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1 The Global Bloch-Kato Selmer Group

In this talk K be a global field and GK := Gal(K/K) the absolute Galois group over
K. We let V be a p-adic representation of GK (finite-dimensional over Qp), and Σ
a finite set of places of K containing p and ∞, outside which V is unramified. So
we can and will view V as a representation of GK,Σ - for technical reasons, it is at
times important to work with that rather than the full GK !

We are going to define a global Bloch-Kato Selmer group

H1
f (GK , V ) ⊂ H1(GK , V )

which we think of as being, in the same spirit as the classical Selmer group, cut out
by local conditions. More precisely, for each place v of K we have a restriction map
H1(GK , V ) → H1(GKv , V ) and we have defined a local Bloch-Kato Selmer group
H1
f (GKv , V ) ⊂ H1(GKv , V ).

Definition 1.1. We define the Bloch-Kato Selmer group H1
f (GK , V ) to be the sub-

space of elements of H1(GK , V ) that land in H1
f (GKv , V ) ⊂ H1(GKv , V ) under the

local resriction maps:

H1
f (GK , V )

��

� � // H1(GK , V )

��∏
vH

1
f (GKv , V ) �

� //
∏
vH

1(GKv , V )

1.1 Recap of local groups

Let’s remind you what the local Bloch-Kato Selmer groups were. We defined:

• For v - p,
H1
f (GKv , V ) := ker

(
H1(GKv , V )→ H1(IKv , V )

)
where IKv ⊂ GKv is the inertia subgroup.
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• For v | p,

H1
f (GKv , V ) := ker

(
H1(GKv , V )→ H1(GKv , V ⊗Bcrys)

)
An important property of these definitions was that they were “self-dual” under

V 7→ V ∗(1):

Proposition 1.2. Under the perfect pairing between H1(GKv , V ) and H1(GKv , V
∗(1)),

the subspaces H1
f (GKv , V ) and H1

f (GKv , V
∗(1)) are orthogonal.

Recall our favorite examples from the previous talk.
Example 1.3. If A/K is an abelian variety and V = Vp(A), then under the Kummer
map

A(Kv)⊗Zp Qp → H1(GKv , V )

we have
A(Kv)

∼−→ H1
f (GKv , V ).

In particular, this implies that the global Bloch-Kato Selmer group for V as described
above coincides with the classical p-adic Selmer group for A, so in particular

dimQp H
1
f (GK , V ) = rankZA(K)

if XA is finite.
Example 1.4. If V = Qp(1), then under the Kummer map

K̂v
×
⊗Zp Qp

∼−→ H1(GKv , V )

we have
Ô×Kv

⊗Zp Qp
∼−→ H1

f (GKv , V ).

This basically implies that the global Kummer map induces an isomorphism

Ô×K ⊗Z Qp
∼−→ H1

f (GK ,Qp).

I say “basically” because there are some annoying technical issues in dealing with the
full absolute Galois group GK ; in this case the fix is easy (see Proposition 2.12 of
Bellaiche’s notes for a discussion). This is interesting - while the structure of local
units is relatively elementary to see, the structure of global units is subtle (Dirichlet’s
unit theorem).

We computed that

dimQp H
1
f (GKv , V ) =

{
0 v - p
[Kv : Qp] v | p

using the local dimension formulas - the slogans were “dimension of invariants” if v - p
and “dimension of invariants plus [Kv : Qp] times the number of positive Hodge-Tate
weights” if v | p.
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1.2 Global Galois cohomology

The Bloch-Kato conjecture predicts that for a representation V coming from geom-
etry, we should have

dimQp H
1
f (GK , V )− dimQp H

0(GK , V ) = ords=0 L(V, s).

In particular, it would be useful to have a dimension formula for H1
f (GK , V ). Last

time we described some robust dimension formulas for the local Bloch-Kato Selmer
groups, which were built from the theorems on local Galois cohomology (the trio
of cohomological dimension 2, duality, and Euler-Poincaré characteristic formula).
What about global analogues of these results?

There are analogues for Galois cohomology of global field. The Galois cohomology
on p-adic vector spaces should vanish again in degree greater than 2. Also, one has
an analogue of the Euler characteristic formula:

Proposition 1.5 (Global Euler characteristic formula). We have

dimH0(GK,Σ, V )− dimH1(GK,Σ, V )+ dimH2(GK,Σ, V )

=
∑
v|∞

H0(Gv, V )− [K : Q] dimV.

(We won’t use this result; it is simply stated for context.) In general, it is very
difficult to determine H2(GK,Σ, V ) (apparently computing dimH2(GK,Σ,Qp) is an
open problem for most K) so this formula can only be used to give a lower bound
for H1(GK,Σ, V ).

The duality results however, are a fair bit messier than in the local case. They
are packaged under various results with the heading “Poitou-Tate”, but the entirety
of this package is confusing. We will state just state the results that we need.

Proposition 1.6. Let i = 0, 1, or 2. In the duality between
∏
v∈ΣH

1(Gv, V ) and∏
v∈ΣH

1(Gv, V
∗(1)) the images of H1(GK,Σ, V ) and H1(GK,Σ, V

∗(1)) are orthogo-
nal to each other.

The second definition requires a bit of a digression on the formalism of “Selmer
structures”, which abstract the setup we’ve been working in.
Definition 1.7. A Selmer structure on V is a collection of subspaces L = (Lv ⊂
H1(GK , V )) for each v such that Lv = H1

ur(GK , V ) for almost all v. The Selmer
group attached to V is the subspace of H1(GK , V ) consisting of elements landing in
Lv under each restriction map H1(GK , V )→ H1(GKv , V ):

H1
L(GK , V )

��

� � // H1(GK , V )

��∏
v Lv
� � //

∏
vH

1
L(GKv , V )
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The Bloch-Kato Selmer group is obtained by taking the Selmer structure (Lv =
H1
f (GKv , V ). (At infinite places H1(GKv , V ) = 0, so this is only possible choice).

However, one can arrive at variants of the conjecture by different choices:

• For v - p, the only Selmer structures we’ll ever use are 0, H1
ur(GKv , V ) or

H1(GKv , V ).

• For v | p, there are other Selmer structures obtained by using different period
rings in place of Bcrys. We’ll touch on this later.

Given a Selmer structure L = (Lv) for V , we obtain a dual Selmer structure L⊥ =
(L⊥v ) for V ∗(1).

Proposition 1.8. Let L be a Selmer structure on V and L⊥ the dual Selmer struc-
ture on V ∗(1). Then we have

h1
L(GK , V )− h0(GK , V ) = h1

L⊥(GK , V
∗(1))− h0(GK , V

∗(1))

+
∑
v

(dimLv − h0(GKv , V ))

1.3 The global Bloch-Kato Selmer group

From Proposition 1.8 we can easily derive a dimension “formula” for the global Bloch-
Kato Selmer group. We just need to collect together the facts:

• The Bloch-Kato Selmer structure is “self-dual” in the sense thatH1
f (GKv , V )⊥ =

H1
f (GKv , V

∗(1)),

• (` 6= p dimension formula) for v - p, we have

h1
f (GKv , V ) = h0(GKv , V )

• (` = p dimension formula) for v | p, we have

h1
f (GKv , V )−h0(GKv , V ) = [Kv : Qp]#{positive Hodge-Tate weights for V at v}.

From now on let’s denote d+
v := [Kv : Qp]#{positive Hodge-Tate weights for V at v}.

• For v | ∞, we have h1
f (GK , V ) = 0. The term h0(GKv , V ) is only interesting

if v is a real place, in which case the Galois group GKv
∼= Z/2 is generated

by complex conjugation, which splits V into +1 and −1 eigenspaces: V =
V + ⊕ V −, and h0(GKv , V ) is the dimension of V +.

Combining these ingredients with Proposition 1.8, we find
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Proposition 1.9. Let L be a Selmer structure on V and L⊥ the dual Selmer struc-
ture on V ∗(1). Then we have

h1
f (GK , V )− h0(GK , V ) = h1

f (GK , V
∗(1))− h0(GK , V

∗(1))

+
∑
v|p

d+
v (V )−

∑
v|∞

h0(GKv , V )

Example 1.10. We saw in Example 1.4 that for V = Qp(1), we have

h1
f (GK ,Qp(1)) = rankZO×K .

We know that the latter should be r1 + r2 − 1 by Dirichlet’s unit theorem, but let’s
derive this using our dimensional formula. Proposition 1.9 applied to Qp tells us
that

h1
f (GK ,Qp)− 1 = h1

f (GK ,Qp(1)) +
∑
v|p

d+
v (Qp)−

∑
v|∞

h0(GKv ,Qp)

To digest each term, note:

• Complex conjugation acts trivially on Qp, so the contribution from the infinite
places is

−
∑
v|∞

h0(GKv ,Qp) = −(r1 + r2).

• At all the finite place v | p the Hodge-Tate weight of Qp is 0, which is not
positive, so the contribution is∑

v|p

d+
v (Qp) = 0.

Therefore, we end up with

h1
f (GK ,Qp)− 1 = h1

f (GK ,Qp(1))− (r1 + r2).

So it suffices to show that h1
f (GK ,Qp) = 0. Well, let’s try to identify the subspace

H1
f (GK ,Qp) ⊂ H1(GK ,Qp) = Homcts(GK ,Qp).

By global class field theory,

Homcts(GK ,Qp) = Homcts(K̂×\A×K ,Qp)

The restriction map H1(GK ,Qp)→ H1(GKv ,Qp) simply corresponds to the restric-
tion map

Homcts(GK ,Qp)→ Homcts(GKv ,Qp)

5



and by local-global compatibility of class field theory is the same as the restriction
map

Homcts(GK ,Qp) // Homcts(GKv ,Qp)

Homcts(K̂×\A×K ,Qp) // Homcts(K̂×,Qp)

Now, recall that the local Bloch-Kato Selmer groupH1
f (GKv ,Qp) was one-dimensional

in all cases, the corresponding homomorphism K×v → Qp being generated by the val-
uation. The upshot is that the restriction must kill O×V , so

H1
f (GK ,Qp) = Hom(K×\A×K/

∏
v

O×v ,Qp).

But K×\A×K/
∏
vO×v is precisely the class group of K, and is therefore finite! So

this is indeed 0.

2 The Baby Bloch-Kato Conjecture

We now restrict our attention to p-adic representations V coming from geometry, i.e.
appearing as a subquotient of Hn(Xét,Qp) for some smooth proper variety X/K.

Conjecture 2.1 (Baby Bloch-Kato Conjecture). For such a V , we have

h1
f (GK , V )− h0(GK , V ) = ords=0 L(V, s).

Let’s briefly recall the definition of the L-function L(V, s). It is assembled via an
Euler product.

• For a finite place v of K not dividing p,

Lv(V, s) = det(Id−Frobv q
−s
v , V Iv)−1

where Frobv is the geometric Frobenius.

• For a finite place v dividing p,

Lv(V, s) = det(Id−φfvq−sv , Dcrys(V |Gv))−1

where q = pfv and φ is the “Frobenius” which exists on Bcrys (and hence on
Dcrys).

• For finite places, the L-factor is a product of Gamma functions times normal-
ization factors.
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The L-function L(V, s) is a product of the Euler factors for finite v; the completed
L-function Λ(V, s) is the product of L(V, s) with the infinite Euler factors. The L-
function conjecturally admits a functional equation, the shape of which is perhaps
most memorable in the form

Λ(V ∗(1),−s) = ε(V, s) · Λ(V, s).

Example 2.2. For an abelian variety A and V = Vp(A), we know that V ∗(1) = Vp(Â).
Since h0(GK , V ) = 0, the conjecture predicts (conditional on the finiteness of XA)

rankZ Â(K) = h1
f (GK , Vp(Â)) = ords=0 L(V, s) = ords=0 L(Vp(Â), s).

Since Vp(Â) = V ∗(1), we have

ords=0 L(Vp(Â), s) = ords=1 L(V ∗, s) = L(A, s).

Example 2.3. For V = Qp, the conjecture predicts

h1
f (GK ,Qp(1)) = ords=0 L(V, s) ∼ ords=0 ζK(s)

where ζK is the Dedekind zeta function of K. Indeed, the left hand side is r1 +r2−1
as computed earier, and the right hand side is also r1 +r2−1 by the classical analytic
theory.

Obviously, this is going to be extremely difficult to prove. However, one might
ask about basic stability properties, such as if the Bloch-Kato conjecture is consistent
with the usual natural operations on the two sides. For instance:

Proposition 2.4. The Bloch-Kato conjecture is stable under induction.

The proof is a triviality, using that both sides of the conjecture are stable under
induction.

Proposition 2.5. Subject to a conjecture about the symmetry of Hodge-Tate weights,
the Bloch-Kato conjecture is consistent with the functional equation.

The proof just involves some careful accounting, using the dimensional formula
Proposition 1.9 on the algebraic side and the functional equation (and description
of the infinite factors) on the analytic side. This accounting reduces to a certain
equality, which is the “conjectural” symmetry described above.

3 Variants of the Bloch-Kato conjecture

We’re going to formulate variants of the Bloch-Kato conjecture for variants of the
Bloch-Kato Selmer group. The relationship between these variants is analogous to
the relationship between the S-units O×K,S and O×K .
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3.1 More local groups

Let’s resurrect part of the table from last time.

Property Period Ring Structure `-adic analogue
de Rham BdR Filtration pot. unipotent on inertia
Crystalline Bcrys Frobenius φ unramified

Definition 3.1. Let V be a p-adic representation. We define

H1
g (GKv , V ) = ker

(
H1(GKvV )→ H1(GKv , V ⊗BdR)

)
.

Recall that Bcrys had a Frobenius operator φ. We define

H1
e (GKv , V ) = ker

(
H1(GKv , V )→ H1(GKv , V ⊗Bφ=1

crys )
)
.

Since obviously Bφ=1
crys ⊂ Bcrys ⊂ BdR, we have

H1
e (GKv , V ) ⊂ H1

f (GKv , V ) ⊂ H1
g (GKv , V ).

Recall that we thought of H1
f (GKvV ) as related to “representations coming from

geometry with good reduction” since Bcrys is the period ring for this class. Just as
crystalline is the p-adic analogue of the `-adic notion of unramified, we think of H1

f

as the p-adic analogue of the `-adic H1
ur.

Where do H1
g and H1

e fit into this picture? Well, H1
g is associated to BdR,

which is related to any “representations coming from geometry”, which by a theo-
rem of Berger is “potentially semi-stable”. In the `-adic setting, any representation
coming from geometry is automatically potentially semi-stable by Grothendieck’s
monodromy theorem. So the analogue of H1

g in the `-adic setting is the full H1. The
group H1

e turns out to be analogous to 0.

Definition 3.2. If v - p, then we define H1
g (GKv , V ) := H1(GKv , V ) andH1

e (GKv , V ) =
0.

Proposition 3.3 (Second fundamental exact sequence). There is an exact sequence

0→ Qp → Bφ=1
crys → BdR/B

+
dR → 0.

Corollary 3.4 (Bloch-Kato exponential). There is a natural surjective map

DdR(V )/D+
dR(V )→ H1

e (GKv , V )

with kernel Dcrys(V )φ=1/V GKv .

In the case where V = Vp(A) for an abelian variety A, this can be identified with
the classical exponential map from an open subgroup of Lie(A) to A.
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Corollary 3.5 (Dimension formula for H1
e ). If V is de Rham then we have

dimH1
e (GK , V ) = dimDdR(V )/D+

dR(V ) + dimH0(GK , V )− dimDcrys(V )φ=1.

Proposition 3.6. If V is de Rham, then for the (perfect) pairing between H1(GK , V )
and H1(GK , V

∗(1)) the orthogonal of H1
e (GK , V ) is H1

g (GK , V
∗(1)).

The proof is not too difficult, but involves more playing around with the period
rings than seems reasonable to do here, given that we did not even attempt to define
them.

Corollary 3.7 (Dimension formula for H1
g ). If V is de Rham, then we have

dimH1
g (GK , V ) = dimDdR(V )/D+

dR(V ) + dimH0(GK , V ) + dimDcrys(V
∗(1))φ=1.

Proof. Combine Proposition 3.6 with the dimension formula for H1
e and the local

Euler characteristic formula for H1.

Example 3.8. Let’s compute all the dimensions for the Tate twists Qp(n). The only
interesting question is: what is dimDcrys(Qp(n))φ=1? Since we have said nothing
about the definition of Bcrys or φ we can’t answer this question rigorously, so let’s
settle for a heuristic understanding. The operator φ is supposed to correspond to the
Frobenius operator on de Rham cohomology. The de Rham cohomology “associated
to” Qp(1) should be H1

dR(Gm). So how does Frobenius act on Gm? Basically by
raising to the pth power, so φ acts on Dcrys(Qp(1)) by multiplication by p, and
hence on Dcrys(Qp(n)) by multiplication by pn. Therefore, dimDcrys(Qp(n)∗(1))φ=1

is only non-zero when n = 1.
The table below summarizes the dimensions of Qp(n) for the different groups.

n H1(Qp(n)) H1
f (Qp(n)) H1

e (Qp(n)) H1
g (Qp(n))

n < 0 [K : Qp] 0 0 0
n = 0 [K : Qp] + 1 1 0 1
n = 1 [K : Qp] + 1 [K : Qp] [K : Qp] [K : Qp] + 1
n > 1 [K : Qp] [K : Qp] [K : Qp] [K : Qp]

3.2 The S-Selmer group

Definition 3.9. Let S be a finite set of finite places of K. We define H1
f,S(GK , V ) to

be the Selmer group associated with the Selmer structure (Lv) where

• If v /∈ S, then Lv = H1
f (GKv , V ).

• If v ∈ S does not divide p, then Lv = H1(GKv , V ).

• If v ∈ S divides p, then Lv = H1
f (GKv , V ).
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Example 3.10. It is simple to extend the above arguments to show that

h1
f,S(GK ,Qp(1)) = rankZO×K,S .

We just have to show that for all v, the local versions coincide

H1
f,S(GKv ,Qp(1)) = O×Kv ,S

.

This is only new for v ∈ S, in which case the right side becomes K×v . This in
turn is only new when v | p. But in this case the dimension formula shows that
H1
g (GKv ,Qp(1)) = H1(GKv ,Qp(1)), so again reduces to the classical theory of the

Kummer isomorphism.

Definition 3.11. We define H1
g (GK , V ) = lim−→S

H1
f,S(GK , V ). In other words, it is

the subspace of H1(GK , V ) consisting of elements whose image under every local
restriction map lands in H1

g (GKv , V ), and in H1
f (GKv , V ) for all but finitely many

v.

3.3 The S-Bloch-Kato conjecture

As you may haved guessed, the S-version of the Bloch-Kato conjecture is

h1
f,S(GK , V

∗(1))− h0(GK , V
∗(1)) = ords=0 LS(V, s).

4 Exploring the Bloch-Kato Conjecture

In these sections, we will discuss “second-order” aspects of the Bloch-Kato conjecture
which connect to other themes in number theory and algebraic geometry.

4.1 A motivic interpretation

Grothendieck conjectured the existence of a categoryMK of pure motives, which is
the “universal cohomology theory” for smooth property varieties in the sense that
it should possess realization functors factoring the various cohomology theories at-
tached to smooth proper varieties over K.

{GK-rep./Qp}

{smooth proper X/K} //

H∗dR(−) ,,

H∗ét(−)
22

MK

Realét

55

RealdR

))
{filtered vector spaces/K}
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He further conjectured that the categoryM should appear as a full subcategory in
a categoryMM of mixed motives, representing the universal cohomology theory for
all varieties over K, which possesses realization functors extending those above

{GK-rep./Qp}

{varieties X/K} //

H∗ét(−) ,,

H∗dR(−)
22

MMK

Realét

55

RealdR

))
{filtered vector spaces/K}

Now, a cohomology class ξ ∈ H1
g (GK , V ) represents an extension

1→ V →W → Qp → 0

such that W is de Rham at all places v | p and unramified at all but finitely many
v - p. We have discussed that representations coming from geometry satisfy exactly
the preceding properties. The Fontaine-Mazur conjecture predicts that for irre-
ducible representations, these local conditions are the only obstructions to a p-adic
representation coming from a global variety:

Conjecture 4.1 (Fontaine-Mazur). If V is de Rham at all places dividing p and
unramified at all but finitely many places, then it is a subquotient of Hn(X,Qp) for
some smooth proper variety X/K.

Now, the extension under consideration is clearly not irreducible, but it does sat-
isfy the necessary local conditions. Therefore, in spirit of the Fontaine-Mazur conjec-
ture we expect that the extension class W should come from some (not necesssarily
smooth proper) variety, and hence be the realization of some mixed motive.

Conjecture 4.2. The étale realization functor induces an isomorphism

Ext1
MMK

(Qp, V ) ∼= H1
g (GK , V )

where Qp is the object whose realizaton is Qp and V is the object whose realization
if V .

This conjecture tells us that we can interpret H1
g (GK , V ) as the group of exten-

sions in the category of mixed motives, and the Bloch-Kato conjecture predicts a
description in terms of L-functions. (Last time we discussed how this category of
mixed motives is expected to have cohomological dimension one, which was an under-
lying intuition for the orthogonality of the groups H1

f (GKv , V ) and H1
f (GKv , V

∗(1))
under the cup product.)
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4.2 Relation to Grothendieck’s yoga of weights

With this motivic interpretation in hand, we can test the predictions coming from
Bloch-Kato with conjectured properties of mixed motives.
Definition 4.3. We say that V has weight w if for all places v outside a finite set,
the characteristic polynomial of Frobv on V is algebraic, with eigenvalues having
absolute value qw/2v under all complex embeddings.
Example 4.4. If V = Hn(X,Qp) = Hn

ét(XK ,Qp) then V has weight n, thanks to
Deligne’s proof of the Weil conjectures.

In particular, Qp(i) = H2(P1,Qp)
∨ has weight −2i.

For instance, Grothendieck’s “yoga of weights” emphasizes that motivic weights
should go up for extensions of pure motives in the categoryMMK .

Can we see this prediction using the Bloch-Kato conjecture? In the spirit of
viewing it as a formula for the dimension of the space of extensions in terms of
L-functions, let’s change gears and see what information we can extract from the
L-function.

Simple analytic estimates show that if V has weight w, then the Euler product
for L(V, s) should converge for Rep s > 1 + w/2. Sketch of proof: one writes

Lv(V, s) =
∏

(1− αi,vq−sv )

where |αi,v| = q
−w/2
v . This converges if and only if∑

v

∑
i

αi,vq
−s
v

converges, and we can majorize the latter by∑
v

∑
i

q−w/2q−Rep s
v .

The major contribution comes from those v of degree 1 (so qv = p), where one uses
the usual facts about convergence of the sum of reciprocals of primes.

Therefore, if V is pure of weight w then the poles of L(V, s) lie on the line Rep s =
w/2, so the Euler product visibly has no zeros for Rep s > 1 + w/2. In particular,
suppose that V is pure of weight w ≥ 0, and also (for simplicity irreducible). Then
V ∗(1) is pure of weight −w−2, so L(V, s) is non-vanishing for Rep s > −w/2 ≤ 0. It
is simple to use the dimension formula for h1

g to show that in this case, h1
f (GK , V ) =

h1
g(GK , V ) (there is a slight wrinkle if V = Qp is the trivial representation, in which
L(V, s) has order of vanishing −1. However, the h0 term compensates for this).
Therefore, the Bloch-Kato conjecture predicts:

Prediction 4.5. If V is pure of non-negative weight, then

h1
g(GK , V ) = 0.

By the other Bloch-Kato conjecture, this predicts that Ext1
MMK

(Qp, V ) = 0,
harmonizing with Grothendieck’s yoga of weights.
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4.3 Relation to Fontaine-Mazur

If V is pure of any weight w, then End(V ) = V ∗ ⊗ V is pure of weight w − w = 0,
so a special case of Prediction 4.5 is:

Prediction 4.6. If V is pure, then

h1
g(GK ,End(V )) = 0.

To put this context, we give an extremely brief introduction to the deformation
theory of Galois representations. For a Galois representation V/Fq, Mazur intro-
duced the idea of lifting V to a representation over a bigger ring. More precisely, he
considered the functor DefV on the category of local Artin W (Fq)-algebras defined
by

DefV (A) = {deformations of ρ to A ∼=

In concrete terms, this functor parametrizes lifts of a representation ρ : GK →
GLn(Fq) to ρA : GK → GLn(A):

GLn(A)

��
GK //

::

GLn(Fq)

This functor turns out to be pro-representable by a “universal deformation ring”,
which we could think of as cutting out the moduli space of such deformations. In
particular, the tangent space of this deformation functor is

DefV (Fq[ε]/ε
2) = {deformations of ρ to Fq[ε]/ε

2}/ ∼=

and it is a standard lemma in the theory that

DefV (Fq[ε]/ε
2) = H1(GK ,End(V )).

To sketch how this goes, a deformation of ρ to Fq[ε]/ε
2 is a GK-module M over

Fq[ε]/ε
2 such that M/ε ∼= V . Then we have a short exact sequence (of Galois

modules over Fq)
0→ εM →M → V → 0.

Then εM is naturally a Galois module over Fq, which is isomorphic to V . (In terms
of matrices, the Galois action on M is given by matrices with entries of the form
a+ bε, and the action of V is obtained by setting ε = 0. But ε also kills εM , so the
Galois action on M is the same.) So in fact DefV (Fq[ε]/ε

2) is simply the group of
extensions

0→ V
α−→M

β−→ V → 0.

(To recover the action of ε on M from an extension, simply apply αβ.)
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Taking a leap of faith, we can believe that there should be an analogous defor-
mation functor for V a p-adic representation of GK . Then we should similarly have
DefV (Fq[ε]/ε

2) = H1(GK ,End(V )). What does the subspace H1
g (GK ,End(V )) de-

scribe? An extension in H1
g (GK ,End(V )) splits after extending coefficients to BdR,

which implies that it is de Rham. (More generally, if W ∼= V ⊕ V ′ is a sum of two
de Rham representations, then DdR(W ) ∼= DdR(V )⊕DdR(V ′) so W is admissible if
V and V ′ are.) Conversely, if W is de Rham then we can choose a splitting on de
Rham cohomology and tensor up to BdR to obtain a Galois-equivariant splitting.

The upshot is that H1
g (GK ,End(V )) describes (heuristically) the tangent sub-

space of deformations that remain de Rham at v | p and unramified at almost all
v - p. But by the Fontaine-Mazur conjecture, all such representations come from
global varieties X/K, of which there are only countably many, and in particular not
enough to form one-parameter families. Therefore, Predicton 4.6 can be viewed as
an infinitesmal version of the Fontaine-Mazur conjecture.

4.4 Symmetry of Hodge-Tate weights

Definition 4.7. For V a p-adic representation of GK , we let mk(V |Gv be the multi-
plicity of the Hodge-Tate weight k for V |Gv . We define the total multiplicity of k as
a Hodge-Tate weight to be

mk(V ) =
∑
v|p

[KV : Qp]mk(V |Gv).

Conjecture 4.8. Let V be a p-adic representation coming from geometry. Let w be
the motivic weight of V . Then we have for all k,

mk = mw−k.

This should be thought of analogous to the classical symmetry of the Hodge
diamond

hp(X,Ωq) = hq(X,Ωp).

For the full Hn(X,Qp), we know that

Hn(X,Qp)⊗Cp =
⊕
i+j=n

H i(X,Ωj
Cp

)(−j)

has weight n, so in this case Prediction 4.8 specializes to

hi(X,Ωj) = hj(X,Ωi).

(Although we no longer have complex conjugation to thank for this symmetry, it
should still follow from Serre duality and the Lefschetz Hyperplane Theorem for
étale cohomology.)
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Proposition 4.9. Prediction 4.5 implies Conjecture 4.8.

Proof. We give the proof in several steps.

1. It is almost immediate that the motivic weight doesn’t change under induction
or restriction. Therefore, we can induce from GK to GQ to reduce the conjec-
ture to the case K = Q. This is simpler, because there is only one place over
p to worry about.

2. However, we next want to restrict to the absolute Galois group of a quadratic
imaginary field over which p splits into vv′. By the compatibility with restric-
tion, it suffices to treat this case. Let k1 ≤ . . . kd be the Hodge-Tate weights
at v and k′1 ≥ k′2 ≥ . . . ≥ k′d be the Hodge-Tate weights at v′. We’ll show that
ki + k′i = w.

3. It suffices to prove that k1 + k′1 = w. Indeed, applying this to each exterior
power

∧i V , we get the system

k1 + k′1 = w

(k1 + k2) + (k′1 + k′2) = 2w

...
(k1 + . . .+ kd) + (k′1 + . . . k′d) = dw.

4. There is an admissible character χ of GK with Hodge-Tate weight a at v and
b at v′, by global class field theory. It suffices to define it locally on each K×w ,
and check that it is trivial on K× ⊂ A×K . We choose it to be unramified at
w 6= v, v′, sending a uniformizer $w to q−1

w , and equal to the ath and bth
powers of the cyclotomic characters at v and v′. Then by design the image of
a global (x, x, . . .) ∈ K× is Nm(x)−1 Nm(x) = 1.

Twisting V 7→ V ⊗ χ takes w 7→ w + a + b and ki 7→ ki + a, k′i 7→ k′i + b, so
the conjecture for V is equivalent to that for V ⊗ χ. In particular, it suffices
to study the case w = 0.

5. Now under the assumption that w = 0 and dimV = d, we claim that∑
k<0

mk(V ) ≤ d∑
k>0

mk(V ) ≤ d∑
k≤0

mk(V ) ≥ d

∑
k≥0

mk(V ) ≥ d.
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The latter two inequalities obviously follow from the first two. In turn, the
first is equivalent to the second by applying V 7→ V ∗(1). To see the first one,
recall the dimension formula

h1
f (GK , V )− h0(GK , V ) = h1

f (GK , V
∗(1))− h0(GK , V

∗(1))

+
∑
v|p

d+
v (V )−

∑
v|∞

h0(GKv , V )

This
∑

v|p d
+
v (V ) is exactly what we are calling

∑
k>0mk(V ). Since V has

weight 0, Prediction 4.5 implies that h1
f (GK , V )− h0(GK , V ) = 0. Then∑

k>0

mk(V ) = h0(GK , V
∗(1))− . . . ≤ dimV ∗(1) = d.

6. Suppos k1 + k′1 = a. If a = 0 then we are done, otherwise a < 0 or a > 0.
By dualizing if necessary, we may assume that a > 0. We claim that a = 1.
Indeed, we can twist by a character of motivic weight 0 so that k′1 = 1. Then
k1 = a− 1 ≥ 0. By the previous part, k1 = 0 or else k1 + . . .+ kd + k′1 > d.

7. We see that a = −1, 0, or 1 for all V . But applying this to V ⊗ V and using
the same reasoning, we conclude that a 6= ±1.

4.5 Partial Results

The Bloch-Kato conjecture amounts to two inequalities

h1
f (GK , V

∗(1)) ≥ ords=0 L(V, s) + h0(GK , V
∗(1))

h1
f (GK , V

∗(1)) ≤ ords=0 L(V, s) + h0(GK , V
∗(1))

If V is pure of motivic weight w 6= 2, then h0(GK , V
∗(1)) = 0 so the lower bound is

trivial as long as w 6= 2 and the L-function is non-vanishing.
There is progress on Bloch-Kato in a limited number of cases.

• The conjecture is known for V = Qp(n) for all number fields K. The lower
bound is trivial because Qp(n) has motivic weight w = −2n 6= 1. We know
the analytic side of Bloch-Kato from the theory of the Dedekind zeta function,
so the upper bound follows the knowledge of Galois cohomology furnished by
Borel’s computation of K-theory for number fields together with a theorem of
Soulé relating K-theory and Galois cohomology.

• For f a modular eigenform of level Γ1(N) of even weight k = 2k′, there is
an attached Galois representation Vp(f) of motivic weight 2k′ − 1. The upper
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bound for Vp(f) was shown by Kato using Euler systems. The lower bound
is always true for motivic weight w = 2k′ − 1 − 2n 6= 0, i.e. n 6= k′. Alas,
for an elliptic curve modularity tells us that Vp(E) = Vp(f)(1) for a weight 2
eigenform f , so this misses the most interesting case.

• The lower bound can sometimes be attacked by automorphic methods, all
descending from ideas employed by Ribet in the proof of the converse to Her-
brand’s theorem. For example, work of Bellaïche-Chenevier/Skinner-Urban
constructs a non-zero extension in H1

f (GK , Vp(f)(k′)) when ords=0 L(V, s) ≥ 1.
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