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1 Review of Deligne cohomology

Last time we defined motivic cohomology groups Hp
M(X,Q(q)). In a special case

motivic cohomology is the Chow group:

Hp
M(X,Q(p)) = CHp(X).

This fits into the story of Beilinson’s conjecture via a regulator map to Deligne
cohomology:

reg : Hp
M(X,Q(q))→ Hp

D(X(C),Q(q))

Definition 1.1. LetX be a smooth complex projective variety. We defineHp
D(X,Z(q))

to be “ a class in Hp(X, (2πi)qZ) which lies in F q”, or more formally as the hyper-
cohomology of a certain complex:

Hp
D(X,Z(q)) = H∗(X, (2πi)qZ→ O → Ω1 → . . .→ Ωq−1).

We think of H∗(O → Ω1 → . . .→ Ωq−1) as corresponding to H∗(X)/F qH∗(X),
which is the sense in which the class in Hp(X, (2πi)qZ) lies in F q. However, more
precisely we think of a Deligne cohomology class as specifying an antiderivative.

So the Deligne cohomology fits into a long exact sequence

Hp−1
D (X,Z(q))→ Hp−1(X, (2πi)qZ)→ Hp−1(X)/F qHp−1

→Hp
D(X,Z(q))→ Hp(X, (2πi)qZ)→ Hp(X)/F qHp → . . .

One of the important properties is that there is a “cycle class map” which recovers
the usual one under the map Hp

D(X,Z(q)) → Hp(X, (2πi)qZ), but even if this is
trivial there is some additional “Abel-Jacobi” information. (We’ll elaborate on this
point later.)
∗Notes taken by Tony Feng
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2 Examples

We recall some of the examples from last time.

Example 2.1. For q = 1, the complex in question is quasi-isomorphic to O∗, by the
diagram

2πiZ //

��

O

��
0 // O∗

induced by the exponential short exact sequence

0→ 2πiZ→ O → O∗ → 0

so H1
D(X,Z(1)) ∼= H0(X,O∗) and H2

D(X,Z(1)) = Pic(X).

Example 2.2. By definition, H2
D(X,Z(2)) is the cohomology of

(2πi)2Z→ O → Ω1

which is quasi-isomorphic to the complex O∗ → Ω1 sending f 7→ df/f :

(2πi)2Z // O //

exp

��

Ω1

��
O∗ // Ω1

f � // df
f

A Cech representative for a class in H2
D(X,Z(1)) with respect to a two-term cover

X = U ∪V consists of an element fU∩V ∈ H0(U ∩V,O∗) together with a “certificate
of triviality” in H1(Ω1), i.e. ωU ∈ H0(U,Ω1) and ωV ∈ H0(V,Ω1) such that

ωU − ωV =
dfU∩V
fU∩V

.

This means that the connections d+ωU and d+ωV patch together to give a connec-
tion on the line bundle. So H2

D(X,Z(2)) classifies line bundles plus a holomorphic
connection.

3 Chern classes

For a L a line bundle over a curve X, we have a Chern class c1(L) ∈ H2(X, 2πiZ).
What is it?

There are many constructions, but one analytic one goes as follows. Choose a
metric on L. Thinking locally at first, we can choose a holomorphic section s ∈
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H0(L). Then ∂∂ log〈s, s〉 is a (1, 1)-form on X, independent of a choice of section
since replacing s 7→ hs for h a holomorphic function changes the form by

∂∂ log〈s, s〉 7→ ∂∂ log〈hs, hs〉
= ∂∂(||h||2||s||2)

= ∂∂(h · h) + ∂∂||s||2

= ∂∂h+ ∂∂h+ ∂∂||s||2

= 0 + 0 + ∂∂||s||2.

Thus our definition actually globalizes to a global (1, 1)-form which represents a cer-
tain class in de Rham cohomology. This gives a definition of first Chern class which
obviously lies in the first step of the Hodge filtration, although it’s not obviously
integral. We might call this the“Hodge” representative of c1(L).

Let’s give another definition which is manifestly integral. Pick s a global holo-
morphic section, and take a small triangulation T of X fine enough so that each zero
of s lies in the interior of a triangle, and each triangle contains at most one zero.
Then c1(L) is the count

∑
T∈T

{
2πi s has a zero in T
0 otherwise.

Let’s call this the “topological” representative. This definition is manifestly integral,
but it’s not clear how it makes contact with the previous one.

L
Hodge c1

zz

topological c1

$$
H1,1(X,C) H2(X,Z)

The first Chern class of L in Deligne cohomology can be thought of as a “certifi-
cate” ofthe equivalence of these two constructions. In other words, to lift c1 to a class
in H2

D(Z(1)) you should give an explicit homotopy between these constructions.
What is the homotopy? Well the (1, 1)-form ∂∂ log ||s||2 also defines a function

on the triangulation,

T 7→
∫
T
∂∂ log ||s||2.

On the Hodge side, changing the metric changes the cohomology class in by an ex-
plicit coboundary. We change the metric so that ||s||2 is constant outside a small
neighborhood of the zeros. Then the (1, 1)-form vanishes away from a tiny neighbor-
hood of the zeros. In particular, this argument shows that our two “Chern classes”
agree.

3



Remark 3.1. This calculation is due to Chern, actually predating Chern-Weil theory,
in a proof of Gauss-Bonnet:

χ(M) =

∫
M

(Euler form).

Chern’s argument was as follows: choosing a vector field on M , we can make an
explicit antiderivative of the Euler form away from the zeros, which localizes the
computation to small neighborhoods of the zeros in an analogous manner.

4 Properties of Deligne cohomology

Product structure. There is a product

Hp
D(X,Z(q))×Hp′

D (X,Z(q′))→ Hp+p′(X,Z(q + q′)).

Remark 4.1. The definition is a little tricky. It involves an asymmetric choice.

Cycle class map. For Z of codimension p, there is a cycle class

[Z] ∈ H2p
D (X,Z(p)).

Let’s ignore the definition. Under the map

H2p
D (X,Z(p))→ H2p(X, (2πi)pZ)

it maps to the usual cycle class. However there is more information, thanks to the
part on the left of the long exact sequence

H2p−1
D (X,Z(p))→ H2p−1(X,Z(p))/F pH2p−1 → H2p

D (X,Z(p))→ H2p(X, (2πi)pZ)

For instance, if the usual cycle class of Z is zero, you get a class

[Z]D ∈
H2p−1(X,C)

F pH2p−1 +H2p−1(X, (2πi)pZ)

which is the Abel-Jacobi map to the intermediate Jacobian.

Example 4.2. If X is a curve and p = 1 this group is

H1(X,O)/H1(X, 2πiZ) ∼= Jac(X).

For Z of degree 0, this is the classical Abel-Jacobi map.

Grothendieck pointed out that if you can define the Chern class of an arbitrary
line bundle, then you can define the Chern class of an arbitrary vector bundle. So
we can construct the cycle class from the Chern class of a line bundle, in terms of
the Chern classes of the structure sheaf.
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5 The regulator map

5.1 Examples

We discussed two examples of motivic cohomology last time.

1. For C a curve, we looked at H2
M(C,Q(2)).

A class is represented by
∑
fi⊗gi where fi, gi ∈ Q(C)∗ where

∏
i{fi, gi}P = 1

for all tame symbols P .

2. For S a surface, we looked at H3
M(S,Q(2)).

A class is represented by
∑

(Di, fi) where Di is a divisor and fi ∈ Q(Di)
∗ such

that
∑

Div(fi) = 0.

In the second case, the regulator is a map

reg : H3
M(S,Q(2))→ H3

D(S,Q(2)).

In this case the target H3
D(S,Q(2)) maps to H3(S,Z) by 0, since it’s too far up in the

Hodge filtration. (It is supposed to consist of classes in F 2H3, but this intersects its
complex conjugate trivially, hence can’t map to a non-zero class in H3(S,Z) since
that consists of elements which are in particular real, i.e. stable under complex
conjugation.) So

H3
D(S,Q(2)) =

H2(S,C)

F 2H2 +H2(S, (2πi)2Z)
.

Given ω ∈ F 1H2, pairing with α ∈ H2(S,C)
F 2H2+H2(S,(2πi)2Z)

defines an element ofC/(periods of ω).
(It pairs to 0 with the F 2H2, but there are periods coming from pairing with
H(S, (2πi)2Z).) So to give a regulator map

H3
M(S,Q(2))→ H3

D(S,Q(2))⊗R

we need to give, for an element
∑

(Di, fi) ∈ H3
M(S,Q(2)), linear functional taking

in ω ∈ F 1H2 and spiting out some invariant in C/(periods of ω).
We have ω ∈ F 1H2, and we want to integrate over some 2-cycle. Take η =∐
f−1
i [0,∞). Because of the cancellation condition on

∑
(Di, fi) this is a loop:

∂η = 0. We claim that η is trivial in H1. To check that, we can integrate against a
one-form. Since holomorphic forms and their conjugates generate H1

dR, it suffices to
consider the integral against a holomorphic 1-form θ: it is enough to see that∫

η
θ = 0 for all θ ∈ H0(S,Ω1).

Let D =
⋃
Di. Consider integrating∫

D−η
θ ∧ d log fi
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where log fi is defined by choosing a branch cut along η. This vanishes because the
integrand is of type (2, 0), which automatically vanishes on the holomorphic curve
D. On the other hand,∫

D−η
θ ∧ d log fi =

∫
D−η

d(θ log fi) = 2πi

∫
η
θ

because log fi changes by 2πi winding around η (where we choose the branch cut of
the logarithm).

So η = ∂β, where β is a 2-dimensional cycle. We might try to define

ω 7→
∫
β
ω.

Unfortunately, this doesn’t work. The right thing is instead

ω 7→
∫
β
ω − 1

2πi

∫
D−η

ω · log fi.

If we choose a different branch of the logarithm, this changes by 2πi
∫
ω, which is a

period of ω. If you change the choice of β, then this also changes by a period of ω.
At this point we only have a functional on 2-forms, and we have to check that

it descends to cohomology. That’s why we have to make this modification. Suppose
ω ← ω+dϕ where ϕ ∈ Ω1,0. (This is enough to descend to F 1H2.) Then the integral
changes by ∫

β
dϕ− 1

2πi

∫
D−η

dϕ log fi.

By Stoke’s Theorem, and the fact that
∫
ϕd log fi vanishes because the integrand is

of type (2, 0), this is equal to∫
∂β=η

ϕ− 1

2πi

∫
D−η

d(ϕ log fi).

This localizes to a small neighborhood N(η) of η:∫
η
ϕ− 1

2πi

∫
N(η)

d(ϕ log fi)

and arguing by branch cuts as before, we have

1

2πi

∫
N(η)

d(ϕ log fi) =

∫
η
ϕ.

This shows that our functional descends to Ω2,0⊕Ω1,1

dΩ1,0
∼= F 1H2, as desired.
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6 Beilinson’s Conjecture: the critical case

Let X be a (proper smooth) variety over Q. We consider L(H iX, q). For p = i+ 1,
the functional equation relates

L(H iX, s)↔ L(H iX, p− s).

Thanks to this we can always assume that p ≤ 2q, i.e. we are considering points “at
the center or to its right”.

Example 6.1. For X = C a curve, we are interested in L(H1C, 2). For X = S a
surface, we are interested in L(H2X, 2).

In the critical case, the map

H i
B(X, (2πi)qQ)+ ⊗C→ H i

dR(X,Q)/F qH i
dR(X,Q)⊗C

is an isomoprhism. The prediction is then that

L(H iX, q) ∼Q∗ det .

Remark 6.2. Previously we were a little sloppy about real structures and integral
models; we’ll be more careful about them this time.

7 Motivic cohomology

7.1 Recollections

If we are not in the critical case, the map in question is still injective, and you can
“fill out” H i

dR/F
qH i

dR using motivic cohomology. The sequence

H i
B(X, (2πi)qZ)→ H i

dR(X,Q)/F qH i
dR(X,Q)⊗C→ HD(X,Z(q))→ . . .

The sequence continues, but terminates if p < 2q.
The motivic cohomology is equipped with a regulator map

Hp
M(X,Z(q))

regulator−−−−−→ Hp
D(XC,Z(q)).

Let’s recall some features of motivic cohomology.

H0
M(X,Z(0))

H0
M(X,Z(1)) H1

M(X,Z(1)) H2
M(X,Z(2))

H0
M(X,Z(2)) H1

M(X,Z(2)) H2
M(X,Z(2)) H3

M(X,Z(2)) H4
M(X,Z(2))
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• The rightmost slanted line are Chow groups, e.g. H0(X,Z(0)) = Z,H2(X,Z(1)) =
Pic(X) = CH1(X), H4(X,Z(2)) = CH2(X), etc.

H0
M(X,Z(0))

H0
M(X,Z(1)) H1

M(X,Z(1)) H2
M(X,Z(2))

H0
M(X,Z(2)) H1

M(X,Z(2)) H2
M(X,Z(2)) H3

M(X,Z(2)) H4
M(X,Z(2))

• The next diagonal describes relations among cycles, i.e. is represented by cycles
with functions attached,

H0
M(X,Z(0))

H0
M(X,Z(1)) H1

M(X,Z(1)) H2
M(X,Z(2))

H0
M(X,Z(2)) H1

M(X,Z(2)) H2
M(X,Z(2)) H3

M(X,Z(2)) H4
M(X,Z(2))

• The next diagonal describes relations among relations among cycles, i.e. is
represented by cycles with two functions attached, etc.

H0
M(X,Z(0))

H0
M(X,Z(1)) H1

M(X,Z(1)) H2
M(X,Z(2))

H0
M(X,Z(2)) H1

M(X,Z(2)) H2
M(X,Z(2)) H3

M(X,Z(2)) H4
M(X,Z(2))

There is a cycle class map

Hp
M(X,Z(q))→ Hp

ét(X,Z`(q)).

Remark 7.1. The parameteres p, q in the construction of motivic cohomology are
confusing; you should remember them as matching up with the degree and twist
parameters in étale cohomology under the cycle map.
Remark 7.2. The left half of motivic cohomology is described by the other Bloch-
Kato conjecture (proved by Voevodsky) using the comparison with étale cohomology;
unfortunate the right half is more interesting, incorporating for instance the Tate
conjecture.
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Remark 7.3. Everything on the strict right half is 0 for Spec K.
Example 7.4. For X = Spec Q, we have H1(X,Z(1)) = Q∗. This is bad, because
we would like something finitely generated. This is the reason why we want to work
with integral models, where one has H1(X ,Z(1)) = Z∗.
Remark 7.5. There is a spectral sequence relating motivic cohomology to K-theory,
which degenerates rationally. The first slanted line becomes K0, the second becomes
K1, etc.

7.2 The Gysin sequence

For Z ↪→ X and U = X − Z, we have an exact sequence

. . .→ Hp−2c
M (Z,Z(q − c))→ Hp

M(X,Z(q))→ Hp
M(U,Z(q))→ . . .

Example 7.6. For X = Spec OK , Z = Spec Fv included in X as a point p, and
U = Spec OK [1/p], we have

0 // H1
M(X ,Z(1)) // H1

M(U,Z(1)) // H0
M(Fv,Z) // H2

M(X ,Z(1))

0 // O∗K // OK [1/p]∗ // Z // Pic(X )

Here the map OK [1/p]∗ → Z is valuation at p.
Example 7.7. Let X = E ×E. Let E/OK be an integral model and X = E × E/OK .
From the Gysin sequence we get

H3
M(X ,Z(2)) // H3

M(U,Z(2)) // H2
M(Z,Z(1)) // H4

MX ,Z(2))

Pic(Z) // CH2(X )

the map sending a divisor D on Z (a surface over Fq) to D viewed as a codimension
2 cycle on X .

Mildenhall showed (using primes p where E/Fp is supersingular) for a CM elliptic
curve E/K that H3

M(E × E,Z(2)) is infinite-dimensional. Flach, following up on
Mildenhall’s paper, constructed for E a modular curve explicit elements in H3

M(E×
E,Z(2)) to show that that CH2(X ) is torsion. Flach then used the étale cohomology
class in H3

ét(E × E,Z`(2)) to annihilate the Selmer group of Sym2E.
For the correct version of Beilinson’s conjecture, you should use not motivic

cohomology Hp
M(X,Z(q)) but the image in Hp(X,Z(q)) of the integral version:

Im (Hp(X ,Z(q))→ Hp(X,Z(q))).

By the way, where do Flach’s classes come from? If you want to produce elements
in H3(X×X,Z(2)) you can produce a curve inside X×X. There are natural choices
for these, namely Hecke correspondence. And there are natural functions on these
guys whose poles we know how to control, namely modular units.
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8 Beilinson’s conjecture in general

8.1 Statement of the conjecture

For X/C a smooth projective variety, the Deligne cohomology with real coefficients
Hp
D(X,R(q)) fits into an exact sequence

0→ H i(X, (2πi)qR)→ H i
dR(XC)/F qH i

dR → Hp
D(X,R(q))→ . . .

where the remaining terms are 0 if p < 2q. This makes sense for X/C, but now we
define a version for X/R.

If X is a (smooth projective) variety over R, then we extend the story by taking
“conjugation fixed points”.

0→
[
H i(X, (2πi)qR)

]+ → [
H i

dR(XC)/F qH i
dR

]+ → Hp
D(X,R(q))→ . . . (8.1)

Remark 8.1. This is probably best ignored on a first reading.

Once this is done, the Beilinson regulator can be made with this as target. For
X a projective smooth Q-variety, we have a map

Hp
M(X,Q(q))→ Hp

D(X/R,R(q)).

This map is conjecturally an isomorphism after tensoring with R if you use the
X -version of the left hand side. Assuming this, we have an exact sequence

0→ H i(X, (2πi)qQ)+ ⊗R→
H i

dR(XQ)

F qH i
dR

⊗R→ Hp
M(X,Q(q))⊗R→ 0.

All three spaces have Q-structures, and we can compare them.

Conjecture 8.2. ( det middle
Q−structure

)
=
(

det left
Q−structure

)(
det right

Q−structure

)
That is, given a short exact sequence

0→ V1 → V2 → V3 → 0

we get a canonical isomorphism

∧dimV2V2
∼= (∧dimV1V1)⊗ (∧dimV3V3).
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8.2 Real structure

There are 3 involutions on H∗(XC,C) where X is defined over R:

1. cB: the complex conjugation on the coefficient group C. This is an antiholo-
morphic involution fixing H∗B(XC,R).

2. F∞: the complex conjugation on complex pointsX(C)→ X(C), which induces
F ∗∞ : H∗B(XC,C). This is a C-linear involution.

3. cdR := cBF∞, the product of the two. This is the complex structure on
H∗dR(XC,C) with respect to the real structure H∗dR(XR,R).

The + in (??) means fixed points under cdR, which produces H i
dR(XR)/F qH i

dR(XR).

Example 8.3. H i(X, (2πi)qR)+ is the fixed points for cBF∞, hence the (−1)q eigenspace
of F∞ on H i(X, (2πi)qR).

Remark 8.4. What happens when p = 2q? Here the L-function can vanish, so you
want to compute its derivative. You also need to modify using the height pairing on
CHq(X).
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