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1 Introduction to Bloch-Kato Conjecture (continued)

Recall some notation from last time. Let X be a smooth proper Q-scheme and
Li(X, s) the L-function attached to H i

ét(X). Set p = i + 1 and q∗ = p − q where
q ≥ p/2 (swap q and q∗ if necessary). There is a (conjectural) functional equation
relating

Li(X, s)↔ Li(X, p− s)

so information about Li(X, q∗) is equivalent to information about Li(X, q). However,
the conjectures are nicer to state for Li(X, q∗), as in the classical story of the zeta
function.

1.1 Deligne’s conjecture

Deligne’s conjecture (made in the late ’70s, in the Corvallis volume) predicts that

Li(X, q∗) ∈ Q(2πi)(1−q) dimHi
det(〈ωi, γj〉)

where {ωi} is aQ-basis for F qH2
dR(H,Q) and {γj} is aQ-basis forHsing(X(C),Q))±

with ± denoting the (−1)q−1-eigenspace for complex conjugation.
(The fact that the two vector spaces have the same dimension is not obvious, and

is a consequence of the criticality. You can think of the ± space as roughly picking
out “half” of the cohomology.)

Deligne’s conjecture was based on computations of Shimura, in which the con-
jectures are clear almost by definition.

Remark 1.1.1. There is a “dual” formulation for Li(X, q) by taking the “other halves”
of the cohomology. For instance, the determinant that appears is that of the map
H i

sing(X,Q)∓ → H i
dR/F

qH i
dR. This formulation is better for certain purposes.

∗Notes taken by Tony Feng
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1 INTRODUCTION TO BLOCH-KATO CONJECTURE (CONTINUED)

1.2 K-theory and class groups

There is another thread of thought, which seems to have started with Tate’s discov-
ering of an interesting generalization of the class number formula.

Suppose F is a totally real field. Then it was known by work of Siegel that

ζF (−1) ∈ Q

Since we have a rational number, you can ask if it measures the size of something.

Conjecture 1.2.1 (Birch-Tate, ≈1970). If F is totally real then

ζF (−1) =
#K2(OF )

w2

Here w2 is an analogue of the number of roots of unity. Tate probably arrived at
this because he was interested in K2 (not because he was looking at zeta values). He
was computing its size by hand for several number fields and function fields, which
is how he arrived at this observation.

Introduction to K2. For a field F , a symbol in F is a bilinear map F ∗ × F ∗ → A
to an abelian group A with the property that (x, 1− x) = 0.

This seems like a weird definition, but it is motivated by the many examples of
symbols in nature, such as :

• The Hilbert symbol of a local field (via local class field theory).

• The tame symbol of a local field F with residue field k, which is defined by

(x, y) =
xv(y)

yv(x)
(−1)v(x)v(y) (mod m) ∈ k×.

• The differential symbol of a local field F , which is defined by

dx

x
∧ dy
y
∈ Ω2

F .

With all these different symbols, it is natural to ask for the universal one.

Definition 1.2.2. The group K2(F ) is the target of the universal symbol, so we have
an explicit presentation

K2(F ) = F× ⊗Z F
×/〈x⊗ (1− x)〉.

Example 1.2.3. What is K2(Q)? It’s hard to get our hands on it, but we can define
maps out of it. For each p, we get a tame symbol K2(Q)→ (Z/pZ)×. We also have
a Hilbert symbol K2(Q)→ {±1}, which could be viewed as the tame symbol at ∞,
which sends a⊗ b 7→ −1 if and only if a, b are both negative.
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1 INTRODUCTION TO BLOCH-KATO CONJECTURE (CONTINUED)

Theorem 1.2.4 (Tate). The product of the Tame symbol maps induces an isomorphism

K2(Q) '
∏
p

(Z/pZ)× × {±1}.

(Note that the factor at p = 2 is trivial, but for larger number fields the contri-
bution at 2 is generally not trivial.)

Now let’s discuss K2 of a ring of integers.

Definition 1.2.5. For F a number field, we define

K2(OF ) = ker

(
K2(F )→

∏
p

(OF /p)×

)
.

Example 1.2.6. Therefore K2(Z) = Z/2Z.

The definition looks terribly complicated - how do you compute this in practice?
Suppose we want to compute K2(Q). Start with a small group of units, say U =
〈−1, 2, 3, 5, 7〉 ⊂ Q×. This has rank 16. We could then try to understand the image
of U ⊗ U in K2(Q).

How do you go about this? The image is a quotient of U ⊗U by x⊗ (1−x) when
x, 1−x both belong to U , i.e. when x and 1−x are both S-units for S = {2, 3, 5, 7}.
The free part of U has rank 16. If you want to know how big this quotient is then
you want to know how many such x there are. They are in correspondence with
solutions to the equation

a+ b = c a, b, c are integers divisible only by 2, 3, 5, 7

because we can then set x = a
c , 1 − x = b

c . It is an interesting exercise to convince
yourself that there are many, many solutions to this equation. The point is that the
number of relations is vastly greater than the rank, so you should view K2 as being
something giant modulo something even more giant.

In practice it turns out to be the case that if you slowly increase U , the image
stabilizes very quickly. Of course, actually proving that this stabilizes is very difficult,
but in practice this works well.

Remark 1.2.7. You might find it weird that after dividing a rank 16 group by some
enormous set of relations, there’s still something left (we know that K2(Z) ' Z/2Z).
That suggests that there are “relations among the relations”. Indeed, there is a
sequence which describes these relations among relations, and the kernel is K3 (the
cokernel is K2). That gives an effective method for computing K3; higher K-groups
are not really computable.

Somewhat later it was noticed that w2 was, up to powers of 2, the size of K3.
(Of course, this was unavailable to Tate because he didn’t have a definition of K3.)
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1 INTRODUCTION TO BLOCH-KATO CONJECTURE (CONTINUED)

Therefore, a reformulation in these terms of the Birch-Tate conjecture (up to powers
of 2) is

ζF (−1) ∼Q×
#K2(OF )

#K3(OF )
.

This is a tantalizing generalization of the class number formula, which can be inter-
preted as

ζF (0) ∼Q×
#K0(F )

#K1(F )
.

Why the restriction to totally real field? For imaginary quadratic, K3 is infinite and
the zeta function vanishes. One wants to look at the first non-zero term, and Tate
speculated that there should be a regulator, but he didn’t know what.

1.3 Towards Bloch-Kato

Borel computed rankKi(OF ) and found that rankK3(OF ) is the order of vanishing
of ζF at −1. The rank of K5(OF ) is the order of vanishing of ζF at −2. He
also constructed a “regulator map” for K1(OF ),K3(OF ), . . ., meaning maps to some
real vector space of the right dimension. (Recall that K1(OF ) = O×F , whose rank
r1 + r2 − 1 is the order of vanishing of ζF at s = 0, as we noted early in the first
lecture.) He showed that the first nonvanishing derivative of ζF at −i is equal, up
to Q×, to the regulator of K2i. (The regulator is defined by taking a rational basis
and taking the regulator.)

Remark 1.3.1. The rational number is something like the order of K2i.

We haven’t defined the higher K-groups. Whatever they are, they have a map

KiOF → Hi(GLnOF ).

Borel’s argument is by writing down cycles in this homology group and computing
their volume.

Lichtenbaum then made a general conjecture combining the Birch-Tate conjec-
ture and Borel.

That story was for number fields. Number fields are very special; for instance,
there’s basically no other class of fields for which we know finite generation of the
K-theory.

Bloch conjectured a relation between L(E, 2) (for E an elliptic curve over a
number field) and K2(E). (We can define Ki of any scheme.) He conjectured that
it is a rational multiple of the regulator of K2(E).

Shortly thereafter, Beilinson made a general conjecture (up to Q×). Beilinson
constructs a regulator on K∗(X), which is a map - let’s call it r - from a “piece” (i.e.
direct summand) of K2q−p(X)⊗Q to the cokernel of the map∫

: (H i)sing(X,Q)∓ → H i
dR/F

qH i
dR

4



1 INTRODUCTION TO BLOCH-KATO CONJECTURE (CONTINUED)

That means that we can try to “put r and
∫
together into a square matrix” and thus

define “det(
∫
⊕r).”

This is for X smooth and proper over Q; to generalize it to number fields you
restrict scalars down to Q.

Conjecture 1.3.2 (Beilinson). We have

det(

∫
⊕r) ∼Q× L

i(X, q).

1.4 Bloch-Kato

Finally, let’s say something about Bloch-Kato. (See also Fontaine’s exposition.)
Bloch and Kato made a conjecture without the Q×-ambiguity. (Strictly speaking
one would say that they made a conjecture up to Z×, but it’s always easy to figure
out the sign.)

To highlight one challenge in generalizing BSD, recall that BSD predicts

L(E, 1) =
XEΩERE
E(Q)2tors

.

The ΩE =
∫
E(R) |ω| is a bit weird: you have to use a Néron model to normalize the

form ω. The Néron model is a miracle of abelian varieties, and definitely has no
analogue in general.

The key input in Bloch-Kato is that they generalize the logarithm map. If you
have E/Qp then there is a logarithm map

log : E(Qp)→ T0(E) = H0(E,Ω1)∨.

Moreover, this is an isomorphism after tensoring with Qp. The Néron form ω lives
in H0(E,Ω1)∨, and thusu defines an integral structure on H0(E,Ω1)∨ ⊗Qp. There
is also an integral structure on E(Qp)⊗Qp, namely the image of E(Qp). These two
integral structures don’t match up, but they are related by something concrete.

The generalization of log is the “Bloch-Kato exponential”

H i
dR(X)/F qH i

dR ⊗Q` → Hq
ét(X ×Q`,Q`(q))

the latter being regarded as a “piece” ofHp
ét(X,Z(q)). The right side has an `-adically

integral structure, so it gives a way of attaching such an integral structure to the
left hand side. (This is a little loose. Really the point is that the choices made in
defining integral structures cancels out.)

Example 1.4.1. Suppose you have a modular form f , with coefficients in some totally
real field K. This predicts L(f, q) up to O×K . A similar thing came up before for Z,
but in that case it was no problem because the units were small; for general K the
units are a lot bigger. Nobody really knows how to fix this.
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2 RECAP OF ISSUES IN THE FORMULATION OF BSD

2 Recap of issues in the formulation of BSD

Let A be an abelian variety over a global field K. We are now going to discuss some
of the parts of the BSD formula that didn’t quite make sense last time. In particular,
we defined the L-function to be

L(A/K, s) =
∏
v

det(1− Frobv q
−s
v | V`(A)Iv)−1.

There were several problems with this. One was that q−sv is a complex number, and
inserting it into such a determinant doesn’t literally make sense as written. Also,
this definition is for ` 6= char Fv, so we cannot use the same ` for every finite place v
(for K a number field). Therefore, we must prove independence of `. More precisely:

1. Is the characteristic polynomial of Frobv on V`(A)Iv , which is a priori in Q`[T ],
actually in Q[T ], and as such independent of `?
The answer turns out to be yes, which we will see by using the geometry of the
v-reduction of the Néron model. (In the number field case the Néron model is
a scheme over the ring of integers; in the function field case it is a scheme over
the proper curve defining the function field.)
(A bonus that comes out of this is that we’ll get the right estimates to know
that the product converges, by combining it with the Riemann hypothesis for
abelian varieties over Fv when v is good. The estimates on the magnitude of
the Frobenius eigenvalues ensures that we get convergence for Re(s) > 3

2 .)

2. The BSD conjecture predicts that we can analytically continue to C, and that

L(s) ∼ CA(s− 1)rankA(K) as s→ 1

where
CA =

(#XA)RAΩA

#A(K)torÂ(K)tor
.

Here

• the factor RA is defined via height pairings (discussed below), which don’t
rely on the theory of Néron models.
• ΩA and XA involve the Néron model.

So the next order of business is to discuss the Néron model, height pairings, and
Tate-Shafarevich group. Today we’ll only have time to discuss height pairings.

Just as an aside, note that for an elliptic curve the quantity RE/#E(K)2tor can
be interpreted as the leading coefficient of an asymptotic:

#{p ∈ E(K) : naive height(p) ≤ x} ∼ RE
#E(K)2tor

(log x)rankE(K).

You might wonder if there is such an interpretation for abelian varieties. The answer
is yes, in some sense, but it’s not as natural because we need to choose a polarization.
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3 HEIGHT PAIRINGS

3 Height Pairings

We shall begin with a review of canonical height functions on A(K) associated to any
line bundle L on A, not just ample symmetric ones as usually done in a first course
on abelian varieties: we will need to work with line bundles that come from the
dual abelian variety, and are those are never ample and are always anti-symmetric
in the sense that [−1]∗(L) ' L−1 (for reasons stemming from the Theorem of the
Square, to be recalled below). Warning: in terms of the correspondence between
line bundles and Weil divisors, if L ↔ D then [−1]∗L has nothing to do with −D
(think about even just elliptic curves).

[Reference for everything that follows: §9 of B. Conrad’s “Chow trace” article and
references therein, as well as the discussion of heights near the end of his course on
abelian varieties (at http://web.stanford.edu/∼tonyfeng/249C.pdf) for some of
the basics.]

3.1 Height functions

Let L be a line bundle on A. Recall that we say that L is symmetric if L ' [−1]∗L;
e.g., a source of such examples is N ⊗ [−1]∗N for line bundles N . (You can imagine
the analogous definition for asymmetric bundles.) If also N is ample then since the
pullback under an automorphism is also ample it follows that get many symmetric
ample line bundles.

Choose L to be very ample, so we get

A ↪→ P(Γ(A,L))
θ' PN

K

where θ is induced by choosing a basis for Γ(A,L). Then we get a “naïve height”

hK,L : A(K) ↪→ PN (K)
hN,K−−−→ R where hN,K is the standard height function relative

to K. The function hK,L depends on L and on θ (but in only a minor way on the
latter).

Some Facts:

• The function hK,L is independent of θ modulo O(1) (i.e. modulo bounded
functions on A(K). This is elementary.

• (Additivity in L) We have

hK,L1⊗L2 = hK,L1 + hK,L2 mod O(1).

So in particular, hK,L⊗n ∼ nhK,L, allowing us to extend to ample L.
Using this additivity we can define hK,L modulo O(1) for any L since L '
L1⊗L−12 for very ample L1,L2. (With a bit of work one can show that if L is
generated by global sections then hK,L agrees modulo O(1) with the function
obtained by composing A→ P(Γ(A,L)) ' PN

K on K-points with hN,K .)
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3 HEIGHT PAIRINGS

• If also L is symmetric then hK,L is a “quadratic form mod O(1)”. Tate showed
that by a clever limit trick that in the O(1)-equivalence class there is a unique
genuine quadratic form ĥK,L, given by

a 7→ lim
n→∞

hK,L(na)

n2
.

• If L is anti-symmetric then one has a similar story replacing “quadratic form”
with “additive function”. That is, hK,L is “additive modulo O(1)” and its O(1)-
class contains a unique additive function, defined by

ĥK,L : a 7→ lim
n→∞

hK,L(na)

n
.

Recall that if A is an abelian variety then its dual abelian variety is

Â = Pic0A/K ⊂ PicA/K .

By the Theorem of the Square, one characterization of line bundles L coming from
Pic0 is that

m∗L ' p∗1L ⊗ p∗2L

on A × A. Now consider pulling back along the antidiagonal map (a, a) 7→ (a,−a).
That kills the left side, so we get

OA ' L⊗ [−1]∗L.

This shows that line bundles coming from Â are always anti-symmetric.
Just as we can express a homomorphism from an abelian group into a Z[1/2]-

module uniquely as a sum of an even function and an odd function, for any line
bundle L on A we define the line bundles

L+ = L ⊗ [−1]∗L,
L− = L ⊗ [−1]∗L−1

that are respectively symmetric and anti-symmetric. Then the function

ĥK,L :=
1

2

(
ĥK,L+ + ĥK,L−

)
is in the O(1)-class of hK,L. This is the unique function in the O(1)-class of hK,L
that is “polynomial of degree ≤ 2”: the first piece ĥ+K,L “extracts” the quadratic part
and the second piece ĥK,L− “extracts” the additive part. This all depends additively
on L.
Remark 3.1.1. If K ′/K is finite then ĥK′,LK′ = [K ′ : K]ĥK,L. This is an immediate
consequence of the definition of the naive height on projective spaces.
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3.2 The canonical height pairing

Definition 3.2.1. The canonical height pairing is the bi-additive function

A(K)× Â(K)→ R

defined by

(a,L) 7→ 1

[K ′ : K]
ĥK′,L(a)

where K ′/K is a finite extension for which L ∈ Â(K ′) and a ∈ A(K ′) (the choice of
such K ′/K clearly does not matter, due to the division by field degree). Note that
L is antisymmetric because L comes from Â, so this construction really is additive
in a for fixed L.
Remark 3.2.2. If P denotes the Poincaré bundle on A× Â then it can be shown that
ĥK,P(a,L) = 〈a,L〉.

Theorem 3.2.3. For N invertible, the “Mumford construction” φN : A→ Â defined
by x 7→ t∗x(N )⊗N−1 induces a bi-additive map

〈·, ·〉A, ◦ (Id×φN ) : A(K)×A(K)→ R

and this is equal to

(a1, a2) 7→ ĥK,N (a1 + a2)− ĥK,N (a1)− ĥK,N (a2).

Observe that if N is symmetric then up to a factor of 2 this is the bilinear form
associated to the quadratic form ĥK,N . Recall also that if N is ample then φN is an
isogeny, so it is a finite-to-one surjective on K-points.

We conclude that for N ample and symmetric the commutative diagram

A(K)R ×A(K)R

""

1×φN '

����

A(K)R × Â(K)R // R

(which is clearly an isomorphism vertically) has diagonal that on K ′-points for any
finite subextension K ′/K is the bilinear form associated to the quadratic form ĥK,N
that is shown to be positive-definite in the basic arithmetic theory of abelian varieties
(via Minkowski convex-body arguments).

Corollary 3.2.4. The pairing A(K)R×Â(K)R → R is non-degenerate on K ′-points
for all finite K ′/K. In particular, the kernel on each side of the pairing is trivial.
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3 HEIGHT PAIRINGS

We have Mordell-Weil lattices A(K)/torsion ⊂ A(K)R and Â(K)/torsion ⊂
Â(K)R in these finite-dimensional R-vector spaces of the same dimension, and the
preceding shows that these R-vector spaces are in perfect duality via the canonical
height pairing. This establishes the non-vanishing in:

Definition 3.2.5. We define the regulator of A to be

RA = |det(〈ai,Lj〉)| 6= 0

for ordered bases {ai}, {Lj} of the Mordell-Weil lattices. Note that this is indepen-
dent of the choice of bases.

Remark 3.2.6. What happens under base change of the ground field? The L-function
can change dramatically, and so does the regulator.

On the other hand, nothing much changes under Weil restriction. Recall that
BSD predicts

L(A, s) ∼ XARAΩA

#A(K)tors#Â(K)tors
(s− 1)rankA . . .

If K/K0 is a finite separable extension with K0 a global field then the Weil restric-
tion A0 := RK/K0

(A) is an abelian variety over K0 of dimension [K : K0] dimA with
a natural identification A0(K0) = A(K) (hence the ranks coincide) and V`(A0) =
IndK0

K (V`(A)) as Galois modules. The invariance of the Artin formalism under in-
duction then gives that L(A0/K0, s) = L(A/K, s), so a first test of BSD is whether
the leading coefficients for A0 and A agree. In fact they agree term by term (so this
is a much weaker “test” than isogeny-invariance, for which we will see that individ-
ual factors are not isogeny-invariant)! The invariance under Weil restriction involves
several checks:

(i) The cohomological definition of XA to be discussed next time will yield (via
Shapiro’s Lemma) that XA ' XA0 . Alternatively, we will have a way to
express XA in terms of the Néron model, from which this isomorphism can
also be explained via exactness of finite-pushforward for the étale topology.
(This alternative proof is truly killing a fly with a sledgehammer.)

(ii) In general for a field k and finite étale k-algebra k′ (such as a finite separable
extension field, or product of copies of such) and a projective k′-scheme X ′

with geometrically integral fibers, there is a canonical isomorphism

Rk′/k(Pic0X′/k′) ' Pic0Rk′/k(X
′)/k.

[The precise definition of this map requires some genuine thought and is left
to the reader as an exercise. Once the map is defined, the proof that it is
an isomorphism reduce to the fact that the formation of Picard schemes of
geometrically integral schemes commutes with direct products. But this com-
patibility is not at all trivial since it is false for the entire Picard scheme and
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in positive characteristic requires the full force of the scheme-theoretic version
of the Theorem of the Cube.]

Applying this compatibility to abelian varieties, the torsion factors match
through Weil restriction even for the dual term.

(iii) The regulators match via the compatibility of duality with Weil restriction
provided that this duality is compatible with the formation of canonical heights.
This latter compatibility is not immediately obvious just from the definitions!
It is however most efficiently proved by exploiting extension of the ground field
to split K/K0 (so it was good that we set up the theory of heights on geometric
points!) in order to reduce to the analogous much easier compatibility of
the formation of canonical heights with respect to direct products of abelian
varieties.

The only nontrivial compatibility for Weil restriction is invariance of the volume
term ΩA (to be defined next time). Since the volume term is defined using Haar
measures built via top-degree differential forms, which is to say global sections of
the determinant of the cotangent bundle, the difficulty is related to the nontrivial
interaction between finite flat pushforward and the formation of determinant bun-
dles. After some unraveling, this amounts to the following (surprisingly challenging!)
algebraic geometry problem: for a finite locally free map of schemes f : X → Y and
a vector bundle E on X, the line bundle detX(E) has an associated line bundle
NX/Y (detX(E)) on Y and there is also the line bundle detY (f∗(E)) on Y . How are
these related? Even in the affine case, where it is a question in commutative algebra,
the task is not so easy.

These two line bundles on Y are not generally isomorphic, and the canonical
discrepancy is governed by detY (f∗(OX)) via a formula inspired by the transitivity
of discriminants in number theory. However, the proof is necessarily totally different
from the situation in number theory, making no use of features of Dedekind domains,
because there is no “universal finite flat ring extension” and hence this module-
theoretic problem cannot be reduced to a “universal case” over some polynomial ring
over Z (to check at height-1 primes). We refer the reader to §4–§5 in Chapter II of
Oesterlé’s marvelous 1984 Inventiones article on Tamagawa numbers for an elegant
discussion of the general task of relating Haar measures to Weil restriction over local
rings, which includes a solution to the preceding problem with determinants and
finite flat pushforward.
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