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1 Deligne’s conjecture

As we saw, Deligne made a conjecture for varieties (actually at the level of motives)
for the special values of L-function. If X/Q is a smooth projective variety, we can
form the L-function L(H iX, s), and Deligne’s conjecture concerns L(H iX, q) for
certain “critical” a.

There is a functional equation relating

L(s)↔ L(i+ 1− s).

Set p = i+ 1. By the functional equation, we can assume that q ≥ p/2. For most of
the talk we’ll be assuming that actually q � p/2. The reason is that we usually want
to avoid q = p/2, which is the “central point” (the value here encompasses L(E, 1)
for an elliptic curve E). The point q = p/2 + 1/2 is the “right of center” point (and
its values encompass ζ(1)).

Deligne’s conjecture says that in the “critical case”

L(H iX, q) ∼Q a period determinant.

This period determinant is for a map

(2πi)qH i
B(X,Z)F∞=(−1)q → H i

dR(X)/F qH i
dR(X). (1.1)

Here

• H i
B is the singular cohomology of the complex points,

• F∞ is the the automorphism on X(C) induced by conjugation.

This is map beteen C-vector spaces with Q-structures, so it makes sense to take its
determinant.
∗Notes taken by Tony Feng
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Example 1.1. We’ll work through the statement of the conjecture for an elliptic
curve. The map (1.1) is

(2πi)H1(E(C))− → H1
dR(E)/H0(E,Ω1).

We need to choose bases for the Q-structures on either side. On the right side, we
have H0(E,Ω1) = Q · ω. Extend this to a basis 〈ω, η〉. For the left side, we actually
choose a dual basis {γ+, γ−} splitting the homology as

H1(E(C),Q) ∼= Qγ+ ⊕Qγ−

where γ+ and γ− are eigenvectors for F∞.
The period matrix is

Ω =

(∫
γ+ ω

∫
γ− ω∫

γ+ η
∫
γ− η

)
.

Let {γ+∗ , γ−∗ } be the dual bases inH1(E,Q) to {γ+, γ−}. The period will be obtained
by writing γ−∗ = aω + bη, and then taking the η component. In terms of the matrix
Ω, we have

(a, b)Ω = (0, 1).

Then

(a, b) = (0, 1)Ω−1 = (0, 1)

( ∫
γ− η −

∫
γ− ω

−
∫
γ+ η

∫
γ+ ω

)
1

det Ω

and in particular

b =
1

2πi

∫
γ+
ω.

What is the meaning of criticality? It basically guarantees that (1.1) is an iso-
morphism, which is necessary to make sense of the determinant.

Under our assumptions (that q is away from the central point), (1.1) is always
injective. We’re going to construct a “missing piece” of the picture:

• A motivic cohomology group Hp
M(X,Q(q)).

• A Deligne cohomology group Hp
D(X,Q(q)) which is basically the cokernel of

(1.1).

• A regulator map

Hp
M(X,Q(q))⊗C

∼−→ Hp
D(X,Q(q))⊗C

which is an isomorphism.

The shape of the refined conjecture will be that the determinant of the map (1.1)
augmented by Deligne cohomology is the special value.
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2 Motivic cohomology

2.1 Overview of properties

We will define motivic cohomology later, but first we explain some of the important
properties that we’re looking for.

• For every p, q we haveX  Hp
M(X,Q(q)). This is a contravariant functor from

smooth varieties X/Q to (conjecturally finite-dimensional) Q-vector spaces.

• There is a comparison map

Hp
M(X,Q(q))→ Hp

ét(X,Q`(q)).

• There is a map to Deligne cohomology:

Hp
M(X,Q(q))→ Hp

D(X,Q(q))

which vanishes when p > 2q and conjecturally for q ≤ 0.

• We have H2q
M(X,Q(q)) = CHq(X)⊗Q.

Remark 2.1. The finite-dimensionality is only over Q; over C, Chow groups can be
huge!

Remark 2.2. A particula motivic cohomology group can be identified with a (ra-
tional) Chow group. Under this identification, the map to étale cohomology is the
usual cycle class map.

Here is a “table of values” for motivic cohomology.

H0 H1 H2 H3 H4

Q(0) Q 0 0 0 0
Q(1) 0 H0(O∗X) Pic(X)⊗Q 0 0
Q(2) ? ? ? CH2(X)⊗Q

What are the mysterious entries, intuitively? At one extreme motivic cohomology
is the Chow group. The motivic cohomology group immediately to the left describes
“relation in the Chow group”. The group to the left of that describes “higher order
relatons”, i.e. “relations among relations”.

H0 H1 H2 H3 H4

Q(0) Q 0 0 0 0
Q(1) 0 H0(O∗X) Pic(X)⊗Q 0 0
Q(2) . . . . . . higher relations “relations for CH2” CH2(X)⊗Q
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Example 2.3. For an elliptic curve E, Beilinson’s conjecture predicts L(H1E, 1) in
terms of H2

M(E,Q(1)). The latter is the Chow group of E, which has to do with
rational points on E.

On the étale version, there is a spectral sequence

H i(GQ, H
j
ét(EQ,Q`(1))) =⇒ H2

ét(E,Q`(1)).

Usually we think of the L-function as being defined in terms ofH1(GQ, H
j
ét(EQ,Q`(1))),

but from this perspective it is just one “part” of H2
ét(E,Q`(1)).

2.2 The definition

Let’s first talk about the Chow group: CHp(X) is the free abelian group on codimen-
sion p cycles of X, modulo the relations generated by Div(f) for f a meromorphic
function on Y of codimension p− 1.

CHp(X) =
Z〈codim. p cycles ⊂ X〉

〈Div(f) | f on Y of codim p− 1 ⊂ X〉
.

We want to write down a complex in which CHp(X) is the final cohomology
term. Bloch defined a notion of “higher Chow group”. One starts with Cp(X), the
free abelian group of cycles of codimenson p in X. Then one has

Cp(X ×A1)⇒ Cp(X).

The two maps are Z ∈ Cp(X ×A1) 7→ Z ∩X × {0} and Z ∩X × {1}.

Here by Cp(X ×A1) we really mean the subgroup of cycles intersecting the slices
X × {0} and X × {1} transversally. That is part of what makes this definition
impossible to compute with.

Next we have cycles on X ×A2. There are three different maps corresponding
to the three different intersections.

Cp(X ×A2) Cp(X ×A1)⇒ Cp(X).
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(Again, we are only working with cycles intersect everything transversely.)

Definition 2.4. We define the higher Chow groups CHp(X, •) to be the cohomology
of the complex

. . . Cp(X ×A2) Cp(X ×A1)⇒ Cp(X).

The motivic cohomology group are just re-indexing of the higher Chow groups.
Definition 2.5. We define the motivic cohomology groups by

H2p−q
M (X,Z(p)) = CHp(X, q).

Voevodsky gave another definition of motivic cohomology which is easier to work
with, but not so intuitive.

2.3 Examples

We’ll look at the following examples:

• L(H1E, 1), which corresponds to H2
M(E,Q(1)).

• For S a surface L(H2S, 2), which corresponds to HM3(S,Q(2)).

• For C a curve of genus g L(H1C, 2), which corresponds to H2
M(C,Q(2)).

• ζ(3), which corresponds to H1
M(Spec Q,Q(3)).

To summarize:
L-function i p q Motivic Cohomology Special value
L(H1E, 1) 1 2 1 H2

M(E,Q(1)) center
L(H2S, 2) 2 3 2 H3

M(S,Q(2)) right of center
L(H1C, 2) 1 2 2 H2

M(C,Q(2)) far right
ζ(3) 0 1 3 H1

M(Spec Q,Q(3)) far right
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Figure 1: A concrete element of H3
M(S,Q(2)) can be represented by a chain of

curves, with functions on the curve such that the zeros and poles cancel out.

Example 2.6. Let’s consider the motivic cohomology group H3
M(S,Q(2)). This has

a presentation with generators
∑

(Di, fi) where Di is a divisor and fi is a (mero-
morphic) function on Di such that

∑
Div(fi) = 0, modulo some relations that we’ll

describe later.
H3
M(S,Q(2)) =

{
∑

(Di, fi) :
∑

Div(fi) = 0}
???

(2.1)

We are trying to describe H3
M(S,Q(2)) = CH2(S, 1). A pair (D, f) defines a

codimension 2 cycle on S ×A1, namely the graph of f .
What are the relations? They should come from codimension two cycles on

S×A2. One obvious way to produce such is to take the graph of a function X → A2.
If you unwind the meaning of such relations, you see that in (2.1) you need to quotient
by the tame symbol {F,G}tame when F,G ∈M(S)∗ (non-zero meromorphic function
on S). Here,

{F,G}tame =
∑

D pole or zero of F or G

(
D,

F vD(G)

GvD(F )
(−1)vD(F )vD(G)

)
.

It’s easy to exhibit elements of motivic cohomology (see Figure 2.6), but it’s hard to
show that an element is non-zero. Basically the only way to do so is to compute its
regulator (and show it’s non-zero).

Étale realization. We want to construct a map

H3
M(S,Q(2))→ H3

ét(S,Q`(2)).

Away from the zeros and poles, fi gives a class in H1(Di−|Div(f)|,Q`(1)). We can
take that class and push it into the surface. The condition on cancellation of zeros
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and poles comes in trying to extend fi to the union of the Di. (Actually, it extends
not to Di but to cohomology with coefficients in some shriek pullback, which you
can then push forward.)

If Y ⊂ S were a smooth curve, you would have a long exact sequence

H1
ét(Y,Q`(1))→ H3

ét(S,Q`(2))→ H3
ét(S − Y,Q`(2))

+1−−→ .

So morally the étale realizationis the pushforward of the class of fi ∈ H1(Di,Q`(1)).

Example 2.7. Now let’s talk about the motivic cohomology group H2
M(C,Q(2)).

Here the presentation is the kernel of all the tame symbols on Q(C)∗ ⊗ Q(C)∗,
quotiented out by 〈f ⊗ (1− f) : f ∈ Q(C)∗〉:

H2
M(C,Q(2)) =

ker({F,G}p for all p) ⊂ Q(C)∗ ⊗Q(C)∗

〈f ⊗ (1− f) : f ∈ Q(C)∗〉
.

Here the tame symbol is defined by

{F,G}p =

(
F vp(G)

Gvp(F )
(−1)vp(F )vp(G)

)
(p).

Étale realization. We want to make a map

H2
M(C,Q(2))→ H2

ét(C,Q(2)).

Let U = C − Div(F,G). Since F and G are non-vanishing on U , they give classes
[F ] and [G] ∈ H1

ét(U,Q`(1)). After all, H1
ét(U,Q`(1)) classifies étale covers of U with

Galois group µ`n , and you get such a cover of U by taking the `n roots of F or G.
Then the cup product

[F ] ^ [G] ∈ H2
ét(U,Q`(2)).

We want to extend this over C. We haven’t yet used the fact that this is in the
kernel of the tame symbol maps, but that fact implies that you can lift this class (by
a certain long exact sequence relating H2

ét(U) and H2
ét(C).

3 Some Remarks

3.1 K-theory

For X smooth and quasiprojective, we have an isomorphism⊕
CHp(X)⊗Q

∼−→ K0(X)⊗Q.

In fact there are natural maps in both directions. The map← is the Chern character
and the map → is Z 7→ [OZ ] (on a smooth X, any coherent sheaf admits resolution
by vector bundles, hence has a class in K0). These are essentially inverse maps.
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The K-theory side is much nicer. For instance, when defining the product struc-
ture there are no transversality issues to worry about (as in intersection theory).

In general, we have an isomorphism⊕
CHp(X, q)⊗Q

∼−→ Kq(X).

This was Beilinson’s original definition of motivic cohomology, using Kq as defined
by Quillen.

3.2 Motives

We want our conjecture to work replacing X by a motive. What difficulties are there
in stating our conjecture for motives?

One is that we haven’t defined motivic cohomology. If you try to define the Chow
group, you run into the problem that projectors are up to homological equivalence,
and hence aren’t well-defined projectors on Chow (since that is defined up to the
stronger notion of rational equivalence).

If we have two homologically equivalent motives, then we have CH∗ ⊃ CH∗hom-triv.
If f, g have the same cohomology class, then they (thought of as correspondences)
induce the same map on CH∗/CH∗hom-triv.

We need a conjecture to make this well-defined. The essence of the conjecture is
that there exists a filtration (of rings) on which homologically trivial correspondences
are well-defined on the associated graded.

Conjecture 3.1 (Beilinson-Bloch). We can extend CH∗hom-triv to a filtration

F 0CH∗︸ ︷︷ ︸
=CH∗

⊃ F 1CH∗︸ ︷︷ ︸
CH∗hom-triv

⊃ . . .

such that F pF q ⊂ F p+q, and which is stable by f∗, f∗.
Also, over Q we have F 2 = 0.

This implies that one can make sense of gr•CH∗ for a motive and homologically
trivial correspondence are well-defined on the associated graded.

Example 3.2. For C a curve over Q of genus 2 and P,Q ∈ C(Q), the cycle −(P,Q)+
(Q,Q) − (Q,P ) + (P, P ) with sign −1, 1,−1, 1 should be trivial in CH2(C × C),
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because it’s (C × {P} − C × {Q}) · ({P} × C − {Q} × C):

I don’t think this has ever been checked.

Example 3.3. Let X be an abelian variety. Consider D ∈ CH1(X) = Pic(X). Take
x ∈ X(Q). Suppose D is ample or something, so D ∈ F 0(CH1(X)). We claim that
t∗xD−D ∈ F 1CH1(X). The reason is because we can look at [t∗xD×{1}]− [D×{0}]
on X ×X, which is homologically trivial because it is the difference of two “vertical
classes”, whose push-forward is t∗xD −D.

The theorem of the square says that (t∗x− 1)(t∗y − 1)D = 0, so we are seeing that
the “operator” t∗x − 1 moves D down through the filtration.

4 Deligne cohomology

4.1 Motivation

Let’s start with Chern classes of line bundles. Let X be a smooth projective
variety over C and L a line bundle on X. Then we have a first Chern class
c1(L) ∈ H2(X,Z) ∩ F 1H2(X,C), and this first step of the Hodge filtration maps to
H1(X,Ω1). So given a line bundle we should be able to make a class in H1(X,Ω1),
and L will be classified by this map H1(X,O∗X)→ H1(Ω1) which sends locally sends
f 7→ df

f .
So we’ve constructed a “topological Chern class” and also a “de Rham version”.

The idea of Deligne cohomology is to make a class that simultaneously gives “topo-
logical” and “de Rham” versions.

The Deligne cohomology group will be denoted Hp
D(X,Z(q)). This is morally

“singular cohomology classes valued in (2πi)qZ which also lie in the qth step of the
Hodge filtration”. For example, a line bundle L will give a class in H2

D(X,Z(1)).
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4.2 Definition

We define Hp
D(X,Z(q)) to be the pth hypercohomology group, on X, of the complex

(2πi)qZ→ O → Ω1 → . . .→ Ωq−1. (4.1)

If
F = 0 // (2πi)qZ //

��

0 //

��

0 //

��

. . .

G = 0 // O // Ω1 // Ω2 // . . .

there’s a long exact sequence

. . .→ Hp
D(X,Z(q))→ Hp(X,F)→ Hp(X,G)→ . . .

and

Hp(X,F) = Hp(X, (2πi)qZ)

Hp(X,G) = Hp(X,C)/F qHp.

So to first approximation you should think of Deligne cohomology as the kernel of
this map, but actually there are some other things in the long exact sequence.

4.3 Examples

What is H1
D(X,Z(1))? For Z(1), the complex (4.1) is quasi-isomorphic to O∗, by

the diagram
2πiZ //

��

O

��
0 // O∗

induced by the exponential short exact sequence

0→ 2πiZ→ O → O∗ → 0

so H1
D(X,Z(1)) ∼= H0(X,O∗).

You can also think of this as cohomology classes in H1(X,Z(1)) that become
trivial in H1(X,O). Imagine X = U ∩V . From the Cech perspective, an element of
H1(X,Z(1)) is a map f : U ∩ V → Z(1). To say that this becomes trivial in O is to
say that f = fU − fV where fV ∈ Γ(U,OU ) and fv ∈ Γ(V,OV ). The corresponding
invertible function in H0(X,O∗) is obtained by gluing exp(fU ) and exp(fV ).

This is the prototypical way to write down examples: you write down a class in
H1(X,Z(1)) and exhibit a reason why it’s trivial.
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Next, we considerH2
D(X,Z(1)) ⊂ H1(X,O∗) = Pic(X). By definition,H2

D(X,Z(2))
is the cohomology of

(2πi)2Z→ O → Ω1

which is quasi-isomorphic to the complex O∗ → Ω1 sending f 7→ df/f :

(2πi)2Z // O //

��

Ω1

��
O∗ // Ω1

f � // df
f

Again, writing down a class in H2
D(X,Z(1)) consists of writing down an element of

H1(O∗) plus a certificate that it becomes trivial in H1(O∗). Here, a class in H1(Ω1)
can be thought of as a cocycle fU∩V ∈ Γ(U ∩ V,O∗). The condition for it to vanish
in H1(Ω1) is that there exist ωU , ωV such that

ωU − ωV =
dfU∩V
fU∩V

.

This means that the connections d+ωU and d+ωV patch together to give a connection
on line bundle. So in this case we see that H2

D(X,Z(2)) classifies line bundles plus
a holomorphic connection.
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