
EXAMPLES OF BEILINSON’S CONJECTURE

AARON POLLACK

Abstract. We explain explicit Beilinson’s conjecture forH3
M (X0(p)×X0(p),Q(2)) andH2

M (X1(N),Q(2)).

1. Introduction

Recall that Akshay discussed the motivic cohomology group H3
M (S,Q(2)), where S is a smooth

projective surface over Q, and the group H2
M (X,Q(2)), for a smooth projective curve X over Q.

The Beilinson conjecture says that regulators of elements in these motivic cohomology group should
be related to special values of certain L-functions, at least when the motivic classes are “integral”.
Our goal is to verify such a statement, ignoring the integrality, in some particular examples.

For the case of the surface S, we will take X ×X, where X is a complete modular curve X0(p).
In this setting, we will construct an explicit element in H3

M (S,Q(2)), and see that its regulator to
Deligne cohomology is related to special values of Rankin-Selberg L-functions L(f × g, s) of two
weight two newforms f, g ∈ S2(Γ0(p)). The special value in question is the one that is 1

2 to the left
(or right, by the functional equation) of the center point. The motivic cohomology class here that
we compute with is often called a “Beilinson-Flach” element.

In the second case, H2
M (X,Q(2)), we will explain the existence of some elements in this motivic

cohomology group, and again see that their regulator to Deligne cohomology sees the special values
of certain L-functions. In this case, the L-value is L(f, s = 2) for a newform f in S2(Γ1(N)). This
is the special value that is 1 to the right of the center point.

Here are some references that treat H3
M (X×X,Q(2)): [2], [1], [6]. Here are some references that

treat H2
M (X,Q(2)): [2], [3], [7], [5], [14]. We begin with the discussion of H3

M (S,Q(2)), and then
consider the case of H2

M (X,Q(2)).

2. Construction of class in H3
M (S,Q(2))

Suppose S is a smooth surface. Recall that elements in H3
M (S,Q(2)) are given by finite sums of

the form
∑

i(Ci, fi), where Ci is a curve on S, fi is a rational function on Ci, and the sum of the
divisors of the fi is 0 on S,

∑
i div(fi) = 0.

We will take S = X0(N) ×X0(N), where N = p is prime, and construct an explicit element in
H3
M (S,Q(2)). The idea is simple: X0(p) has two cusps (if N is sqaurefree, the number of cusps of

X0(N) is the number factors of N), labeled 0 and∞. The divisor∞−0 is degree 0, and supported
on the cusps. Thus by the Manin-Drinfeld theorem, there is modular unit with divisor r(∞− 0),
some r ∈ Z.

Proposition 1 (Manin-Drinfeld). [11] Suppose X is a modular curve, and D is a degree 0 divisor
supported on the cusps of X. Then D is torsion in the Jacobian of X.

We will discuss the Manin-Drinfeld theorem in more detail below. For now, we can be very
explicit: Simply consider up(z) := ∆(pz)/∆(z). From the matrix equation(

N
1

)(
a b
c d

)(
N

1

)−1

=

(
a Nb

N−1c d

)
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it follows that ∆(Nz) is a modular form for Γ0(N). Thus since ∆(z) = q + O(q2) at the cusp ∞,
up(z) is a unit on Y0(p) with divisor (p− 1)(∞− 0).

Now consider S again. Then we set c ∈ H3
M (S,Q(2)) the class represented by

(X0(p)∆, up) + ({∞} ×X0(p), u−1
p ) + (X0(p)× {0}, u−1

p ).

The condition
∑

j div(fj) = 0 is indeed satisfied.

3. Definition of regulator on H3
M (S,Q(2))

Suppose S surface over Q. There is a regulator map

rD : H3
M (S,Q(2))→ H3

D(S(C),R(2))

There is a pairing

(1) H1,1(S(C),C)⊗H3
D(S(C),R(2))→ C.

To explicate the pairing, we give explicit understanding of H3
D(S,R(2)). One has

H2
B(S(C),R(1))

pr1(Fil2H2
dR(S/C))

'
H2
B(S(C),C)

Fil2H2
dR(S/C) +H2

B(S(C),R(2))
' H3

D(S,R(2)).

Here pr1 is the map

pr1 : H2
dR(S/C)→ H2

B(S(C),C = R(1)⊕R(2))→ H2
B(S(C),R(1)).

Let c denote the complex conjugation on the coefficients of H2
B(S(C),C). Then c conjugates the

Hodge filtration, and H2
B(S(C),R(1)) is the subspace of H2

B(S(C),C) where c acts by (−1). It
follows that the natural map

H2
B(S(C),R(1)) ∩H1,1(S(C))→

H2
B(S(C),R(1))

pr1(Fil2H2
dR(S/C))

is an isomorphism, and thus we have a natural inclusion H3
D(S(C),R(2)) ↪→ H1,1(S(C)), hence

the pairing (1).
The following proposition says what this pairing is on the image of a class c in H3

M (S,Q(2)).

Proposition 2. Suppose
∑

j (Yj , fj) represents a class c in H3
M (S,Q(2)), and ω ∈ H1,1(S(C),C).

Then

〈ω, rD(c)〉 =
1

2πi

∑
j

∫
Yj(C)

log |fj |ω

where rD(c) is the regulator of c in Deligne cohomology H3
D(S(C),R(2)), and the pairing on the

left is the pairing described above.

Proof. See Beilinson [4, section 6, pg. 61]. �

4. Classical regulator computation

Suppose f, g are two newforms for S2(Γ0(p)). We will later assume that the Petersson inner
product of f and g is 0.

Remark 3. According to the L-functions and modular forms database, S2(Γ0(p)) has at least 2
Galois orbits of newforms for p = 37 and p = 43.

Set ωf = f(q)dqq = 2πif(z)dz and similarly for g. Then ωf (z1) ∧ ωg(z2) =: ωf,g is a (1, 1) form

on S = X0(p)×X0(p). Our goal is to compute 〈ωf,g, rD(c)〉. As a first step, note that we only need

to consider the “Main term” (X0(p)∆, up) from c, and not the other terms, which are supported on
the boundary of S. We state this in the following lemma.
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Lemma 4. The “boundary terms” ({∞} ×X0(p), u−1
p ) + (X0(p) × {0}, u−1

p ) do not contribute to
the regulator 〈ωf,g, rD(c)〉. More precisely,

(2) 〈ωf,g, rD(c)〉 =
1

2πi

∫
X0(p)

log

∣∣∣∣∆(pz)

∆(z)

∣∣∣∣ωf ∧ ωg.
Proof. The other terms from the definition of c vanish, since ωf and ωg vanish along the boundary,
since f and g are cusp forms. �

According to the Beilinson conjecture, the above regulator should have something to do with an
L-value. L-values are, by definition, the values at s = s0 of L-functions, which depend on a complex
parameter s. Thus to prove that (2) has something to do with an L-value, it would be great if we
could put this integral in a family of integrals I(f, g, s) that depend on s ∈ C. We do this now.
The key step is the Kronecker limit formula, which identifies a special value of an Eisenstein series
with a modular unit.

Recall
η(z) = eπiz/12

∏
m≥1

(
1− e2πimz

)
.

Thus η(z)24 = ∆(z). Define

E(τ, s) =

′∑
m,n

ys

|mτ + n|2s
.

The sum is over all pairs of integers (m,n) 6= (0, 0).

Theorem 5 (Kronecker’s First Limit formula). At s = 1, one has the Taylor expansion

E(τ, s) =
π

s− 1
+ 2π(γ − log 2− log(y1/2|η(z)|2)) +O(s− 1),

where γ is the Euler-Macheroni constant.

Proof. One can prove this just with explicit computation of Fourier series, with the help of Poisson
summation. See Lang [13, pg. 273]. �

Set E∗(τ, s) = π−sΓ(s)E(τ, s) = ΓR(2s)E(τ, s), where ΓR(s) = π−sΓ(s/2). Then

E∗(τ, s) = ΓR(2s)ζ(2s)
∑

γ∈B(Z)\ SL2(Z)

Im(γz)s.

This normalized Eisenstein series satisfies the exact functional equation E∗(τ, s) = E∗(τ, 1 − s).
Via this functional equation, we rewrite the Kronecker limit formula in terms of the expansion at
s = 0. We have

E∗(τ, s) = π−sΓ(s)

(
π

s− 1
+ 2π(γ − log 2− log(y1/2|η(z)|2)) +O(s− 1)

)
=
(
π−1 − π−1 log(π)(s− 1) +O(s− 1)2

) (
1− γ(s− 1) +O(s− 1)2

)
×
(

π

s− 1
+ 2π(γ − log 2− log(y1/2|η(z)|2)) +O(s− 1)

)
=

1

s− 1
+ γ − log(4π)− log(y|η(z)|4) +O(s− 1)

Hence we obtain

Theorem 6 (Kronecker’s limit formula, again). At s = 0, one has the Taylor expansion

E∗(τ, s) = −1

s
+ γ − log(4π)− log(y|η(z)|4) +O(s).

3



Since ∆(z) = η(z)24, using the KLF we can relate log |∆(pz)/∆(z)| to

Ep,∗(z, s) := p−sE∗(pz, s)− p−2sE∗(z, s).

We have

Ep,∗(z, s) =
(
1− log(p)s+O(s2)

)(
−1

s
+ γ − log(4π)− log(py|η(pz)|4) +O(s)

)
−
(
1− 2 log(p)s+O(s2)

)(
−1

s
+ γ − log(4π)− log(y|η|4) +O(s)

)
= log

(∣∣∣∣η(pz)

η(z)

∣∣∣∣4
)

+ 2 log(p) +O(s)

=
1

6
log

(∣∣∣∣∆(pz)

∆(z)

∣∣∣∣)+ 2 log(p) +O(s)(3)

Set

I(f, g, s) =

∫
Γ0(p)\H

Ep,∗(z, s)(y2f(z)g(z))
dx ∧ dy
y2

.

We normalize the Peterson inner product of f and g as

〈f, g〉 =
1

2πi

∫
X0(p)

ωf ∧ ωg.

We have proved the following proposition.

Proposition 7. Suppose f, g ∈ S2(Γ0(p)), ωf = 2πif(z)dz, ωg = 2πig(z)dz, and ωf,g = ωf (z1) ∧
ωg(z2) a (1, 1) form on X0(p) ×X0(p). Then for the class c ∈ H3

M (X0(p) ×X0(p),Q(2)) and the
regulator defined above, one has

1

6
〈ωf,g, rD(c)〉 = (−4π)I(f, g, s)|s=0 − 2 log(p)〈f, g〉.

5. The Rankin-Selberg integral

The integral I(f, g, s) is the classical Rankin-Selberg integral. We calculate it now.

5.1. The Eisenstein series. First, we rewrite the Eisenstein series. Recall the normalized Eisen-
stein series E∗(z, s) = π−sΓ(s)

∑
(m,n)6=0

ys

|mz+n|2s . Thus

Ep,∗(z, s) = p−sE∗(pz, s)− p−2sE∗(z, s)

= ΓR(2s)p−s

 ∑
(m,n)6=0

(py)s

|mpz + n|2s

− ΓR(2s)

 ∑
(m,n) 6=0

ys

|mpz + pn|2s


= ΓR(2s)

 ∑
(m,n),p-n

ys

|(pm)z + n|2s


= ΓR(2s)ζ(p)(2s)

∑
(m,n),gcd(m,n)=1,p|m,p-n

ys

|mz + n|2s

= ΓR(2s)ζ(p)(2s)
∑

γ∈Γ∞\Γ0(p)

Im(γz)s

where Γ∞ = ( ∗ ∗0 ∗ ) ∩ SL2(Z) and ζ(p)(s) = (1 − p−s)ζ(s) is the zeta function with the Euler factor

at p removed. Also ΓR(s) = π−s/2Γ(s/2).
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5.2. Unfolding. We now “unfold” the Rankin-Selberg integral I(f, g, s). Write f(z) =
∑

n≥1 ane
2πinz

for the Fourier expansion of f and g(z) =
∑

n≥1 bne
2πinz for the Fourier expansion of g(z). Set

dµ = dx∧dy
y2

. Then

Proposition 8. The integral I(f, g, s) unfolds as

I(f, g, s) =
1

8
ΓC(s)ΓC(s+ 1)ζ(p)(2s)

∑
n≥1

anbn
ns+1


where ΓC(s) = 2(2π)−sΓ(s).

Proof. We compute

I(f, g, s) =

∫
Γ0(p)\H

(y2f(z)g(z))Ep,∗(z, s) dµ

= ΓR(2s)ζ(p)(2s)

∫
Γ∞\H

(y2f(z)g(z))Im(z)s dµ

= ΓR(2s)ζ(p)(2s)

∫
y
ys+1

∑
n≥1

anbne
−4πny

 dy

y

= ΓR(2s)ζ(p)(2s)

∑
n≥1

anbn

∫ ∞
0

ys+1e−4πny dy

y


= ΓR(2s)ζ(p)(2s)(4π)−(s+1)Γ(s+ 1)

∑
n≥1

anbn
ns+1


=

1

8
ΓC(s)ΓC(s+ 1)ζ(p)(2s)

∑
n≥1

anbn
ns+1

 .

This completes the proof of the proposition. �

5.3. Euler product. From now on we assume f, g ∈ S2(Γ0(p)) are newforms. Note that since
the Hecke operators are self-adjoint, the bn are real, and thus bn = bn, so we drop the complex
conjugate from now on. Set L∞(f × g, s) = ΓC(s)ΓC(s+ 1). For ` 6= p, set

I`(f × g, s) = (1− `−2s)−1
∑
n≥0

a`nb`n`
−n(s+1).

Also set

Ip(f × g, s) =
∑
n≥0

apnbpnp
−n(s+1).

Since the an, bn are eigenvalues of the Hecke operators, and these eigenvalues are weakly multi-
plicative, we have proved the following Euler product for I(f, g, s).

Proposition 9. For I(f, g, s) one has the Euler product

I(f, g, s) =
1

8
L∞(f × g, s)

∏
v

Iv(f, g, s).
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5.4. Local integrals Iv(f, g, s). We still must relate the local factors Iv(f, g, s) to (local) L-
functions. To do this, define α1(`), α2(`) via the equality

(1− α1(`)X)(1− α2(`)X) = 1− a``−1/2X +X2

and similarly β1(`), β2(`) via the equality

(1− β1(`)X)(1− β2(`)X) = 1− b``−1/2X +X2.

The standard Hecke identity is

1

1− a`X + `X2
=
∑
n≥0

a`nX
n,

and thus
1

(1− α1(`)X)(1− α2(`)X)
=

1

1− a``−1/2X +X2
=
∑
n≥0

a`n`
−n/2Xn.

Now, we have

I`(f, g, s) = (1− `−2s)−1
∑
n≥0

( a`n
`n/2

)( b`n

`n/2

)
`−ns.

The following is the so-called Cauchy identity for GL2.

Lemma 10. If ∑
r≥0

A(r)xr = (1− α1x)−1(1− α2x)−1

and ∑
r≥0

B(r)xr = (1− β1x)−1(1− β2x)−1

then

(4) (1− α1α2β1β2x
2)−1

∑
r≥0

A(r)B(r)xr =
∏

i,j=1,2

(1− αiβjx)−1.

If we set

L`(f × g, s) =
∏

i,j=1,2

(1− αiβj`−s)−1,

it follows immediately from the Cauchy identity that I`(f, g, s) = L`(f × g, s).

Proof. For a simple direct proof of the Cauchy identity, see [8, Lemma 1.6.1]. Let me explain a
different proof. From the definition of A(r), expanding power series, one has

A(r) = αr1 + αr−1
1 α2 + · · ·αr−1

1 α2 + αr2.

Set α = ( α1
α2 ) ∈ GL2(C). Then the above equality shows that A(r) = tr(α|Symr(V2)), where

V2 is the standard two-dimensional representation of GL2(C). Similarly, B(r) = tr(β|Symr(V2)),

where β =
(
β1

β2

)
∈ GL2(C).

Going further, for integers λ1 ≥ λ2, set Vλ1,λ2 = Symλ1−λ2(V2) ⊗ det(V2)λ2 , a representation of
GL2(C). This is the representation parametrized by the partition (λ1, λ2). Multiplying out the
power series on the left-hand side of (4), one sees that this left-hand side is

(5)
∑

λ1≥λ2≥0

tr(α|Vλ1,λ2) tr(β|Vλ1,λ2)xλ1+λ2 .
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But now, Schur-Weyl duality implies that

(6)
∑

λ1≥λ2≥0

Vλ1,λ2 � Vλ1,λ2x
λ1+λ2 =

∑
N≥0

SymN (V2 � V2)xN

where the symbol � means external tensor product. I.e., Vλ � Vµ means the representation of the
group GL2(C)×GL2(C) where the first GL2(C) factor acts on Vλ and the second acts on Vµ.

Taking the trace of (α, β) ∈ GL2(C)×GL2(C) on the left-hand side of (6) gives (5), while taking
the trace of (α, β) on the right-hand side of (6) gives the right-hand side of (4). This completes the
proof. �

Finally, we evaluate (the easier) sum Ip(f, g, s). Recall that since f and g are new at p, it follows
that apn = anp and similarly bpn = bnp . Hence

Ip(f, g, s) =
∑
n≥0

apnbpnp
−np−ns

=
∑
n≥0

αnpβ
n
p p
−ns

= (1− αpβpp−s)−1

where αp = app
−1/2 and βp = bpp

−1/2. Set

L′p(f × g, s) = (1− αpβpp−s)−1.

Hence we have proved

Theorem 11. The Rankin-Selberg convolution I(f, g, s) represents the L-function L(f × g, s), i.e.,

I(f, g, s) =
1

8
L∞(f × g, s)L′p(f × g, s)

∏
`6=p

L`(f × g, s)

=:
1

8
L∞(f × g, s)L̃p(f × g, s),

where L̃p(f × g, s) = L′p(f × g, s)
∏
6̀=p L`(f × g, s).

Remark 12. Our local L-factor at p L′p(f × g, s) is not the correct local factor to define the L-
function. One needs to multiply by an extra term.

Putting everything together, we will obtain an expression relating the regulator of our motivic
cohomology class regD(c) to some L-value for the L-function L(f × g, s). It is instructive to center
this relationship around the Taylor expansion of L(f × g, s) at s = 0. To do this, first note that
the expression (3) shows that the Eisenstein series Ep,∗(z, s) has no pole at s = 0. Thus, the

integral I(f, g, s) has no pole at s = 0, and hence ΓC(s)ΓC(s + 1)L̃p(f × g, s) is regular at s = 0.

But since ΓC(s) has a simple pole at s = 0, we deduce that L̃p(f × g, s) has a zero at s = 0:

L̃p(f × g, s) = L(f × g)∗s+O(s2) for some number L(f × g)∗ in C. (We haven’t shown L(f × g)∗

is nonzero, but one can do this using the functional equation.)
Taking care of the 2π factors and such, one gets I(f, g, s) = 1

4πL(f × g)∗ +O(s). Thus we have
proved the following theorem.

Theorem 13. Suppose f, g ∈ S2(Γ0(p)) are new-forms. Let c be the class in motivic cohomology
H3
M (X0(p)×X0(p),Q(2)) constructed above, rD(c) its regulator to Deligne cohomology H3

D((X0(p)×
X0(p))(C),R(2)), and

ωf,g = (2πif(z1)dz1) ∧ (2πig(z1)dz1),
7



a (1, 1) form on X0(p)×X0(p). Define

L̃p(f × g, s) = L′p(f × g, s)
∏
`6=p

L`(f × g, s).

Then L̃(f × g, s) vanishes to at least order 1 s = 0, and one has the Taylor expansion

L̃(f × g, s) = −
(

1

6
〈ωf,g, regD(c)〉+ 2 log(p)〈f, g〉

)
s+O(s2).

Consequently, if the Peterrson inner product of f and g is 0, then L̃(f×g, s) = −1
6〈ωf,g, regD(c)〉s+

O(s2).

6. General Kronecker limit formula

In the work above, we constructed a motivic cohomology class in H3
M (X×X,Q(2)), and saw that

its regulator to Deligne cohomology was connected to the Taylor expansion of a certain Rankin-
Selberg L-functions L(f×g, s) 1

2 to the left of the central point. We will now describe the existence

of some elements in the motivic cohomology group H2
M (X1(N),Q(2)), and see that their regulators

are related to the values of L-functions L(f, s) for a newform f in S2(Γ1(N)). The special value
here is the one that is 1 to the right of the center point.

For our discussion of H3
M (X0(p) × X0(p),Q(2)), the key facts that enabled us to construct

motivic cohomology classes and compute their regulator were the existence of modular units, and
the Kronecker limit formula, which related these units to special values of Eisenstein series. We
begin by describing a general formulation of this result.

6.1. Manin-Drinfeld. We first recall the Manin-Drinfeld theorem. For a subfield k of C, set CN
the cusps of X1(N), and Div0

k[CN ] the degree 0 divisors on CN that are Aut(C/k)-invariant.

Theorem 14 (Manin-Drinfeld). The degree 0 divisors on the cusps of X1(N) are torsion in
Jac(X1(N)) over C. More precisely, suppose k is a subfield of C, algebraic over Q. Then the
sequence of Q-modules

0→ k× ⊗Z Q→ O(Y1(N)k)
× ⊗Z Q→ Div0

k[CN ]⊗Z Q→ 0,

a priori exact on the left, is exact on the right as well.

Proof. One proves the result over C by using the action of Hecke operators on the cusps and on
Ω1(X1(N)). For this, see the 2 page paper of Drinfeld, [11]. One can then descend the result over
C to get the result over k using Hilbert Theorem 90. See [7, Lemma 5.7]. Aut(C/k) acts on the
cusps through the cyclotomic character; see [14, 3.0.2] for this action. �

Last time, we gave ourselves an explicit degree 0 divisor ∞− 0 supported on the cusps of X0(p),
and, consistent with the Manin-Drinfeld theorem, found an element up ∈ O(Y0(p))× whose divisor
was a multiple of ∞− 0. We then related log |up| to the special value of an Eisenstein series. The
construction of up and its relation to the Eisenstein series were the key components of our success
in Part 1. We now explain how to generalize this relationship to arbitrary modular curves. The
cost of this generalization is that we will prove less precise of a relationship between modular units
and Eisenstein series.
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6.2. Cusps of a general modular curve. Before stating this general Kronecker limit formula,
we must explicitly describe the cusps of a general modular curve. Suppose K is an open compact
subgroup of GL2(Af ). Then the complex points of the modular curve YK of level K is

YK(C) = GL2(Q)\H± ×GL2(Af )/K.

The cusps have a similarly nice adelic description. The (complex points) of the cusps CK of YK are

(7) CK(C) = GL2(Q)\P1(Q)×GL2(Af )/K.

(Maybe I need a ± copy of P1(Q)? I’m not sure...) First note GL2(Q) acts transitively on P1(Q)
with stabilizer of a point a Borel subgroup B(Q), so the double coset (7) is in bijection with
B(Q)\GL2(Af )/K. (That this latter double coset parametrizes the cusps is explained in [12,
Proof of Proposition 3.1].) Before moving on, let us see that the description (7) of the cusps agrees
with what we expect.

Lemma 15. Suppose that the inclusion det(K) ↪→ GL1(Ẑ) is an equality. (For example, this holds
for the usual congruence subgroup K1(n) but not the “full” congruence subgroup K(n).) Then the
natural inclusion

(GL2(Z) ∩K)\P1(Q)→ GL2(Q)\P1(Q)×GL2(Af )/K

is a bijection.

Proof. Using strong approximation for SL2, one gets GL2(Af ) = GL2(Q) GL2(Ẑ). Thus the inclu-
sion

GL2(Z)\P1(Q)×GL2(Ẑ)/K → GL2(Q)\P1(Q)×GL2(Af )/K

is a bijection. Using det(K) = GL1(Ẑ) and that SL2(Z) → SL2(Z/N) is surjective, one gets

GL2(Ẑ) = GL2(Z)K. The lemma follows. �

Now suppose φ : CK(C) → Q has degree 0, and uφ is a modular unit with div(uφ) = φ, whose
existence is guaranteed by the Manin-Drinfeld theorem. To what Eisenstein series is uφ related?
First, via the bijection of CK(C) with B(Q)\GL2(Af )/K, consider φ as a function

φ : B(Q)\GL2(Af )/K → Q.

Now, for g ∈ GL2(A) and Re(s) >> 0, set

Eφ(g, s) = −2π
∑

γ∈B(Q)\GL2(Q)

φ(γfgf )|Im(γ∞g∞ · i)|s.

Here is a “general” Kronecker limit formula.

Theorem 16. Suppose φ has degree 0, and YK has a single connected component. (The connected

components are parametrized by GL1(Ẑ)/det(K).) The Eisenstein series Eφ(g, s) is regular at
s = 1 (i.e., no pole), and one has E(g, 1) = C + log |uφ| for a constant C.

Proof. This is just a slight elaboration on the proof in [14, Proposition 3.5.1]. The idea of the
proof is simple: one shows that the difference E(g, 1)− log |uφ| is harmonic and bounded and thus
constant. First, that the Eisenstein series is regular at s = 1 is a consequence of the fact that φ
has degree 0. In general, the Eisenstein series has a simple pole at s = 1 with residue a constant
function of g∞, and this constant is proportional to deg(φ).

That Eφ(g, 1) is harmonic can be checked as follows. Set ∆ = −y2( ∂
∂y2

+ ∂
∂x2

), the hyperbolic

Laplacian. One has ∆ys = s(1 − s)ys. Since ∆ is SL2(R) invariant, i.e. γ∗∆(f) = ∆(γ∗f) for
γ ∈ SL2(R), one has ∆Eφ(g, s) = s(1 − s)Eφ(g, s) for Re(s) > 1, where the sum defining Eφ(g, s)
converges absolutely. Since Eφ(g, s) has analytic continuation to a neighborhood of s = 1, we have
∆Eφ(g, 1) = 0, and thus Eφ(g, 1) is harmonic. See [8, pg. 104] for facts about ∆.
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To see that the difference Eφ(g, 1)−log |uφ| is bounded amounts to the fact that the two functions
have the same asymptotics at the cusps. For Eφ(g, 1), one has the asympotic Eφ(g, 1) ∼ −2πφ(gf )y,
y = Im(g∞ · i), as y → ∞. (One computes the constant term of the Eisenstein series along the
unipotent radical of the upper triangular Borel, and the difference between the Eisenstein series
and its constant term is of rapid decay.) Since log |qr| = −2πry, we get the same asymptotic for
uφ, proving that the difference is bounded. �

7. The motivic cohomology group H2
M (X,Q(2))

Before moving on to our specific case of the curve X1(N), let us discuss H2
M (X,Q(2)) for general

smooth curves X over a field k.

7.1. K2 of a curve. Recall that this motivic cohomology group H2
M (X,Q(2)) is identified with

K2(X), and K2(X) can be defined as the kernel, inside K2(k(X)), of various tame symbols. More
precisely,

K2(k(X)) =
k(X)× ⊗ k(X)×

{f ⊗ (1− f) : f 6= 0, 1 ∈ k(X)}
,

and if u, v ∈ k(X)×, and p a point of X, then the tame symbol {u, v}p of u and v at p is

{u, v}p = (−1)ordp(u)ordp(v)

(
uordp(v)

vordp(u)

)
(p) ∈ k(p)×.

With this definition, K2(X) is defined to be the kernel of the tame symbol maps {·, ·}p for all points
p on X.

When there is a finite subset C of X such that Z[C]0, the degree 0 divisors supported on C,
are torsion in the Jacobian of X, it is easy to construct elements of K2(X). The following lemma
explains this fact.

Lemma 17 ([9], Lemma 5.2). Suppose X/k is a curve, and C is a finite subset of X, all of whose
points are defined over the field k. Set U = X \C, and suppose moreover that Z[C]0 is finite order
in the Jacobian of X. Then H2

M (U,Q(2)) = H2
M (X,Q(2)) + {O(U)×, k×}.

Remark 18. Note that the assumption that Z[C]0 is torsion in the Jacobian of X means there is
a plentiful supply of elements of O(U)× = H1

M (U,Q(1)). Taking a cup product of two elements
of O(U)× gives an element of H2

M (U,Q(2)). Thus it is easy to construct elements of H2
M (U,Q(2))

under the assumptions of the lemma.

Proof of lemma. The key point is that the tame symbol map on {O(U)×, k×} is essentially the
divisor map, and thus one can kill off any “bad” tame symbols from the elements of H2

M (U,Q(2))
at points c ∈ C. See the proof [9, Lemma 5.2] for the details. �

7.2. Regulator. There is a regulator on K2(k(X)), and thus on K2(X) by restriction. We now
discuss this regulator, following [10, section 3].

The regulator is a pairing 〈·, ·〉 : K2(k(X)) ⊗ Ω1(X) → C. Suppose ω ∈ Ω1(X), and {u, v} ∈
K2(k(X)). Set η(u, v) = log |u|d(argv)− log |v|d(argu). Then

〈{u, v}, ω〉 :=
1

2πi

∫
X(C)

η(u, v) ∧ ω

=
1

2πi

∫
X(C)

log |u|d log(v) ∧ ω.

That this is the “right” regulator, i.e., that it factors through Deligne cohomology, can be deduced
from the formula for the cup product in Deligne cohomology. See [2, Assertion 4.2].
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Remark 19. Note that regulators of elements of the form {u, λ}, with λ ∈ k×, are 0. Thus if we
are in the situation of Lemma 17, to compute regulators on H2

M (X,Q(2)) it suffices to compute
regulators on H2

M (U,Q(2)).

8. Regulator computation

In this section, we will define some elements in H2
M (X1(N),Q(2)) ⊗ L, for an abelian number

field L, and compute their regulators. We begin with a discussion of some Eisenstein series.

8.1. Eisenstein series. Suppose χ : (Z/N)× → C× is a non-trivial Dirichlet character, and k ≥ 0
is an even integer. Set

Ek,χ(z, s) := L(χ−1, 2s)π−(s+k/2)Γ(s+ k/2)

 ∑
γ∈Γ∞\Γ0(N)

χ−1(d)

(cz + d)k

(
y

|cz + d|2

)s−k/2 ,

where, as always, γ =
(
a b
c d

)
. Set Eholk,χ(z) := Ek,χ(z, k/2). If k ≥ 2, this Eisenstein is holomorphic.

Now, set δk = 1
2πi

(
d
dz + k

2iy

)
. This is called a Maass-Shimura differential operator. The Eisen-

stein series Ek,χ(z, s), for different k, are moved around by the operators δk. That is,

Lemma 20. One has the identity δkEk,χ(z, s) = Ek+2(z, s).

Proof. Rather than do a stupid computation to prove this identity (and plus, I might be off by
some 2π’s or something), it would be better if I told you how to write down your Eisenstein series
in the first place so that one gets such a nice relationship as in the statement of the lemma. I will
do this below, assuming I have enough time. �

8.2. Units on Y1(N). Let our Dirichlet character χ be as above, and set L = Q(χ) the field
generated by the values of χ. According to our general Kronecker limit formula, there should be
a unit uχ in O(Y1(N)Q)× ⊗Q and a constant C so that E0,χ(z, 1) = C + log |uχ|. (Because χ is

nontrivial, the function “φ” of Theorem 16 will be degree 0.) The following lemma of Brunault
says that uχ can be chosen to that it is defined over Q, the “coefficient field” is small, and C = 0.

Lemma 21 (Brunault [7], Lemme 5.7). There is uχ ∈ O(Y1(N)Q)×⊗L so that E0,χ(z, 1) = log |uχ|.

Proof. To see that uχ is defined over Q, one must analyze the action of Aut(C/Q) on the cusps,
and ensure that the divisor of the uχ determined by the Eisenstein series is defined over Q. See [7,
Lemme 5.7]. �

Suppose ε : (Z/N)× → C× is another nontrivial Dirichlet character. Then we have an associated
unit uε, and thus {uχ, uε} ∈ H2

M (Y1(N),Q(2)) ⊗ L, for L the field generated by the values of ε
and χ. By Lemma 17 and Remark 19, we can content ourselves with computing the regulator of
{uχ, uε}. The following theorem says that the regulator is related to special values of L-functions
of newforms f ∈ S2(Γ1(N)) at a point 1 to the right of the central point. This was proved in a less
explicit way by Beilinson [2], and made explicit by Brunault [7].

Theorem 22. Suppose ψ : (Z/N)× → C× is a Dirichlet character and f ∈ S2(Γ0(N), ψ) is a
newform with nebentype ψ. Set ωf = 2πif(z) dz ∈ Ω1(X1(N)), let {uχ, uε} be as above, and
assume χεψ = 1. Then

〈{uχ, uε}, ωf 〉 = L(f, χ, 1)L(f, 2),

where L(f, s) is the L-function of f normalized to have center point s = 1.
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Remark 23. It is the L(f, 2) part of this equality that carries the interesting transcendental infor-
mation. By Brian’s talk before, L(f, χ, 1) is essentially algebraic (i.e., algebraic up to factors of 2π
and stuff). Also, the equality in the theorem is probably off by factors of 2π and Gauss sums and
the like, which I obviously couldn’t be bothered to try to get correct.

Proof of theorem. The regulator is

〈{uχ, uε}, ωf 〉 =

∫
Γ1(N)\H

log |uχ(z)|d log uε(z)f(z)dz.

Now E0,χ(z, 1) = log |uχ|, and

d log uε =
d

dz
log |uε|dz

=
d

dz
E0,ε(z, 1)dz

= δ0 (E0,ε(z, 1)) dz

= Ehol2,ε (z)dz.

Thus, to compute the regulator, one may compute

I(f, χ, ε, s) :=

∫
Γ0(N)\H

E0,χ(z, s)Ehol2,ε (z)f(z) dxdy

and specialize to s = 1. The integral I(f, χ, ε, s) is just like the Rankin-Selberg integral we computed
last time, except now we have replaced one of the cusp forms with the Eisenstein series Ehol2,ε (z). It

turns out that this makes little difference, and we can again compute I(f, χ, ε, s) by the Rankin-
Selberg method. One finds I(f, χ, ε, s) = L(f, χ, s)L(f, s + 1) in the normalization that puts the
center point at s = 1. Specializing to s = 1 gives the result. �

References

[1] Baba, S. and Sreekantan, R. An analogue of circular units for products of elliptic curves
[2] Beilinson, A. Higher regulators and values of L-functions
[3] Beilinson, A. Higher regulators and modular curves
[4] Beilinson, A. Notes on absolute hodge cohomology
[5] Bertolini, M. and Darmon, H. Kato’s Euler system and rational points on elliptic curves I: a p-adic Beilinson

formula
[6] Bertolini, M., Darmon, H., and Rotger, V. Beilinson-Flach elements and Euler systems I: syntomic regulators

and p-adic Rankin L-series
[7] Brunault, F. Valeur en 2 de fonctions L de formes modulaires de poids 2: theoreme de Beilinson explicite
[8] Bump, D. Automorphic forms and representations
[9] Deninger, C. and Wingberg, K. On the Beilinson conjectures for elliptic curves with complex multiplication

[10] Dokchitser, T., de Jeu, R., Zagier, D. Numerical verification of Beilinson’s conjecture for K2 of hyperelliptic
curves

[11] Drinfeld, D. Two theorems on modular curves
[12] Harder, G. Period integrals of Eisenstein cohomology classes and special values of some L-functions
[13] Lang, S. Elliptic functions
[14] Schappacher, N. and Scholl, A. Beilinson’s theorem on modular curves
[15] Scholl, A. On modular units

Department of Mathematics, Stanford University, Stanford, CA USA
E-mail address: aaronjp@stanford.edu

12


