion groups have larger
volumes than trivial groups.

For a general integral structure T , [T ] = [T/tors][Ttors] = |Ttors|p[T/tors] ⊂ [V ], where | · |p is
the valuation with |p|p = 1

p
.

Given a a finite complex C : A0 → A1 → . . .→ An of Qp-vs, we define [C] ∼= [A0][A2]···
[A1][A3]··· .

We can deduce: [C] = [H∗(C)].
Consider an integral structure X ⊂ C. The cohomology complex H∗(X) is an integral structure

of H∗(X). Thus we obtain [H∗(X)] ⊂ [H∗(C)] ∼= [C].
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Consider f ∈ Aut(V ), such that f(T ) ⊂ T for T ⊂ V a lattice. Consider the complexes

(T
f→ T ) ⊂ (V

f→ V ). Now, [V → V ] = [H∗(V → V )] = [0 → 0] ∼= Qp ⊃ Zp has a canonical
integral structure. We compare this to the integral structure [H∗(T → T )]:

[H∗(T → T )] = [coker(f |T )]−1 = |det(f)|−1
p · Zp

Similarly, the complex (T
f→ f(T )) ⊂ (V

f→ V ) has [H∗(T → f(T ))] ⊂ [H∗(V → V )] ∼= [0] =
Qp ⊂ Zp.

3 Motivic f-cohomology

Motivation We need rational structures to compare the p-adic, ∞-adic computations.
For a motive M = hi(X,Q(j)), with weight w = i− 2j, we define

• H0
f (M) = CHj(X)Q/hom.equiv. if i = 2j, 0 otherwise

• H1
f (M) =

{
H i+1
M,Z(X,Q(j)) = Im(K2j−i−1(X)

(2j)
Q → K2j−i−1(X)Q), i 6= 2j − 1,

CHj(X)hom∼0, i = 2j − 1
,

for X a regular proper model of X over Z (what if this doesn’t exist?)

• H2
f (M) = (H1

f (M∗(1)))∗

• H3
f (M) = (H0

f (M∗(1)))∗

Note that H0
f = 0 if w 6= 0, H3

f = 0 if w 6= −2 (immediately right and left of the point of
symmetry w = −1).

Conjecture 3.1 ([2])

ords=0(L(M, s)) = dimQH
1
f (M∗(1))− dimH0

f (M∗(1))

Remark 3.2 This is, conjecturally on the isomorphism of the p-adic regulator (see below), the
same conjecture as in Tony’s talk in terms of Bloch-Kato selmer groups.

Remark 3.3 This conjectures possible poles for w = −2, possible zeros for w ≥ −1, and ord = 0
for w < −2. Note, for example, that ζ(r) relates to the motives Q(r) of weight −2r.

We use these groups to define the fundamental Q-line

Ξ(M) =
[H∗f (M)][Lie(M)R]

[M+
B ]

.

Remark 3.4 The definition of H2
f is convenient, but it is bad: Ext2f (Spec(Q)mot,M) = 0 according

to Beilinson’s conjectures (Scholl says this). Further, these groups definitely do not have the correct
torsion even if you decide not to ⊗Q: Should have class groups for number fields.
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4 Real Volumes

Motivation: Incorporate Beilinson’s conjecture, including height pairings.
We have a real period map

α : (M+
B )R → (MdR/F

0MdR)R = (Lie(M))R.

A motive is called “critical” when α is an isomorphism. For example, motives of weight -1,
such as H1(E,Z(1)) = H1(E,Z), are always critical.

In this case, we obtain an isomorphism

R
[α]∼= [Lie(M)R]/[(M+

B )R].

Also, when the weight is −1, we have the possibility of height pairings:

Conjecture 4.1 When w = −1, the height pairing

h : H1
f (M)R ×H1

f (M∗(1))R → R

is nondegenerate.

Assuming the conjecture, we obtain

R
[h]∼= [H1

f (M∗(1))∗]/[H1
f (M)].

In combination, these give an isomorphism

θ∞ : R ∼= Ξ(M)R

Now we deal with the noncritical case, and assume the weight is < −1. Here H2
f (M) =

H3
f (M) = 0.

Conjecture 4.2 When w < −1, the real regulator

H1
f (M)R → coker(α)

is an isomorphism.

Since [coker(α)] = [Lie(M)R]

[(M+
B )R]

, we again obtain

θ∞ : R ∼= Ξ(M)R.

Remark 4.3 When the weight is > −1, we need to use factors from the functional equation to
define the map θ∞ in terms of that for its dual motive M∗(1). See Fontaine and Perrin-Riou.

Remark 4.4 All cases can be combined into the conjectural exactness of the sequence

0→ H0
f (M)→ ker(α)→ H1

f (M∗(1))∗
h→ H1

f (M)→ coker(α)→ H0
f (M∗(1))∗ → 0,

which perhaps suggests that H∗f , ∗ = 0, 1, is dual to a cohomology theory which is “compactly
supported at infinity”. See Deninger-Nart.

The map θ∞ can also be defined for w > −1. For all weights w we have the following conjecture:

Conjecture 4.5 (Beilinson)
θ∞(1/L∗(M)) ∈ Q.
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5 Local f-cohomology and the Bloch-Kato Exponential

Motivation Local conditions, being unramified, analogous to H∗M,Z.
Fix a prime p. We define complexes

RΓf (Qv,Mp) =


v =∞ : RΓ(R,Mp)

v 6= p : M Iv
p

1−f→ M Iv
p

v = p : Dcris(Mp)
(1−f,π)→ Dcris(Mp)⊕DdR(Mp)/F

0DdR(Mp)

,

with f the geometric Frobenius.
Their cohomology groups H i

f are the same as those in Tony’s talk, as we will shortly see.
Local L-complexes (This is just notation for later.)
We have the complexes for v 6=∞:

Lv(Tp) =

{
v 6= p : T Ivp

1−f→ T Ivp

v = p : Dcris(Tp)
1−f→ Dcris(Tp)

,

We define Lv(Mp) = Lv(Tp)⊗Qp.
We also define [LS(Mp)] = ⊗v∈S−{∞}[Lv(Mp)], with integral structure [LS(Tp)] = ⊗v∈S−{∞}[Lv(Tp)].
Note that if Lv(Mp) is acyclic, then [Lv(Tp)] = [det(1 − f |M Iv

p )]−1, like a local L-factor. This
explains the notation.

Recall that f -cohomology is a “self-dual Selmer condition”:

Proposition 5.1 H1
f (Qp,Mp) is the exact annihilator of H1

f (Qp,M
∗
p (1)) under the Tate local du-

ality pairing.

We want to define the Bloch-Kato exponential

expBK : DdR(Mp)/F
0DdR(Mp)→ H1

f (Qp,Mp)

It arises from the “fundamental exact sequence of p-adic Hodge theory”:

0→ Qp → Bcris
(1−f,π)→ Bcris ⊕BdR/B

+
dR → 0.

A sequence similar to this was in Tony’s talk.
Tensoring this with our representation Mp (which is assumed to be de Rham), and taking the

LES of Galois cohomology

0→ H0(Mp)→ Dcris(Mp)→ Dcris(Mp)⊕DdR(Mp)/F
0D(Mp)→ ker(H1(Mp)→ H1(Mp⊗Bcris))→ 0,

Note that this verifies that the definition of H1
f in Tony’s talk agrees with the 1st cohomology of

the above complex.
We can also express the BK exponential in terms the Ext1-consequence of the crystalline

comparison theorem.

Proposition 5.2 ([1]) For Mp crystalline, we have the following isomorphism:

D(Mp)/(1− f)F 0D(Mp) ∼= Ext1f,F il(Qp, D(Mp)) ∼= Ext1Kp
(Qp,Mp)f .

In other words, crystalline extensions of galois representations are identified with extensions of
(f,Fil)-modules.
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An aside on Fontaine-Lafaille Theory([1])
If the lattice D(Tp) ⊂ D(Mp) is “Fontaine-Lafaille” (strongly divisible and with weights in

[0, p− 1]), we have an integral comparison theorem

D(Tp)/(1− f)F 0D(Tp) ∼= Ext1f,F il(Zp, D(Tp)) ∼= Ext1Kv
(Zp, Tp)f .

In this case, we have the following:

D(Tp)/F
0D(Tp) H1(Kv, Tp)

D(Tp)/(1− f)F 0D(Tp)

1−f

expBK

∼=

This implies that when a lattice is Fontaine-Lafaille, that the local volume agrees with the local
L-factor. Morally, this means that we have good reduction, in some strange new sense, since the
Tamagawa factor at p is then 1.

For example, Bloch-Kato shows that the lattice D(Zp(r)) is not Fontaine-Lafaille for p < r,
contributing an extra factor of 1/(r − 1)! to the adelic volume as we vary over all such primes.

Bloch-Kato Exponential and Kummer Theory([1])
For abelian varieties and tori, the Bloch-Kato exponential agrees with the Kummer map. We

first show it for Gm, using the following diagram:

0 Zp(1) lim←−
p

O∗Cp
O∗Cp

0

0 Qp(1) Bf=p
cris ∩B+

dR Cp 0

0 Qp(1) (Bf=1
cris )(1) (BdR/B

+
dR)(1) 0

=
log[·] log

θ

To get the result for abelian varieties, use that HomFormalGroup(Â, Ĝm)(OCp) ∼= Tp(A)∗(1) by
Cartier duality. For any choice of χ ∈ Tp(A)∗(1), we get a map (not galois equivariant) from the
sequence

0→ Tp(A)→ lim←−
p

A(OCp)→ A(OCp)→ 0

to the last row of the above diagram, i.e. we get a (galois equivariant) map from this sequence to
the last row tensor Vp(A)(−1).

Bloch-Kato claim this proof works, in some sense, for abelian varieties with bad reduction.

6 Global f-cohomology

There is a homological algebra construction, which, given a map of complexes, formally create a
complex fitting into a long-exact sequence:

. . .→ H i(A)→ H i(B)→ H i(Cone(A→ B))→ . . . ,

Note that this implies the determinant formula

[Cone(A→ B)] =
[B]

[A]
.
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Let S = {∞, p, v s.t. V Iv 6= V }. Let RΓ(Z[1/S], N) be the complex computing global galois
cohomology, for N any reasonable Galois module. Similarly we use RΓ(Qv, Vp) for local galois
cohomology.

We first define the “quotient” of local cohomology by local f-cohomology, RΓ/f (Qv,Mp), as

RΓ/f (Qv,Mp) = Cone(RΓf (Qv,Mp)→ RΓ(Qv,Mp))

We define compactly supported cohomology, global f-cohomology, as

RΓc(Z[1/S], N) = Cone(RΓ(Z[1/S], N)→ ⊕v∈SRΓ(Qv, N))[−1]

RΓf (Z[1/S],Mp) = Cone(RΓ(Z[1/S],Mp)→ ⊕v∈SRΓ/f (Qv,Mp))[−1]

Note that we defined compactly-supported cohomology for any reasonable coefficients but f-
cohomology only for the galois representation Vp associated to our motive.

We obtain, beyond the defining triangles, a triangle relating H∗f and H∗c (Flach)

RΓc(Z[1/S])→ RΓf (Q)→ ⊕v∈SRΓf (Qv)

We also have compactly supported cohomology with integral coefficients RΓc(Z[1/S], Tp), using
that on local etale cohomology RΓ(Qv, Tp).

Proposition 6.1

1. For N finite, the Euler characteristic of H∗c (Z[1/S], N) is 1.

2. The integral structure
[H∗c (Z[1/S], Tp)] ⊂ [H∗c (Z[1/S],Mp)]

is independent of choice of lattice Tp ⊂ Vp.

3. The integral structure
[LS(Tp)] ⊂ [LS(Mp)]

is independent of choice of lattice Tp ⊂Mp.

Proof. i) We use Tate’s Euler Characteristic formula. χ(N) = |H0(R,N)|
|N | , for χ the Euler charac-

teristic H0(Z[1/S],N)H0(Z[1/S],N)
H1(Z[1/S],N)

The local Euler characteristic formula, for v 6=∞, says χv(N) = |H0(Qv ,N)|
|H1(Qv ,N)| = |N |v = 1/|N [v∞]|.

For v = ∞, χ∞(N) = |H0(R, N)| · |H
2(R,N)|

|H1(R,N)| = |H0(R, N)|, where the last equality is because
the Herbrand quotient is 1 for finite modules.

ii) We can assume that Tp ⊂ T ′p. Then

[H∗c (T ′p)]

[H∗c (Tp)]
= [H∗c (T ′p/Tp)]

∼= Zp,

where the final isomorphism is not becaue H∗c (T ′p/Tp) is torsion, but because its Euler characteristic
is 1. A little thought shows that this means the integral structures agree, not up to finite difference,
but exactly, with changes in an individual H1

c (Tp), say, being cancelled by changes in H0
c (Tp),

H2
c , H

3
c as well.
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iii) When the L-complex Lv(Mp) is acyclic, note that [Lv(Tp)] = [det(1 − f |M Iv
p )]−1 does not

depend on the lattice at all.
More generally, we can use the exact sequence

0→ T f=1
p → Tp → Tp/T

f=1
p → 0

to obtain [Lv(Tp)] = [Lv(Tp/T
f=1
p )] · [Lv(T f=1

p )]. By the acyclic case, we have that [Lv(Tp/T
f=1
p )] ⊂

[Lv(Mp/M
f=1
p )] is independent of choice of Tp.

Further, the determinants [Lv(T 1−f
p )] and [Lv(M1−f

p )] have canonical elements due to the mor-
phism 1−f in the complexes being zero. These canonical elements are the same, hence the integral
structure [Lv(T 1−f

p )] ⊂ [Lv(M1−f
p )] is independent of Tp.

�

Conjecture 6.2 The map
H1
f (M)→ H1(Mp)

lands in the subspace H1
f (Mp).

A preprint by Nekovar ([4]) claims to prove the above conjecture for p a prime of potentially good
reduction.

Conjecture 6.3 The p-adic regulators

H i
f (M)Qp → H i

f (Mp), i = 0, 1, 2, 3

are isomorphisms.

Recall that

Ξ(M) =
[H∗f (M)][Lie(M)]

[M+
B ]

Assuming these conjectures, we have the following isomorphism

θp : [H∗c (Z[1/S],Mp)][L
S(Mp)] ∼= Ξ(M)Qp .

This uses the isomorphism

[H∗c (Z[1/S],Mp)] =
[H∗f (Q,Mp)][L

S(Mp)]
−1[H1

f (Qp,Mp)]

[(M+
B )Qp ]

followed by the Bloch-Kato exponential

expBK : D(Mp)/F
0D(Mp) ∼= H1

f (Qp,Mp)

and the de Rham comparison theorem

D(Mp) ∼= (MdR)Qp , F
0D(Mp) ∼= (F 0MdR)Qp .
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7 Statement of Conjecture

Recall that Beilinson’s conjecture predicts that θ∞ : R→ Ξ(M)R has θ∞(L(M)−1) ∈ Ξ(M)Q.

Conjecture 7.1 (Bloch-Kato) For all p, the following holds:
Let S = {p, primes of bad reduction }. Then the following Zp-integral structures agree:

θ∞([H∗c (Z[1/S], Tp)][L
S(Tp)]) ⊂ Ξ(M)Qp ⊃ θ∞(L(M)−1) · Zp

Note that both integral structures are isogeny-invariant: the LHS by Euler characteristic and
the RHS by definition.

8 Comparison with BSD

Let E/Q be an elliptic curve.

Assumption 8.1 X(E) is finite.

Remark 8.2 There is no reason to restrict to E an elliptic curve, except to avoiding discussing
Neron models. (This is silly, and we should change it, especially since we use Neron forms below)

We consider the motive T = H1(E,Z(1)) = H1(E,Z). We will show that the Bloch-Kato
conjectures for the motive M = T ⊗Q is equivalent to BSD.

The associated L-function is L(E, s) at the point s = 1. The l-adic representation is the Tate
module Tp = Tp(E), and the Hodge realization is the first homology H1(E,Z), which has type
(−1, 0)+(0,−1). This implies that MdR/F

0 = Lie(E) = (H0(E,Ω1))∗.
Note that H1

f (M) = E(Q)⊗Q. This shows that

Ξ(M) =
[(E(Q)/tors)∗Q]

[(E(Q)/tors)Q]

[Lie(E)]

[(H1(E(C),Z))+)]
.

Note that Ξ(M) actually has a Z-integral structure we do not have for the general motive,
by using a canonical integral structure on de Rham cohomology. It is generated by β = (∧v∗i ) ⊗
(∧vi)−1 ⊗ ω∗ ⊗ γ−1 ∈ Ξ(M), where {vi} is a basis for E(Q)/tors, {v∗i } the dual basis, ω∗ is dual
to a Neron form, and Z · γ = H1(E(C),Z)+.

With respect to this integral structure, we will (roughly) measure both the real volumes and
v-adic volumes, and, assuming the BK conjecture, show that their product is ±1, by comparing
p-adic valuations.

8.1 Real Stuff

We have two maps:
α : H1(E,Z)+ → Lie(E)

with α(γ) = (
∫
γ
ω)ω∗, and

h : E(Q)/tors× E(Q)/tors→ R

the canonical height pairing.
Together, these give a canonical element Reg(E)ΩR · β ∈ Ξ(M)R.
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8.2 Integral Structures

For the sake of computation, we must find some ad-hoc integral structures on the H∗f (Vp) groups.
Abusing notation, we will denote them as H∗f (Tp).

We define, for all places v, all primes p,

H1
f (Qv, Tp) = E(Qv)Zp ,

and
H1
f (Q, Tp) = E(Q)Zp .

We can also define a “co-integral structure” H1
f (Q, Vp/Tp) to be the direct limit of the Selmer

groups

Selpn(E) = {x ∈ H1(Q, E[pn]) | x ∈ Im(E/pnE(Qv)→ H1(Qv, E[pn])) for all places v}.

Then, using the global duality H2
f (Q, Vp) × H1

f (Q, Vp) → Qp, we verify that H2
f (Q, Tp) :=

(H1
f (Q, Vp/Tp))∧ is an integral structure on H2

f (Q, Vp).
We similarly define H3

f (Q, Tp) := H0(Q, Vp/Tp)∧.

Remark 8.3 It would have been preferable to have define these integral structures at the level of
complexes, but there are issues with doing this when p is a prime of bad reduction.

Theorem 8.4 ([3]) [H∗c (ZS, Tp)] = [H∗f (Q, Tp)][⊕v∈SH∗f (Qv, Tp)]
−1.

Proof. The point is to use local Tate duality for abelian varieties to show that the ad-hoc Selmer
conditions above are “integrally self-dual”. As we have stated it, we are also using the compatibility
of Cartier duality with local Tate duality ([5]), but that is just for convenience. �

We also need the exact sequence

0→ E(Q)/tors→ H1
f (Q, Vp/Tp)→X[p∞]→ 0,

noting that the direct limit along E/pnE(F )
[p]→ E/pnE(F ) is E(F )/tors⊗Qp/Zp for any field F .

8.3 Computation

[H∗c (ZS, Tp)] =
[H∗f (Q, Tp)]

[⊕v∈SH∗f (Qv, Tp)]

=
[H2

f (Q, Tp)][H1
f (Q, Tp)]−1[H3

f (Q, Tp)]−1

[T+
p ][⊕v∈§H1

f (Qv, Tp)]−1

Global f-cohomology:

• H0
f (Q, Tp) = 0

• [H1
f (Q, Tp)] = [E(Q)Zp ] = [E(Q)tors][(E(Q)/tors)Zp ]
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• [H2
f (Q, Tp)] = [X(E)][((E(Q)/tors)Zp)∗]

• [H3
f (Q, Tp)] = [E(Q)tors]

Local f-cohomology:

• v =∞: [H1
f (R, Tp)] = [Φ∞]

• v 6= p: [H1
f (Qv, Tp)] = [E(Qv)Zp ] = [Φv][E

0(Fv)]

• v = p: [H1
f (Qv, Tp)] = [E(Qp)Zp ] = [Φp][E

0(Fp)][Ê(pZp)] = [φp][E0(Fp)]

[p]
[D(Tp)/F

0D(Tp)]

[H∗c (ZS, Tp)](
[X(E)][(E(Q)Zp/tors)

∗]

[E(Q)tors)]2[E(Q)Zp/tors]

) = [H1
f (Qp, Tp)]

[H1
f (R, Tp)]

∏
v∈S,v 6=p,∞[Φv] · [E0(Fv)]

[H0
f (R, Tp)]

=
[D(Tp)/F

0D(Tp)]

[T+
p ]

[Φ∞]
∏

v∈S,v 6=∞[Φv] · [E0(Fv)]
[Z/pZ]

Note [LS(E, 1)] =
(∏

v∈S,v 6=∞
[E0(Fv)]
[Z/pZ]

)−1

.

[H∗c (ZS, Tp)][LS(E, 1)](
[X(E)]

∏
v∈S [Φv ]

[E(Q)tors)]2

) =
[(E(Q)/tors)∗Zp

]

[(E(Q)/tors)Zp ]

[D(Tp)/F
0D(Tp)]

[T+
p ]

⊂
[(E(Q)/tors)∗Qp

]

[(E(Q)/tors)Qp ]

[Lie(E)Qp ]

[(H1(E(C),Z))+)Qp ]

= Ξ(M)Qp

Thus Bloch-Kato reduces to the claim that, for each p, the integral structure given by [H∗c (ZS, Tp)][LS(E, 1)]

agrees with the integral structure given by Reg(E)ΩR
L(E,1)

· α. This is equivalent to

ordp

(
|X(E)|

∏
v∈S |Φv|

|E(Q)tors|2

)
= ordp

(
L(E, 1)

Reg(E)ΩR

)
∀p,

which implies the BSD conjecture.

Remark 8.5 Some formulations of BSD do not use the component group at infinity Φ∞, combin-
ing it into the period integral:

ΩR · |Φ∞| =
∫
E(R)

ω
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