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1 Introduction

Notation

• K = number field with integers O, places v, completions Kv ⊃ Ov, residue field kv of size qv,

• η = Spec(K),

• X = smooth, projective variety over K of dimension n,

• Xη = X ×K K, Xv = X ×K Kv,

• Zi(X) = cycles of codimension i, defined over K

• CHi(X) = Zi(X)/(rational equivalence)

• H i = H i
ét

• Let CHi(X)0 = ker(cl : CHi(X) → H i
et(Xη,Zl(i))), (to be safe, let’s have l not lie under a

place of bad reduction) (TODO: What is known about indep. of l?)

• Zi(X)0 = preimage of CHi(X)0 in Zi(X).

Goal: We want to construct a pairing

〈·, ·〉 : CHi(X)0 × CHn−i+1(X)0 → R,

generalizing the Neron-Tate pairing on abelian varieties.
Note that our cycles are of a dimension where their expected intersection has dimension −1.

Example 1.1 ([9], [3]) Let C/K be a smooth projective curve, with ∞ ∈ C(K) giving i : C ↪→
Pic0(C). Let 〈·, ·〉NT : Pic0(C)(K)×Pic0(C)(K)→ R be the Neron-Tate height pairing, identifying

P̂ic0(A) ∼= Pic0(A) via the theta divisor. Then, once we have defined 〈·, ·〉, we will have

〈P −∞, Q−∞〉 = 〈i(P ), i(Q)〉NT .

Example 1.2 More generally, for an abelian variety A/K of dimension n, the maps CH1(A)0 ∼=
Â(K), CHn(A)0 → A(K) identify the pairings 〈·, ·〉 with 〈·, ·〉NT : A(K)× Â(K)→ R.

Recall that Neron-Tate pairings came from the canonical height function associated to the
Poincare bundle. The Poincare bundle is not ample, although it is when restricted to the “diagonal”
of A× Â via a polarization A → Â. In particular, we get an induced pairing A(K)× A(K) → R
which is symmetric and non-degenerate modulo torsion.
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To achieve this goal, Beilinson constructs partial local pairings. In other words, for repre-
sentative cycles C1, C2 with disjoint support, we want to define, for every place v, a number
〈C1, C2〉v ∈ R. Then we may define the global pairing as 〈C1, C2〉 =

∑
v〈C1, C2〉v.

We would need this formula to descend to Chow.
n=1 For divisors on curves, we could insist that 〈D, div(f)〉 = log |f(D)|, the sum of the value

of f at the points of D, with sign and multiplicity. If this were true for every local pairing v, this
would descend to Pic0 by the product formula.

n > 1 More generally, we could hope that our local pairings were well-behaved with respect to
correspondences in X × P1, to reduce the descent to Chow to dimension 1.

We can do this as follows:

• For v a place of good reduction (there exists a smooth model over Ov), we may extend cycles
C1, C2 to a good model by Zariski closure, obtaining C̃1, C̃2. Then define the local pairing in
terms of the intersection pairing:

〈C1, C2〉v = −(C̃1 · C̃2) log qv.

• For v a place of bad reduction, we might attempt similarly to choose a regular proper model,
extend by Zariski closure. This would be incorrect, even for curves.

Better: extend to cycle whose intersection with the fiber is cohomologous to zero. (TODO:
what does this really mean?) Unfortunately, this is not known to be possible. Conjectural
solutions!

• For v an infinite place, there is a construction in terms of Hodge theory. We will present this
construction for curves.

Conjecture 1.3 (Beilinson [1]) For each place v, and smooth projective variety X over K, there
exists a local pairing

〈·, ·〉v : Zi(Xv)
0 × Zn−i+1(Xv)

0 99K R,

defined on cycles of disjoint support, such that

1. if X has good reduction at v, it is the pairing above,

2. it is functorial in correspondences f ⊂ X × Y , in that 〈f∗a, b〉v = 〈a, f ∗b〉v.

Lemma 1.4 ([1]) If local pairings valued in R exist, satisfying 1.3, then there exists a unique
pairing

〈·, ·〉 : CHi(X)0 × CHn−i+1(X)0 → R,

defined, on representative cycles with disjoint support, to be
∑
〈·, ·〉v.

Remark 1.5 This is a frustrating definition: we would like it to be positive-definite, but to compute
〈x, x〉 requires a knowledge of moving! Naive heights for points on varieties don’t require moving!
At least for divisors alg. equiv. to zero and zero-cycles, Neron has related it to naive heights on
Picard/Albanese varieties, similarly to 1.1.

Remark 1.6 We needed to have a projective variety so that we can move things: roughly, one can
move ample things since they are hyperplane sections. See [11, Tag 0B0D], for a precise statement
of Chow’s Moving Lemma (TODO: Does this moving lemma work for us?).
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Without assuming other conjectures, we can use one of the following groups instead to define
local pairings unconditionally:

1. ker(cl : Zi(Xv) → H i(XKur
v
,Zl(i))) (cycles vanishing in absolute etale cohomology over the

maximal unramified extension of Kv)

2. Image of the fiberwise cohom. to zero cycles in CHi(XOv) (cycles which extend to a local
regular model) inside of CH.

The construction under group 1) is not known to lie in Q · log qv, only in Q · log qv, nor to be
independent of l. Despite this lack of practical value, we will sketch it later.

When are these groups equal to CHi(X)0?

1. when X is a curve, CH i(X)0 = group 1 = group 2)

2. when X satisfies the weight-monodromy conjectures at all primes of bad reduction, for the
relevant cohomology groups, CH i(X)0 = group 1.

Warning 1.7 There is a natural map CHn(X)0 → Alb(X)(K), but it is not known to be an
isomorphism. However, Beilinson shows that, for X/Q, CHn(X)0⊗Q ∼= Alb(X)(Q)⊗Q is implied
by his conjectures. Even over C, the Albanese is merely the universal abelian variety quotient of
CHn(X).

Properties

• Correspondences: f ⊂ X × Y , 〈f∗a, b〉 = 〈a, f ∗b〉

• Pairing for cycles algebraically equivalent to zero can be reduced to Neron-Tate pairings

Of course, the point of all this is to formulate

Conjecture 1.8 (Beilinson [1])

1. (Swinnerton-Dyer) The groups CH i(X)0 are finitely generated, with rank = ords=0L(H2i−1(X)(i), s).

2. The height pairing on CH⊗R is non-degenerate.

3. Its determinant, times the determinant of the (real) period matrix for H2i−1(X), equals the
leading coefficient of the L-function L(H2i−1(X)(i), s) at s = 0.

But we won’t talk more about this.

Question 1.9 How does Beilinson decide to consider all cycles homologous, not just algebraically
equivalent to, zero?
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2 Local Pairings on Curves

2.1 Neron Local Heights [3]

Notation

• X = smooth, projective curve over a local field Kv.

• Div(X/Kv) = divisors on X rational over Kv,

• Z0(X/Kv) = free abelian group on X(Kv),

• | · |v the normalized valuation,

• for f is a function on X, with divisor div(f) relatively prime to a =
∑
mx(x) ∈ Z0(X/Kv),

we define f(a) =
∏
f(x)mx .

Remark 2.1 We may assume our curve has a rational point, by taking a finite field extension.
We will see how the pairing then descends back to Kv.

Proposition 2.2 (Neron [3]) There is a unique function 〈a, b〉v on relatively prime divisors a ∈
Z0(X/Kv), b ∈ Div0(X/Kv) with values in R satisfying:

1. (Linearity) 〈a, b〉v + 〈a, c〉v = 〈a, b+ c〉v.

2. (Symmetry) 〈a, b〉v = 〈b, a〉v whenever b ∈ Z0(X/Kv)

3. (Principal Divisors) 〈a, div(f)〉v = log |f(a)|v

4. (Continuity) Fix b and a point x0 ∈ X(Kv)−|b|. Then the function X(Kv)−|b| → R, defined
by x 7→ 〈(x)− (x0), b〉v, is continuous.

The proof of uniqueness is easy - the difference of two such functions gives, by fixing the left
variable, a continuous homomorphism from J(Kv) to R, which must be constant (no compact
subgroups of R).

An easy lemma, using uniqueness:

Lemma 2.3 For a finite extension Hv/Kv, we have

〈·, ·〉Hv = [Hv : Kv]〈·, ·〉Kv .

After defining this partial pairing on Z0(X/Kv)×Div0(X/KV ), we may extend it to a partial
pairing on Div0(X/Kv)×Div0(X/Kv) by using the previous lemma.

2.2 Finite Places

Let K be a p-adic field, X a smooth proper curve over K. We consider a (proper) regular model
XO of X, with special fiber Xk. We will still sometimes denote the place as v.
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Definition 2.4 Let Z1, Z2 be effective divisors on XO, considered as closed subschemes defined by
ideal sheaves I1, I2. When Z1 and Z2 are relatively prime, the interesection Z1 ∩ Z2 is dimension
zero, necessarily supported in the special fiber Xk. This is equivalent to I1 ∩ I2 being a k-module
of finite length. In this case, we define

Z1 · Z2 = lenk(I1 ∩ I2).

This pairing is in fact biadditive, and extends bilinearly from effective divisors to all divisors.

Definition 2.5 We say that an effective divisor is vertical if its underlying reduced subscheme
is contained in Xk. Let V (XO) ⊂ Div(XO) denote the subgroup generated by effective vertical
divisors.

We then have an exact sequence:

0→ V (XO)→ Div(XO)→ Div(X)→ 0.

If we restrict this partial pairing

Div(XO)×Div(XO) 99K Z

to V (XO)×Div(XO), it turns out that it extends to a full pairing

V (XO)×Div(XO)→ Z.

We will not define this pairing, but the following result lists some of its properties.

Proposition 2.6 ([10]) Let E, F be divisors on XO with E vertical. Then one has:

1. if F is a vertical divisor then E · F = F · E,

2. if E is prime (subscheme is reduced and irreducible) then E · F = deg(O(F )⊗OE),

3. if F is principal then E · F = 0

Now, consider the special fiber Xk. Its irreducible components E1, . . . , Er need not be reduced
or geometrically connected as k-schemes. We write Ei for the corresponding divisor, which is a
multiple of the divisor of the underlying reduced subscheme Ered

i . Then Z-linear combinations of
Ered
i generate the vertical divisors V (XO).

When we restrict the intersection pairing to vertical divisors, we have the following properties:

Theorem 2.7 ([10])

1. Xk · F = 0 for all vertical divisors F ,

2. Ei · Ej ≥ 0 if i 6= j and E2
i < 0,

3. the bilinear form given by the intersection product of Div(X/K)⊗ZR is negative semi-definite,
with isotropic cone equal to the line generated by Xk.

Lemma 2.8 A degree zero divisor D ∈ Div0(X/K) extends uniquely to an element D̃ of Div(XO)⊗
Q such that D̃ · Ei = 0 for all irreducible components Ei of the special fiber.
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Proof.
0→ ker(Σ)→ ⊕iQ · Ei

Σ→ Q→ 0

The intersection form is nondegenerate when restricted to ker(Σ).
Let D′ the extension of D by Zariski closure, and consider v = (D′ · E1, . . . , D

′ · Er)
We have that

Σ(v) =
∑
i

D′ · Ei = D′ ·Xk.

Now, D′ · Xk may be identified with the degree of the line bundle O(D′) restricted to Xk.
Since O(D′) is a locally free sheaf on a proper flat family, this is the same as the degree of
O(D′)K = O(D), which is zero by assumption.

Thus there is a divisor C supported only on the irreducible components with the same inter-
section, and we take D′ = D − C. �

Definition 2.9 Given D1, D2 ∈ Div0(XK), we define the local pairing

〈D1, D2〉v = −(D1 ·D2) log qv ∈ Q · log qv,

where qv = #(k).

Linearity Obvious
Principal Divisors In case of good reduction:
Let D1 = div(f), D2 =

∑
Pi −

∑
Qj ∈ Z0(X/K). Normalize f so that |f |π = 1 (valuation

along special fiber), so that f = f mod π is a rational function on Xkv , not identically zero.
Then −(D1 ·D2) log qv =

∑
Pi∩Xkv

−ordPi
(f) log qv −

∑
Qj∩Xkv

−ordQj
(f) log qv = log |f(D2)|v.

In bad reduction, note that f may have zeros or poles on entire irreducible components. These
are precisely the ones we need to add/subtract to D1 for D1 to intersect each component in degree
zero. This is why we cannot naively extend divisors by Zariski-closure, in the case of bad reduction!
The rest should be similar...

Continuity We check in the case D = div(f). Fix x0 ∈ X(K) − |D|. We must show that
x 7→ 〈(x) − (x0), D〉 is a continuous function on X(K) − |D|. By the previous property, we have
〈(x)− (x0), D〉 = log |f(x)|v − log |f(x0)|v. Since log : R>0 → R is continuous and | · |v : K → R>0

is tautologically continuous, it remains to see that f : X(K) − |D| → K is continuous, and this
is passage to K-points on the morphism f : X − |D| → A1

K , so it remains to check that passage
to K-points carries K-morphisms to continuous maps. But by the method of topologizing the
K-points (via gluing on Zariski-open affines), this problem is of local nature and hence reduces to
the affine case where it is clear (as polynomials are continuous).

Symmetry Obvious

Remark 2.10 More generally, for non-principal divisors, we may extend a section of a line bundle
once we choose a way to extend the line bundle (choosing a model is a choice of extension of OX),
and interpret the pairing as log|s(D2)|. Extending the line bundle is roughly the same as putting a
p-adic metric on it. The condition of degree zero may be thought of as a way to get a “canonical
metric”, as in the archimedean setting.
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2.3 Infinite Places

2.3.1 Green’s Functions via thinly veiled Hodge Theory

It will suffice to construct the local pairing when Kv = C, using [C : R]〈a, b〉R = 〈a, b〉C to define
the pairing over R.

We will define this local pairing for all Riemann surfaces X. A reference for this construction,
in more generality, is in [4].

Claim 2.11 The real integral

Re

∫
: H0(X,Ω1)×H1(X,R)→ R

is a perfect pairing.

Proof. As vector spaces over R, H0(X,Ω1) and H1(X,R) have the same dimension (2g). We know
that H1(X,Z) ⊂ Hom(H0(X,Ω1),C) is a lattice: the Jacobian is compact. So

∫
: H1(X,R) ∼=

HomC(H0(X,Ω1),C). Then use that the map Re : HomC(H0(X,Ω1),C) → HomR(H0(X,Ω1),R)
is an isomorphism. �

Proposition 2.12 Let D ∈ Div0(X). There exists a unique ωD ∈ H0(X − |D|,Ω1) such that

1. ωD has log poles along D

2. Res(ωD) = D.

3. Re
∫
ωD : H1(X − |D|,Z)→ R vanishes.

Remark 2.13 For D = P −Q, this can be rephrased as a splitting of the residue sequence

0→ H1(X,R(1))→ H1(X − |D|,R(1))
Res→ (R⊕ R)/R→ 0

in the category of mixed hodge structures over R.

Proof. We first check uniqueness. Let ωD, ω
′
D be two forms satisfying 1)-3). The difference

ωD − ω′D lies in H0(X,Ω1) by 1) and 2), and has Re
∫

(ωD − ω′D) = 0 by 3). But the claim then
implies ωD − ω′D = 0.

It will suffice to consider the divisor D = P −Q, since all degree zero divisors are sums of these.
We use Riemann-Roch:

h0(K + (P +Q))− h0(−(P +Q)) = deg(P +Q+K)− (g − 1) = 2 + (g − 1) = g + 1

We see thatH0(X−|D|,Ω1(log))/H0(X,Ω1) is 1-dimensional. Take any ω ∈ H0(X−|D|,Ω1(log))
with Res(ω) = D.

The map Re
∫
ω1 : H1(X−|D|,Z)→ R vanishes on the small loops around |D| (

∫
dz/z = 2iπ),

hence factors through H1(X,Z).
As a functional H1(X,Z)→ R, the claim identifies Re

∫
ω with Re

∫
η for η ∈ H0(X,Ω1). We

can take ωD = ω − η. Now, Re
∫
ωD : : H1(X − |D|,Z)→ R vanishes. �

Now, the vanishing of Re
∫
ωD : H1(X − |D|,Z) → R implies that as a function on X, x 7→

Re
∫ x
x0
ωD is well-defined up to a constant. In other words, we may evaluate it on degree-zero

divisors.
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Definition 2.14 Given two degree-zero divisors D1, D2 on X, we define

〈D1, D2〉∞ = 2 · Re

∫
D2

ωD1 .

Let’s check that this is a Neron local height:
Linearity: Obvious
Continuity: Obvious
Principal Divisors: D = div(f), ωD = d log(f), 2 · Re

∫
ωD = log |f |2

Symmetry:

Proposition 2.15 (Green’s Theorem [2][4]) Let ai, bi, i = 1, . . . , g, be a symplectic basis for
X, thought of as the boundary of a standard fundamental domain. Let ω1, ω2 be differential forms
satisfying 1) and 2) of 2.12 (no condition on the periods).

Then integrals
∫
Di
ωj are well-defined mod Z(1), and we have the following formula:∫

D1

ω2 −
∫
D2

ω1 =
1

2πi

g∑
i=1

(∫
ai

ω1 ·
∫
bi

ω2 −
∫
ai

ω2 ·
∫
bi

ω1

)
mod Z(1)

In particular, if ω1, ω2 have purely imaginary periods, then∫
D1

ω2 =

∫
D2

ω1 mod R(1)

Proof. Our proof will only prove modR(1), and this is all that is needed for our purposes.
First, two lemmas:

Lemma 2.16 ([2]) For any C∞ differential forms ω1, ω2 on X:∫
X

ω1 ∧ ω2 =

g∑
i=1

(∫
ai

ω1 ·
∫
bi

ω2 −
∫
ai

ω2 ·
∫
bi

ω1

)
We won’t show this: it is straightforward to prove.

Lemma 2.17 For forms ω1, ω2 satisfying 1) and 2) of 2.12,∫
D1

ω2 −
∫
D2

ω1 =
1

2πi

∫
X−|D1|∪|D2|

ω1 ∧ ω2 mod Z(1)

Assuming these lemmas, we may modify ω1, ω2 so that they are C∞ across |D1| ∪ |D2|, and
apply 2.16.

Proof of 2.17 Define Re(ω) = 1
2
(ω + ω), Im(ω) = 1

2
(ω − ω). Observe that

∫
γ
ω =

∫
γ
ω (take

holomorphic/antiholomorphic primitives locally, and then it is obvious).
Let gDi

= Re
∫
ωi =

∫
Re(ωi)
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2πi(gD1(D2)− gD2(D1)) =

∫
X−|D1|∪|D2|

d(gD1ω2 − gD2ω1)(Residue) (1)

=

∫
X−|D1|∪|D2|

Re(ω1) ∧ ω2 + ω1 ∧ Re(ω2) (2)

Im

∫
X−|D1|∪|D2|

Re(ω1) ∧ ω2 + ω1 ∧ Re(ω2) =

∫
X−|D1|∪|D2|

Re(ω1) ∧ Im(ω2) + Im(ω1) ∧ Re(ω2)

(3)

=

∫
X−|D1|∪|D2|

Im(ω1 ∧ ω2) (4)

gD1(D2)− gD2(D1) = Re

(
1

2πi

∫
X−|D1|∪|D2|

ω1 ∧ ω2

)
(5)

(6)

�

�

Remark 2.18 It is not hard, using the symmetry of the local pairing, to prove that Weil reciprocity
holds after taking absolute values: in other words, if f, g have disjoint divisors, then |f(div(g))| =
|g(div(f))|.

There is an approach by Deligne to local heights which takes a pair of metrized line bundles
L,M on X (for example, degree zero line bundles have canonical Hermitian metrics, roughly by
constructing Green’s functions as above) and produces a hermitian vector space 〈L,M〉. However,
this approach requires the full Weil reciprocity as input.

2.3.2 Examples

If we can write down real-valued harmonic functions |f | on X with div(|f |) = D, then log(|f |)−
Re
∫
ωD will be a constant, by the maximum principle for harmonic functions.

1. P1: log |z| for D = (0)− (∞).

2. C/Λ: A natural multi-valued function with a pole of order 1 at ∞ is the Weierstrass σ
function:

log σ =

∫
ζ(z)dz =

∫
(

∫
−℘(z)dz)dz.

We want to modify this so that it is single-valued, i.e. we want to modify σ so that it
transforms under Λ by norm 1 elements.

Our new function (the Klein function) is

k(z) = ∆(Λ)1/12e−zη(z)/2σ(z),

where η(z) is the R-linear extension of η : Λ→ C by η(λ) = ζ(z + λ)− ζ(z).

Claim 2.19 − log |k(z)| = 1
2

Re(zη(z)) − log |σ(z)| − 1
12

log(∆(Λ)) will be a real-analytic
function on E, ∼ log |z| near z = 0.

When we have a degree zero divisor D, we can use translates of this function to compute
〈D, ·〉C. For example, if D =

∑
mizi, then Re

∫
ωD = log |

∏
i k(z − zi)mi |.
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3 Beilinson Heights

Pragmatic Motivation: We cannot do intersection pairing unconditionally in the case of bad
reduction. We introduce one possible abstract pairing which, when it works, does not require
choosing a model, and agrees with intersection pairings when those work too. Unfortunately, it is
not known to be independent of l (but that hasn’t stopped us before!)

Theological Motivation 1 (Unconditional Archimedean Heights) The same definitions pro-
duce the local pairing at infinite places, when applied to Deligne cohomology (extensions of mixed
hodge structures) instead of absolute etale cohomology (extensions of l-adic representations). See
[1].

Theological Motivation 2 (Weight-Monodromy implies unconditional p-adic Heights) Very
similar definitions, when applied to p-adic etale cohomology (p = l), produce local heights valued
in Qp, which give a cohomological interpretation of various “p-adic Green’s functions”, and allow
for the statement of p-adic BSD conjectures. See [6].

3.1 Etale Abel-Jacobi Maps

Goal: Algebraic cycles create extension of Galois representations.
Let X be a smooth, proper variety over a field K, with η the geometric generic point. Let GK

be the absolute galois group of K. Consider the cycle class map

cl : CHi(X)→ H2i(Xη,Zl(i)).

Let CHi
Z(X) denote the cycles supported on a fixed codimension i subvariety Z. Then we have

also
cl : CHi

Z(X)→ H2i
Z (Xη,Zl(i)).

TODO: reference for etale cycle class maps for singular subvarieties of smooth varieties?
The image is the local cohomology with support on Z. This fits into a long exact sequence

. . .→ H2i−1(Xη,Zl(i))→ H2i−1((X − Z)η,Zl(i))→ H2i
Z (Xη,Zl(i))→ H2i(Xη,Zl(i))→ . . . ,

which is compatible with the above maps cl in the obvious way.
In particular, for a cycle W supported on Z which is cohomologous to zero, we obtain by

pullback
. . .→ H2i−1(Xη,Zl(i))→ E → Zl → 0.

This defines a map
CHi(X)0 → Ext1

GK
(Zl, H2i−1(Xη,Zl(i)))

Similarly, we obtain

CHn−i+1(X)0 → Ext1
GK

(Zl, H2n−2i+1(Xη,Zl(n− i+ 1))).

Now, write V = H2i−1(Xη,Zl(i)), W = H2n−2i+1(Xη,Zl(n− i+ 1)).
Poincare duality for etale cohomology tells us that V ∗ = H2n−2i+1(Xη,Zl(n− i)) = W (−1). In

other words, our two maps become

ji : CHi(X)0 →Ext1
GK

(Zl, V ),

jn−i+1 : CHn−i+1(X)0 →Ext1
GK

(Zl, V ∗(1)),
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Example 3.1 When X is a curve, we have

0→ H1(Xη,Zl(1))→ H1((X − U)η,Zl(1))→ Div0
Z(X)→ 0.

This is an example of a Kummer map: fixing a basepoint ∞, we obtain a map

κ : X(K)→ Ext1
GK

(Zl, H1(Xη,Zl(1))),

which agrees with the classical Abel-Jacobi map followed by the Kummer map for the Jacobian of
X (also using poincare duality/duality for Jacobians, i.e. V = V ∗(1)).

Now, let us specialize to K a p-adic field of residue characteristic p 6= l.

Proposition 3.2 ([8]) If X has potentially good reduction or, more generally, if the purity con-
jecture for the monodromy filtration on V holds, then Ext1

GK
(Ql, V ) = 0.

The proof uses the purity from the Weil conjectures + Tate’s Euler characteristic formula.
A wishful digression on mixed extensions
Let K a global field. Pretend we had an category like GK-reps in which V lived, which

did Hodge theory when restricted to the decomp. group at infinity. We will consider H1(V ) ×
H1(V ∗(1)) → H2(Ql(1)). If we impose a self-dual Selmer condition (say, f), we would get
H1(V )f × H1(V ∗(1))f → 0 (since Ext2(Ql,Ql(1)) should inject into product of local versions).
We suppose that we have algebraic cycles whose cycle-classes are crystalline, giving extensions
E1 ∈ H1(V )f , E2 ∈ H1(V ∗(1))f .

We would then attempt to find a canonical reason for this class to vanish, in terms of a canonical
element of H1(Ql(1)). We could try to do this locally at each place v.

The fact the a cup-product of extensions vanishes implies that we can fill in the upper-right of
the following matrix, to get a cochain valued in 3× 3 matrices (different coordinates have different
coefficients):1 Zl(1) ∗

0 1 Zl
0 0 1

,

where the upper-left minor is the extension Ext1
GK

(V,Zl(1)) and the lower-right is Ext1
GK

(Zl, V ).
More diagramatically, but with less meaning, we could writeZl(1) E1 E3

0 V E2

0 0 Zl

,

with E1, E2 denoting the 1-extensions as above (we have dualized E2 here). This means only
that there is a Galois module E3 which has an injection E1 ↪→ E3, a surjection E3 � E2, but has
only 1 copy of V in it. Such an object is called a “mixed extension”. There is a canonical mixed
extension associated to E1 ∪E2 when E1 and E2 come from cycle classes, but we won’t need this.

If H0(Kv, V ) = H1(Kv, V )f = 0 for every v (for example, we could assume 3.2), we would be
in business: Take the ”mixed extension” E3. These assumptions let us turn the restriction of E3

to GKv into an element of H1(Kv,Ql(1)) ∼= Ql (except when v | l, where we ignore this issue and
switch to a different l). This is because our extensions E1 and E2 are trivialized as GKv -modules,

even canonically so. This lets us put E3 into a canonical shape:

1 0 ∗
0 1 0
0 0 1

,
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again diagramatically asZl(1) 0 E3

0 V 0
0 0 Zl

.

At this point, E3 has become an element of Ext1GKv
(Zl,Zl(1)) ∼= Q̂l

∼= Zl, by Kummer theory
and the ordl map. This is a local height (after normalizing by log qv).

Then just add up these numbers: this is a global height.

3.2 Linking Numbers

Now, changing notation, let K be the maximal unramified extension of a p-adic field.
We note that the etale cohomology of OK is quite like that of a disk:

Claim 3.3

1. Spec(K) has Ql cohomological dimension 1.

2. H1(Spec(K),Ql(1)) ∼= K̂ ⊗Ql
∼= Ql

3. H1(Spec(K),Ql(1)) ∼= H2
s (Spec(OK),Ql(1)), for s the closed point

Proof. We consider the residue sequence

H1(Spec(OK),Ql(1))→ H1(Spec(K),Ql(1))→ H2
s (Spec(OK),Ql(1)) (7)

→ H2(Spec(OK),Ql(1))→ H2(Spec(K),Ql(1)). (8)

1): pro-l inertia is a quotient of Ẑ, of cohomological dimension 1, and for l-torsion modules M ,
H1(pro-p,M) = 0 by l 6= p.

2): follows from Kummer theory and that l 6= p.
For 3): H1(Spec(OK),Ql(1)) vanishes, since Spec(OK) is strictly henselian.
H2(Spec(OK),Ql(1)) vanishes, since Br(OK) = Br(k) = 0 (Brauer group of Henselian ring =

that of its residue field). �

Let a1 ∈ CHi(X)0, a2 ∈ CHn−i−1(X)0. Unfortunately, we must make an assumption.

Assumption 3.4 Assume that a1, a2 are zero under the “absolute” cycle class map

cl : CHi(X)0 → H2i(X,Ql(i)).

Claim 3.5 Assumption 3.4 holds under the conditions of 3.2.

Proof. Pretend that K = p-adic field, as opposed to maximal unramified extension. The proof
becomes a little more tedious otherwise, but the result is still true, using that our cycles were
defined over the p-adic field anyways, and that Spec(Fq) has cohomological dimension 1.

The cycle class maps should have the following compatibility:

CHi(X) H2i(X,Ql(1))

H2i(Xη,Ql(1))GK

cl

cl
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The vanishing Ext1
GK

(Ql, V ) = 0 implies that H2i(X,Ql(1)) = H2i(Xη,Ql(i))
GK , by Leray-

Serre spectral sequence and 1) of 3.3.
Therefore, since our classes were cohomologous to zero in H2i(Xη,Ql(1)), they are also zero in

H2i(X,Ql(1)). �

Claim 3.6 Assumption 3.4 holds when a1, a2 extend to cycles homologous to zero on a regular
model XO.

Proof.

CHi(XO) H2i(XO,Ql(1))

CHi(X) H2i(X,Ql(1))

cl

cl

�

Claim 3.7 A cycle is homologous to zero on a regular model if and only if its intersection with
Xk is homologous to zero on Xk.

Sketch The natural restriction map H2i(XO) → H2i(Xk) is given by cup-product with the fun-
damental class of Xk in XO, hence agrees with intersection on cycle classes in H2i(XO). But the
map H2i(XO)→ H2i(Xk) is an isomorphism, by proper base change. �

From the analogs of the long exact sequences above, we have that cl(a1) ∈ H2i
|ai|(X,Ql(i)) is

the image of some α1 ∈ H2i−1(X − |a1|,Ql(i)). Similarly, cl(a2) is the image of some α2.

Definition 3.8 The local linking number 〈a1, a2〉v is defined as follows:
We have α1 ∪ cl(a2) ∈ H2n+1

|a2| (X − |a1|,Ql(n+ 1)). The linking number is its image under

H2n+1
|a2| (X − |a1|,Ql(n+ 1))→ H2n+1(X,Ql(n+ 1))

Tr→ H1(Spec(K),Ql(1)) ∼= Ql · log qv,

where the first map is via excision and the last is by the identification above. Note that we normalize
by the size qv of the residue field of the local field we originally cared about.

For excision in etale cohomology, see [5]. TODO: Find a good reference for the trace/Poincare
duality in absolute etale cohomology. Less canonically, can use trace map plus being the only
component of a Leray-Serre spectral sequence...

Remark 3.9 We could have phrased this via “mixed extensions”, which would remain in the
language of extensions of galois representations as in the previous section, at the price of being
confusing. It would involve the Galois structure of H2n

|a2|((X − |a1|)η,Ql(n+ 1)) being standardized
by the trivializations of 3.2.

3.3 Linking = Intersection

See [7] (2.16) for more details, especially pertaining to sign conventions.
The following diagram commutes, where the maps δ come from LES of relative cohomology,

the upward maps are restriction, and when coefficients are not written they should be Ql(i) or
Ql(n− 1 + 1):
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H2i
|a1|(X) ×H2n−2i+1(X − |a2|) H2n+1

|a1| (X − |a2|) H1(Spec(K),Ql(1))

H2i
|a1|(XO) ×H2n−2i+1(XO − |a2|) H2n+1

|a1| (XO − |a2|)

H2i
|a1|(XO) ×H2n−2i+2

|a2| (XO) H2n+2
|Xk| (XO) H2

|s|(Spec(O),Ql(1))

∪ Tr

δ

∼= δ

∪

δ

∪ Tr

Then, if we start with classes (α, β) in the middle row, mapping down and to the right recovers
the intersection product, and mapping up and to the right recovers the linking number (before it
is normalized by log qv).

Thus we see that the linking number and the intersection number agree when one of our cycles
a extends to a cycle ã on XO which is cohomologous to zero, so that its cycle class cl(ã) ∈
H2n−2i+2
|ã| (XO) is in the image of some β ∈ H2n−2i+1(XO − |ã|).
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[1] A. A. Bĕılinson. Height pairing between algebraic cycles. InK-theory, arithmetic and geometry
(Moscow, 1984–1986), volume 1289 of Lecture Notes in Math., pages 1–25. Springer, Berlin,
1987.

[2] Pierre Colmez. Intégration sur les variétés p-adiques. Astérisque, (248):viii+155, 1998.
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