
The Bloch–Kato Selmer Group

Tony Feng

January 27, 2016

1 Overview

1.1 The baby Bloch-Kato conjecture

The “weak” BSD conjecture predicts that for an elliptic curve E over a number field
K, we have

rankE(K) = ords=1 L(E/K, s).

The miracle of this formula is that it relates two quantities with very different origins:
the left hand side is an algebraic object while the right hand side is an analytic object.
Furthermore, the algebraic rank is “global” in nature, while the analytic rank can be
defined locally.

elliptic curve E over K

((uu
“algebraic rank” “analytic rank”

In the next two talks I will discuss a “generalization” of this conjecture to arbitrary
smooth proper varieties over a number field K – this is a baby version of the Bloch–
Kato conjecture (which in full generality applies to a much wider class of varieties,
and also predicts the leading coefficient of the L-function in terms of periods and
algebraic data).

For my purposes, the starting point for the Bloch–Kato conjecture is a Galois
representation appearing in the étale cohomology of a smooth proper K-scheme X,
and it predicts the agreement of a certain “algebraic rank” and an “analytic rank”.

Smooth proper K-scheme X

��
(de Rham) Galois representation H i

ét(XK ,Qp)

ss ++
“algebraic rank” “analytic rank”
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Now, the natural question is what the “algebraic rank” and “analytic rank” are.
You can probably guess what the analytic rank is: we have already defined the L-
function attached to an `-adic representation of GK unramified at all but finitely
many primes, and up to non-trivial “independence of `” and rationality issues for
characteristic polynomials of Frobenius at all finite places, this definition makes
sense without further comment. This L-function conjecturally admits an analytic
continuation, and the analytic rank is defined to be its order of vanishing at a special
point.

On the other hand, it is more challenging to define the “algebraic rank”, and in
fact that is the subject of this entire first talk (and some of the second as well). It
will turn out in the end to be essentially the Qp-rank of a certain vector space, which
we call the “Bloch–Kato Selmer group”.

The ultimate statement of the conjecture is that for a p-adic Galois representation
V coming from geometry:

ords=0 L(s, V ) = dimH1
f (GK , V

∗(1))− dimH0(GK , V
∗(1)).

Here are three examples that show what kind of interesting statements we can expect
the Bloch–Kato conjecture to encompass.

Example 1.1. For X = A an abelian variety over K and Galois representation
H1

ét(AK ,Qp), the rank of the Bloch–Kato Selmer group is equal to the rank of
A if XA is finite, which is of course conjecturally true (and necessary even to make
sense of the strong BSD conjecture). Therefore, assuming the finiteness of XA the
baby Bloch–Kato conjecture for A is equivalent to the weak BSD conjecture for A.

Example 1.2. For the Galois representation Qp (with Qp(−1) = H2
ét(P

1
K

)), the rank
of the Bloch–Kato Selmer group is equal to the rank of O×K . A reasonable way to
think about this is that H1

f (GK ,Zp(1)) is the p-adic completion of O×K and hence
the right side of the conjecture is exactly rank(O×K) = r1 + r2 − 1.

On the other side we have the L-function of Qp(1), and this has trivial Euler
factor at the p-adic places but Euler factor at places v not over p given by (1−q1−sv )−1,
so

L(s,Qp(1)) = ζK(s) ·
∏
v|p

(1− q1−sv )−1

and hence the vanishing order at s = 0 is that same as that for ζK . Thus, the
baby Bloch–Kato conjecture for Qp(1) amounts Dirichlet’s Unit Theorem plus the
analytic continuation of the Dedekind zeta function for K:

r1 + r2 − 1 = ords=0 ζK(s).

Example 1.3. In particular, the baby Bloch–Kato conjecture will predict the integer
zeros of the Riemann zeta function ζ(s). This is fairly subtle! Recall that ζ(s)
vanishes at negative even integers −2,−4, . . .. Therefore, we’ll eventually have to
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give a uniform algebraic definition that is sensitive to parity and sign in the special
case of Qp. Since L(V (n), s) = L(V, s+ n), the conjecture will state that except for
n = 0, 1:

ords=0 ζ(n) = dimH1
f (GQ,Qp(1− n))

and so we should see that

dimH1
f (GQ,Qp(n)) =

{
1 n odd > 1,

0 otherwise.

Keep these examples in mind throughout; they will serve as “sounding boards”
for our definitions.

1.2 The classical Selmer group

The construction of the Bloch–Kato Selmer group is modelled on that for the usual
Selmer group of an abelian variety A over K, so let’s recall how that goes. The point
is to embed A(K) inside some cohomology group as in the proof of the Mordell–Weil
Theorem. For an integer m > 0, we have a short exact sequence of smooth K-groups

0→ A[m]→ A
m−→ A→ 0. (1.1)

From the long exact sequence for Galois (or equivalently étale) cohomology, we
extract a short exact sequence

0→ A(K)/mA(K)→ H1(K,A[m])→ H1(K,A)[m]→ 0.

Thus we can realize A(K)/mA(K) inside H1(K,A[m]). The group A(K)/mA(K)
is isomorphic to (Z/mZ)⊕r plus a uniformly bounded part (as m varies) arising from
A(K)tor, so this almost detects the rank. However, the group H1(K,A[m]) is too
crude of a container; for instance, it is generally infinite! (For example, recall that
H1(K,µm) = K×/(K×)m, and this is huge.) One thing we must do is cut it down
by local conditions, exactly as in the proof of the Mordell–Weil Theorem.

Recall the restriction maps H1(K,A[m]) → H1(Kv, A[m]) for any place v of
K. Under this restriction, any class in H1(K,A[m]) in the image of A(K)/mA(K)
certainly maps to a class of H1(Kv, A[m]) in the image of A(Kv)/mA(Kv), and we
have a similar exact sequence for each Kv, leading to a commutative diagram

0 // A(K)/mA(K) //

��

H1(K,A[m])

��

// H1(K,A)[m] //

��

0

0 //
∏
v A(Kv)/mA(Kv) //

∏
vH

1(Kv, A[m]) //
∏
vH

1(Kv, A)[m] // 0

The m-Selmer group is defined to be the subgroup of classes in H1(K,A[m])
whose image in H1(Kv, A[m]) comes from A(Kv)/mA(Kv) for every v, or alterna-
tively whose image becomes trivial in

∏
vH

1(Kv, A)[m]. Basic finiteness results in
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Galois cohomology and consideration of the valuative criterion for properness rela-
tive to an abelian scheme model for A over some ring of S-integers (exactly as in the
proof of the Mordell–Weil Theorem) ensures that Selm(A) is finite for each m.

This leads to an exact sequence

0→ A(K)/mA(K)→ Selm(A)→XA[m]→ 0.

We get compatible such sequences asm runs over powers of a fixed prime p. Consider
taking the inverse limits of these sequences. If XA were finite, then since A(K) is
finitely generated we would get

0→ A(K)⊗ Zp → lim←− Selpn(A)→XA[p∞]→ 0.

Since A(K)⊗Qp has dimension equal to the rank of A(K), we expect to have

dimQp lim←− Selpn(A)⊗Zp Qp = rankZA(K).

We have almost written down a description of rankA(K) as the dimension of some
cohomology group, but the definition of the Selmer group depended on a Kummer
sequence for A, which depends on a group structure for A.

The Bloch–Kato Selmer group for a general Galois representation, such as arising
from the p-adic étale cohomology of a variety over K (generalizing the consideration
of the linear dual H1

ét(AK ,Qp) of Vp(A)) will be similarly defined as a subspace of
some global Galois cohomology group cut out by local conditions. However, instead
of using the Kummer sequence to cut out these local conditions we will need to
find another method (to replace the role of “arising from local points via a Kummer
connecting map”). The punchline will be that the cohomology classes need to land in
certain “local Bloch–Kato Selmer groups” for each place; defining these local groups
will be our focus today.

2 Some local Galois cohomology

We recall some facts from local Galois cohomology. Now letK be a finite extension of
Q` and let V be a p-adic representation of GK (always understood to be continuous
and finite-dimensional over Qp); we allow ` = p. We may view V as a lisse p-adic
étale sheaf on Spec(K), in terms of which H i(GK , V ) = H i

ét(K,V ); we denote this
as H i(K,V ) as usual. The following result is a more-or-less formal consequence of
Tate local duality for finite Galois modules and careful bookkeeping with passage to
inverse limits.

Theorem 2.1. The cohomology groups H i(K,V ) satisfy the following properties:

• (Cohomological dimension) H i(K,V ) = 0 if i > 2.
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• (Duality) There is a canonical isomorphism H2(K,Qp(1)) = Qp, and the pair-
ing

H i(K,V )×H2−i(K,V ∗(1))→ H2(K,Qp(1)) = Qp

induced by the cup product is a perfect pairing for all i.

• (Euler characteristic formula) We have

h0(K,V )− h1(K,V ) + h2(K,V ) =

{
0 ` 6= p,

−[K : Qp] · dim(V ) ` = p.

In practice this formula allows us to compute the dimensions of the Galois coho-
mology groups H i(K,V ).

• If i > 2, then of course hi(K,V ) = 0.

• If i = 0, then hi(K,V ) is the multiplicity of the trivial representation as a
subrepresentation, and if i = 2 then by using the duality we see that h2(K,V )
is the multiplicity of Qp as a subrepresentation of V ∗(1).

• Finally, using the Euler characteristic formula we can compute h1(K,V ): it is
number of appearances of Qp as a subrepresentation of V and Qp as subrep-
resentation of V ∗(1), plus [K : Qp] · dim(V ) if ` = p.

Example 2.2. Since V 7→ V ∗(1) exchanges subs and quotients, and Qp and Qp(1),
the formula enunciated evidently implies dimH1(K,V ) = dimH1(K,V ∗(1)), which
had better be true because they are in perfect pairing.

Example 2.3. The dimension of H0(K,Qp(n)) is 0 unless n = 0 (in which case it is
1). The dimension of H2(K,Qp(n)) is 0 unless n = 0 (in which case it is 1). This
let us easily compute h1(K,Qp(n)). For n 6= 0, 1 we have

h1(K,Qp(n)) =

{
0 ` 6= p,

[K : Qp] ` = p.

For the exceptional cases,

h1(K,Qp) = h1(K,Qp(1)) =

{
1 ` 6= p,

1 + [K : Qp] ` = p.

Consider the map
K× ⊗Zp Qp → H1(K,Qp(1)) (2.1)

coming from the Kummer sequence. We haveK× ' Z×OK× , and OK× is essentially
isomorphic to its Lie algebra OK , so we also see that K×⊗Zp Qp has rank 1 if ` 6= p
and 1+[K : Qp] if ` = p. This reflects the fact that the map (2.1) is an isomorphism.
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Example 2.4. If V = Vp(A) for an abelian variety A, what is dimH1(K,V )? Of
course H0(K,V ) = 0, as A(K)tor is finite (as we see via the logarithm of this
compact `-adic Lie group). We have h2(K,V ) = h0(K,V ∗(1)), but V ∗(1) = Vp(Â),
so that vanishes for the same reason. We conclude that h1(K,V ) is equal to 0 if
` 6= p and 2 dim(A) · [K : Qp] otherwise.

3 Local Bloch–Kato Selmer group, ` 6= p

For the rest of this section K is a finite extension of Q` for some prime ` 6= p. Let
IK ⊂ GK denote the inertia subgroup, and note that GK/IK ' Ẑ (topologically
generated by Frobenius).

We want to define the local Bloch–Kato Selmer group as a subspace of H1(K,V ).
What are reasonable conditions to cut it down? If V is the (geometric) étale coho-
mology of a smooth proper K-scheme X then it is unramified whenever X has good
reduction (i.e., is the generic fiber of a smooth proper OK-scheme), by the smooth
and proper base change theorems. What condition does this impose on H1(K,V )?
By inflation-restriction for H1, we are led to

Definition 3.1. For any p-adic representation V of GK ,

H1
ur(K,V ) := H1(GK/IK , V

IK ) = ker(H1(K,V )→ H1(IK , V )).

Remark 3.2. Here is one “concrete” interpretation of the group H1
ur(K,V ). Note that

the group H1(K,V ) parametrizes extensions of Qp by V and p-adic representation
spaces (including continuity of the Galois action):

0→ V →W → Qp → 0

The corresponding cohomology class ξ is the image of 1 ∈ H0(K,Qp) in H1(K,V )
under the boundary map. Then ξ ∈ H1

ur(K,Qp) if and only if the sequence

0→ V IK →W IK → QIK
p = Qp → 0

is exact.

Being unramified is the only reasonable “geometric condition” in the case ` 6= p,
so H1

ur(K,V ) is the “local Bloch–Kato Selmer group at ` 6= p.”

Example 3.3. For an abelian variety A with good reduction over an `-adic field K
and a prime p 6= ` (so A[pn] is unramified for all n > 0 by the “easy” direction of the
Néron–Ogg–Shafarevich criterion), the image of the boundary map

δ : A(K)/pnA(K)→ H1(K,A[pn])

of the Kummer sequence lands inside H1(GK/IK , A[pn]).
Indeed, this map sends a point x ∈ A(K)/pnA(K) to the A[pn]-torsor its pnth

roots inside A, and since A extends to an abelian scheme A over OK this extends
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to the A [pn]-torsor [pn]−1(ξ) ⊂ A for ξ ∈ A (OK) = A(K) corresponding to x
(valuative criterion). But A [pn] is finite étale over OK since [p]A : A → A is
finite étale (as we may check on geometric fibers over Spec(OK) since p 6= `), so its
torsors are finite étale over OK and thus have unramified geometric generic fiber (as
a GK-set). Thus, δ(x) arises from H1(GK/IK , A[pn]) as claimed.

Hence, if we instead begin with an abelian variety A over a number field K and
pick a finite place v of K not over p at which A has good reduction (so Vp(A) is
unramified at v) then the composition of the global Kummer map A(K) ⊗Z Qp →
H1(K,Vp(A)) with the localization map H1(K,Vp(A)) → H1(Kv, Vp(A)) lands in-
side H1

un(Kv, Vp(A)).
The key theme for this whole talk is to have a good understanding of dimensions.

The following result gives a good interpretation of h1ur(K,V ) := dimH1
ur(K,V ).

Lemma 3.4. For any p and `, we have dimH1
ur(K,V ) = dimH0(K,V ).

Proof. We have already noted that inflation-restriction provides an isomorphism
H1(GK/IK , V

IK ) ' H1
ur(K,V ). But GK/IK ' Ẑ is pro-cyclic, and it is a general

fact (proved in Serre’s book Local Fields) that Ẑ has cohomological dimension 1 and
h0(Ẑ,W ) = h1(Ẑ,W ) for any p-adic representationW of Ẑ (bootstrap from the case
of finite discrete Ẑ-modules, which amounts to the study of Herbrand quotients in
the cohomology of cyclic groups), so

h1(GK/IK , V
IK ) = h0(GK/IK , V

IK ) = h0(K,V ).

Example 3.5. Under the isomorphism K̂× ⊗Zp Qp ' H1(K,Qp(1)) induced by the
Kummer exact sequence for Gm, we claim that if ` 6= p then the respective subspaces
Ô×K ⊗Zp Qp and H1

ur(K,Qp(1)) in the two sides each vanish. Indeed, for the right
side we have h1un(K,Qp(1)) = h0(K,Qp(1)) = 0 and for the left side it is a simple
exercise using that O×K is pro-` near 1.

Proposition 3.6. If ` 6= p then the duality between H1(K,V ) and H1(K,V ∗(1))
makes H1

ur(K,V ) and H1
ur(K,V

∗(1)) exact annihilators of each other.

Proof. First let’s make sure the dimensions add up correctly. By Lemma 3.4,

h1ur(K,V ) + h1ur(K,V ) = h0(K,V ) + h0(K,V ∗(1))

= h0(K,V ) + h2(K,V ).

Since we are assuming that ` 6= p, this is in fact equal to h1(K,V ). So it suffices to
show that these two spaces annihilate each other.

As discussed in the proof of Lemma 3.4, we have

H1
ur(K,V ) ' H1(GK/IK , V

IK ),

H1
ur(K,V

∗(1)) ' H1(GK/IK , V
∗(1)IK ).
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Therefore, it suffices to show that the pairing induced by cup product

H1(GK/IK , V
IK )×H1(GK/IK , V

∗(1)IK )→ H2(K,Qp(1))

is zero. But this pairing obviously factors through H2(GK/IK ,Qp(1)), which van-
ishes because GK/IK ' Ẑ has cohomological dimension 1.

Now let’s study this definition for our favorite examples to see that something
reasonable happens.
Example 3.7. Assume ` 6= p. We already computed in Example 2.4 that for V =
Vp(A) for an abelian variety A over an `-adic field K, we have H1(K,V ) = 0. But
here’s another proof (which is not really different). We have H1

ur(K,V ) = 0 by
Lemma 3.4, so by Proposition 3.6 (using that ` 6= p!) we have H1

ur(K,V
∗(1)) =

H1(K,V ∗(1)). But V ∗(1) = Vp(Â). Hence, the same argument applies to show that
this is 0. Double duality for abelian varieties then does the job.

4 Local Bloch–Kato Selmer group, ` = p

4.1 Digression on p-adic Hodge theory

The definition of the local Bloch–Kato Selmer group(s) for ` = p draws technical
ingredients and motivation from p-adic Hodge theory, so we give a very brief sum-
mary.

Let us briefly return to the setting of a Galois representation coming from the
étale cohomology of a variety X over a number field K. The standard technique to
study the étale cohomology groups H i

ét(XK ,Q`) is to restrict to the “decomposition
group” GKv . If ` is distinct from the residue characteristic p at v then this represen-
tation is unramified when XKv is the generic fiber of a smooth proper OKv -scheme.
In particular, for a fixed prime `, H i

ét(XK ,Q`) is unramified for all but finitely many
places v of K when X is smooth and proper over K (and the same holds for any
separated K-scheme X of finite type by Deligne’s “generic base change theorem”
from SGA 4.5, but that is a story for another day). What happens when ` = p? The
story gets much more complicated, but in a fascinating way.

Tate discovered that the p-adic étale cohomology groups H i
ét(XK ,Qp) possess

properties at v analogous to those dictated by classical Hodge theory for smooth
proper C-schemes. Recall that if Z a compact Hausdorff Kähler manifold then its
singular cohomology with C-coefficients admits a decomposition

Hn(Z,C) '
⊕
i+j=n

H i(Z,Ωj
Z). (4.1)

Tate proved was that if A is a an abelian variety over a p-adic field K and has good
reduction then we have a canonical isomorphism of semi-linear Galois modules

Hn
ét(AK ,Qp)⊗CK '

⊕
i+j=n

H i(A,Ωj)CK
(−j) (4.2)
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where CK denotes the completion of K. (The essential case is n = 1, since A is an
abelian variety.) Fontaine realized that the correct framework for generalizing these
results to general smooth proper K-schemes in place of abelian varieites involves
a formalism of “period rings”. Faltings proved, in terms of Fontaine’s formalism,
that a similar decomposition holds for all smooth proper K-schemes (and Scholze
generalized the result to arbitrary smooth proper rigid-analytic spaces over K, far
beyond the analytification of smooth proper K-schemes).

The period rings of p-adic Hodge theory are the “coefficient rings” for defining
precise comparison isomorphisms relating the p-adic étale and algebraic de Rham
cohomology of smooth proper schemes over p-adic fields. In this context elements of
period rings arise as entries of a matrix relating p-adic étale and algebraic de Rham
cohomology, thereby explaining the name “period ring”.

Example 4.1. The simplest period ring is

BHT :=
⊕
n∈Z

Cp(n)
non-can.' Cp[t, t

−1]

where t is a choice of basis of Zp(1) (i.e., a compatible system (ζpn) of primitive
pnth roots of 1 for n ≥ 1). Note that g(t) = χ(g)t where χ is the cyclotomic
character. We have canonically H2

ét(P
1
K
,Qp) = Qp(−1) = Qp · t−1 and canonically

H2
dR(P1

K/K) ' K via Serre duality. There is no canonical choice of t, so we cannot
expect to canonically relate the p-adic and algebraic deRham cohomologies for P1

K ;
the mechanism to pass between these two cohomologies will involve a “period ring”
to cancel out the appearance of t−1.

There is a general definition (due to Fontaine, and explained at length in Fontaine’s
first article in the Asterisque volume “Periodes p-adique”) for what constitutes a “pe-
riod ring”; this involves an action by GK on B such that BGK is a field and some
further properties hold to ensure that if V is any p-adic representation of GK then
(V ⊗Qp B)GK is finite-dimensional over BGK and the natural map

B ⊗BGK (V ⊗Qp B)GK → B ⊗Qp V (4.3)

is injective and
dimBGK (V ⊗Qp B)GK ≤ dimQp V.

Definition 4.2. For any period ring B, let

DB(V ) = (V ⊗B)GK .

A p-adic representation V for GK is admissible with respect to B if the inequality

dimBGK (V ⊗Qp B)GK ≤ dimQp V

is an equality (in which case (4.3) is always an isomorphism).
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Since DB(V ) = HomGK
(V ∗, B), we refer to the images in B of such GK-

equivariant homomorphisms as “periods of V ∗” and B-admissibility says that V ∗

has “enough p-adic periods”. The formalism ensures that V is B-admissible if and
only if V ∗ is so.
Remark 4.3. If V is B-admissible then the periods for V ∗ are the BGK -linear com-
binations of the entries of the matrix for the natural GK-equivariant B-linear iso-
morphism

B ⊗BGK DB(V ) ' B ⊗Qp V

with respect to fixed ordered bases for DB(V ) over BGK and for V over Qp respec-
tively. This explains the use of the word “period” since for V = Hn

ét(XK ,Qp) with
a smooth proper K-scheme X it turns out that canonically DB(V ) ' Hn

dR(X/K)
when B is the “deRham period ring” (and then BGK = K, with the above iso-
morphism under such a canonical identification of DB(V ) called the deRham com-
parison isomorphism for p-adic étale cohomology). Even the weaker property that
dimK H

n
dR(X/K) = dimQp H

n
ét(XK ,Qp) is not at all obvious!

Fontaine constructed period rings (1) BdR, (2)Bcrys, and (3) Bst which are re-
spectively the period rings for

1. smooth proper K-schemes,

2. generic fibers of smooth proper OK-schemes,

3. smooth proper K-schemes admitting a semistable proper flat OK-model.

In particular, Bcrys ⊂ Bst ⊂ BdR (although the last embedding is not canonical).
We say that a representation is (1) de Rham (2) crystalline (3) semistable if

it is admissible for (1) BdR, (2)Bcrys, (3) Bst. What the above means is that if
X is smooth proper K-scheme then H i

ét(XK ,Qp) is de Rham, if X furthermore
has semistable reduction then H i

ét(XK ,Qp) is semistable, and if X furthermore has
good reduction then H i

ét(XK ,Qp) is crystalline. In addition, the proofs of these
deep results identify DB(Hn

ét(XK ,Qp) with a cohomology of X directly defined using
sheaves of differential forms.
Remark 4.4. Strictly speaking, these rings contains periods for cohomology of other
geometric objects, such as p-divisible groups over OK and smooth proper rigid-
analytic spaces over K.

We’re going to need the period rings BdR and Bcrys. The explicit constructions
of BdR and Bcrys are too complicated to explain here. For our purposes, we will just
explain theor fundamental properties.

The ring BdR has a filtration coming from its structure as a discretely valued
field. The valuation subring is B+

dR := Fil0BdR. The associated graded ring turns
out to be the Hodge–Tate period ring

BHT =
⊕
n∈Z

CK(n).
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This implies that any representation which is de Rham is automatically Hodge–Tate,
since

dimK(V ⊗BdR)GK ≤ dimK(V ⊗BHT )GK .

This induces a filtration on DdR(V ), and the integers at which it jumps (with mul-
tiplicity) are called the Hodge–Tate weights.

Example 4.5. For a de Rham (or even Hodge–Tate) representation, a more intuitive
definition of Hodge–Tate weight is that if

V ⊗CK '
⊕

CK(−j)⊗K Vj

where Vj := HomGK
(CK(−j), V ⊗ CK) is the associated jth “multiplicity space”,

then the Hodge–Tate weights are j with multiplicity dimK Vj .
The Hodge–Tate weight of Qp(n) is −n. From Tate’s decomposition (4.2), the

Hodge–Tate weights of H1
ét(AK ,Qp) for an abelian variety A over K with good

reduction are 0 with multiplicity g and 1 with multiplicity g; those of the dual
Vp(A) are the negations. (The “good reduction” hypothesis can be dropped, but
that requires methods going beyond those of Tate.)

The ring Bcrys has a GK-equivariant Frobenius endomorphism φ inspired by the
crystalline–deRham comparison isomorphism for smooth proper OK-schemes. There
is also a canonical filtration inherited from BdR (inspired by the Hodge filtration
on algebraic deRham cohomology), but there is no extra compatibility demanded
between φ on Bcrys and this filtration on the extension ring BdR.

Informally, the crystalline condition is the p-adic analogue of the notion of un-
ramifiedness for `-adic representations of GK for p-adic fields K when ` 6= p (unram-
ifiedness is much too restrictive to be useful in the study of p-adic representations
arising from algebraic geometry over p-adic fields).

The deRham condition turns out (by deep results) to be equivalent to a “poten-
tially semistable” property, inspired by the dream that smooth proper K-schemes
should have “potentially semistable reduction” (proved in a useful weaker form in
deJong’s work on alternations). For ` 6= p, the analogous property is Grothendieck’s
elementary result in the appendix to the Serre–Tate paper “Good reduction of abelian
varieties” that every `-adic representation of the Galois group of a p-adic fieldK with
p 6= ` is unipotent on an open subgroup of IK .

To summarize, here is a panorama of the important classes of p-adic representa-
tions and their properties.

Property Period Ring Structure `-adic analogue
Hodge–Tate BHT Hodge–Tate weights N/A
de Rham BdR Filtration pot. unipotent on inertia
Crystalline Bcrys Frobenius φ unramified
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4.2 The local BK Selmer group

Now let K be a finite extension of Qp and V a p-adic representation of GK . We are
looking for a subspace L ⊂ H1(K,V ) which is analogous to H1

ur(K,W ) when W is
an `-adic representation with ` 6= p. By analogy with the `-adic situation, we seek a
definition that provides an exact annihilator with respect to V 7→ V ∗(1).

Example 4.6. The subspace H1
ur(GK , V ) doesn’t work, since by Lemma 3.4 and the

Euler characteristic formula we have

h1ur(K,V ) + h1ur(K,V
∗(1)) = h0(K,V ) + h0(K,V ∗(1))

= h1(K,V )− [K : Qp] dimV

< h1(K,V )

whenever V 6= 0.

Definition 4.7. We define

H1
f (GK , V ) = ker

(
H1(K,V )→ H1(K,V ⊗Qp Bcrys)

)
.

Remark 4.8. As one sanity check, we have an analogue of Remark 3.2: a class
ξ ∈ H1(K,V ) corresponds to an extension

0→ V →W → Qp → 0,

and ξ ∈ H1
f (K,V ) if and only if the sequence

0→ Dcrys(V )→ Dcrys(W )→ Dcrys(Qp)→ 0

is exact.

The ring BdR is a discretely valued field with valuation ring B+
dR (often called

B0
dR). This inherits a filtration and its associated graded ring if BHT, so it contains

the integral powers of any basis t of Qp(1).

Proposition 4.9 (First fundamental exact sequence). There is an exact sequence
of GK-modules

0→ Qp
α−→ Bcrys ⊕B+

dR

β−→ Bcrys ⊕BdR → 0

where α(x) = (x, x) and β(y, z) = (y − φ(y), y − z).

Given that I didn’t even define the rings Bcrys and BdR, let’s just accept this
exact sequence as a black box.

Proposition 4.10. If V is de Rham, then we have

dimQp H
1
f (K,V ) = dimQp(DdR(V )/D+

dR(V )) + dimQp H
0(K,V ). (4.4)

12



Proof. Let’s consider the long exact sequence of Galois cohomology associated to
the short exact sequence obtained by tensoring the first fundamental exact sequence
with V :

0 H0(K,V ) Dcrys(V )⊕D+
dR(V ) Dcrys(V )⊕DdR(V )

H1(K,V ) H1(Bcrys ⊗ V )⊕H1(B+
dR ⊗ V ) H1(Bcrys ⊗ V )⊕H1(BdR ⊗ V )
δ

(To make sense of a connecting map using continuous GK-cohomology and even to
make sense of the H1’s in the 5th and 6th terms of this long exact sequence one
has to pay careful attention to the admissibility properties of Bcrys and BdR, but we
pass over this delicate issue in silence.) We claim that

H1
f (K,V ) = ker

(
H1(K,V )

α1

−→ H1(Bcrys ⊗ V )⊕H1(B+
dR ⊗ V )

)
.

Obviously kerα1 ⊂ H1
f (K,V ), since the latter is the kernel of the composition

with prjoection to the first factor. It remains to show that if x ∈ H1(K,V ) is carried
by α1 to a pair (0, y) then y = 0. Continuing along the long exact sequence, we have
(0, y) 7→ (0, 0 − y), and this must be 0 since we have a chain complex. Hence,
y ∈ ker

(
H1(K,B+

dR ⊗ V )→ H1(K,BdR ⊗ V )
)
. The proof is then concluded by the

following lemma.

Lemma 4.11. If V is de Rham, then the natural map

H1(K,V ⊗B+
dR)→ H1(K,V ⊗BdR)

is injective.

We again emphasize that to even make sense of such H1’s in a useful manner,
one has to make use of “admissibility” for BdR since this ring does not have any nice
topology.

Proof. Consider the short exact sequence

0→ B+
dR → BdR → BdR/B

+
dR → 0.

Slipping topological issues under the rug as always, by the associated long exact
sequence it suffices to prove surjectivity of the natural K-linear map

DdR(V )→ (V ⊗Qp (BdR/B
+
dR))GK

But dimK DdR(V ) = dimQp V since V is de Rham, and Tate’s deep results on the
GK-cohomology of CK(n)’s (e.g., CGK

K = K!) imply that a deRham representation
W is Hodge–Tate and gr•(DdR(W )) = DHT(W ). Consequently,

dimD+
dR(V ) + dim(V ⊗Qp (BdR/B

+
dR))GK

13



counts (with multiplicities) the number of non-positive weights plus the number of
negative weights of V , hence also equals dimQp V . By dimension considerations, the
desired surjectivity follows.

Example 4.12. A variant of the same argument shows that if V is de Rham, then
dimK D

+
dR(V ) + dimK D

+
dR(V ∗(1)) = dimQp V .

Put another way, dimH1
f (GK , V ) is the sum of the multiplicity of the trivial

representation in V and [K : Qp] times the number of negative Hodge–Tate weights
of V (since Qp(n) has Hodge–Tate weight −n).
Example 4.13. Recall that h1(K,V ) = h0(K,V ∗(1)) + [K : Qp] dim(V ). Thus, if
V is de Rham with all Hodge–Tate weights ≤ −2 (so h0(K,V ∗(1)) = 0), then
H1
f (K,V ) = H1(K,V ) by equality of dimensions.

Example 4.14. We have h1f (K,Qp(n)) = 0 if n < 0, 1 if n = 0, and [K : Qp] if n ≥ 1.
In particular, the only interesting inclusions occur for n = 0 and n = 1. For

n = 0, we have the inclusion of a line

H1
f (K,Qp) ⊂ H1(K,Qp) = Homcont(K

×,Qp)

in an ambient space of dimension [K : Qp] + 1. We claim that it is generated by
the valuation x 7→ vp(x). The reason is that this corresponds to the unramified
extension, and unramified implies crystalline.

Theorem 4.15. Let V be de Rham. Then under the duality between H1(K,V ) and
H1(K,V ∗(1)) the subspaces H1

f (K,V ) and H1
f (K,V ∗(1)) are mutual orthogonals.

Proof. As usual, let’s first do the dimension count. We have that

h1f (K,V ) = h0(K,V ) + [K : Qp](# negative Hodge–Tate weights)

while

h1f (K,V ∗(1)) = h0(K,V ∗(1)) + [K : Qp](# negative HT weights of V ∗(1))

= h0(K,V ∗(1)) + [K : Qp](# non-negative HT weights of V )

So in total we find that the sum of their dimensions is

h0(K,V ) + h0(K,V ∗(1)) + [K : Qp](# Hodge–Tate weights)

but # Hodge–Tate weights is dimQp V since V is de Rham, and that gives exactly
the description of h1(K,V ) furnished by the local Euler characteristic formula.

Now it suffices to show that the pairing

H1
f (K,V )×H1

f (K,V ∗(1))→ H2(K,Qp(1)) = Qp.

vanishes identically.
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Fix y ∈ H1
f (K,V ∗(1)), so it suffices to show that the cup product map

(·) ∪ y : H1
f (K,V )→ H2(K,V ⊗ V ∗(1))

vanishes. Tensoring the first fundamental exact sequence (4.4) against V , any x ∈
H1
f (K,V ) arises from a class

x′ ∈ H0(K, (Bcrys ⊗ V )⊕ (BdR ⊗ V )),

so by the compatibility of cup products and connecting maps in low-degree GK-
cohomology it follows that x ∪ y is in the mage of

x′ ∪ y ∈ H1(K, (Bcrys ⊗ V ⊗ V ∗(1))⊕ (BdR ⊗ V ⊗ V ∗(1)))

under the connecting map from tensoring V ⊗ V ∗(1) against the first fundamental
exact sequence. Thus, it suffices to show that x′ ∪ y = 0.

But x′ ∪ y clearly only depends on the image of y in

H1(K, (Bcrys ⊗ V ∗(1))⊕ (BdR ⊗ V ∗(1))),

and that image vanishes by the analysis of α1 in the proof of Proposition 4.10 (applied
to V ∗(1), which inherits the deRham property of V !).

Let’s now analyze our favorite examples.

Proposition 4.16. The Kummer map K̂× ⊗Zp Qp → H1(K,Qp(1)) identifies
O×K ⊗Zp Qp with H1

f (K,Qp(1)) .

Proof. As usual, let’s start by counting dimensions. Since O×K is a compact p-adic
Lie group of dimension [K : Qp] (via the p-adic logarithm), we have

dimQp O×K ⊗Zp Qp = [K : Qp].

On the other hand, we computed in Example 4.14 that h1f (K,Qp(1)) = [K : Qp] as
well. That means it suffices to show that O×K ⊗Zp Qp lands in H1

f (K,Qp(1)).
To see this inclusion, it is useful to use the perspective of H1

f (K,V ) as extensions

0→ V →W → Qp → 0

of p-adic GK-representations with W crystalline (Remark 4.8). Thus, it suffices to
prove that for any u ∈ O×K , the Kummer class

δ(u) ∈ H1(K,Qp(1)) = Ext1GK
(Qp,Qp(1))

viewed as a 2-dimensional p-adic representation of GK (Qp-linear extension of Qp

by Qp(1)) is a crystalline representation.
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Unraveling Kummer-theoretic constructions, this extension class is Vp(E) where
E = K

×
/uZ (a fake version of a Tate curve using the parameter u with |u|K = 1).

This coincides with Vp(EK) where E = (En) is the p-divisible group over OK whose
pn-torsion layer En is the finite flat OK-group scheme arising from the base change
along

u : Spec(OK)→ Spec(Z[q, 1/q])

of the Katz–Mazur group scheme Tpn over Z[q, 1/q] that is the pn-torsion of “Gm/q
Z”.

(These are analyzed very directly in §8.7 of the book Arithmetic moduli of elliptic
curves by Katz and Mazur.) It is a (non-trivial) theorem of Fontaine that for any
p-divisible group Γ over OK , Vp(ΓK) is crystalline!

Proposition 4.17. Let A be an abelian variety over K. Then the image of the
injective Kummer map

δ : A(K)⊗Zp Qp → H1(K,Vp(A))

is H1
f (K,Vp(A)).

Note that there is no good-reduction hypothesis on A. The injectivity of the
Kummer map uses that the compact p-adic Lie group A(K) has a pro-p neighborhood
of 0 that is a finite free Zp-module, so the p-adic completion of A(K) is identified
with an open subgroup of A(K).

Proof. We again count dimensions. The logarithm map defines an isomorphism
between an open finite-index subgroup of the compact p-adic Lie group A(K) and
an open subgroup of its Lie algebra (which naturally coincides with Lie(A)), so

dimQp(A(K)⊗Zp Qp) = [K : Qp]g.

On the other hand, since Vp(A) is deRham (being linear dual to H1(AK ,Qp), and in
general each Hj(XK ,Qp) is deRham for any smooth proper K-scheme X, or in the
good reduction case it si crystalline by Fontaine’s theorem on Galois representations
arising from p-divisible groups over OK) and it has Hodge–Tate weights 0 (with
multiplicity g) and −1 (with multiplicity g), we have dimH1

f (K,Vp(A)) = [K : Qp]g
by Example 4.10.

Now it suffices to show that for any u ∈ A(K), the Kummer class δ(u) lies in
H1
f (K,Vp(A)). We will prove this only when A has good reduction, as then one

can get by using p-divisible groups over OK (and Fontaine’s hard theorem that the
p-adic representations arising from the generic fiber of any such p-divisible group is
crystalline).

Let A be the abelian scheme over OK with generic fiber A, so u ∈ A(K) =
A (OK). The pullback along u of the short exact sequence

0→ A [pn]→ A
pn→ A → 0
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for the fppf topology is an A [pn]-torsor Tn over OK for the fppf topology. By
arguing in terms of fppf group sheaves and descent theory, for any finite flat OK-
group scheme G killed by an integer N every fppf G-torsor T over OK arises from
a canonically associated short exact sequence of N -torsion commutative finite flat
OK-groups

0→ G→ ET → Z/NZ→ 0.

Naturally Tn+1/A [p] ' Tn as torsors over A [pn+1]/A [p] = A [pn]. Hence, by
the canonicity of the construction of ET from T (naturally inG), there are compatible
short exact sequences

0→ A [pn]→ ETn → Z/(pn)→ 0

for n ≥ 1, so E = (ETn) constitutes a p-divisible group over OK (an extension of
Qp/Zp by A [p∞]). By design, Vp(EK) = δ(u) as extensions of Vp(Qp/Zp) = Qp by
Vp(A[p∞]) = Vp(A), so the same theorem of Fontaine ensures that this is a crystalline
p-adic representation.

17


	Overview
	Some local Galois cohomology
	Local Bloch–Kato Selmer group, =p
	Local Bloch–Kato Selmer group, =p

