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Last week we stated Deligne’s conjecture, which says that (under some hypotheses) a special
value of the L-function of a motive is a rational multiple of the determinant of a period matrix.
In these notes we will work out what this means concretely in two special cases: Artin L-functions
and modular forms.

1 Artin Motives and Artin L-Functions
For motivation we present the following identity.

1− 1

23
+

1

43
− 1

53
+

1

73
− 1

83
+

1

103
− 1

113
+ · · · =

∑
k

(
1

(3k + 1)3
− 1

(3k + 2)3

)
=

4π3
√

3

243
.

We will see that this illustrates a case of Deligne’s conjecture.
We’ll start with the following simple task: describe Artin motives (“motives of dimension 0”)

over a number field K. We will see that a reasonable category of dimension-0 motives is equivalent
to a category of finite-dimensional Galois representations. We will be interested in the determinant
of the period matrix of such objects.

We construct the category of Artin motives over K as follows. Consider first the category C
whose objects are schemes X, smooth of dimension 0 over K. Any such X is a finite disjoint union
of spectra of fields finite overK. Given two such objects X and Y one may consider correspondences
from X to Y , defined as closed subschemes of the product X × Y . Since X × Y is a finite disjoint
union of points the study of correspondences is purely combinatorial; in particular we do not need
to quotient out by numerical equivalence or any such equivalence, and the entire theory (such as it
is) will be developed without appeal to unproven conjectures.

In any case, one forms the rational correspondence group in the obvious way, and takes this
rational correspondence group to be Hom(X,Y ) in C. Then one forms the category M of Artin
motives from this C by formally introducing elements (X, p) for every idempotent p ∈ Hom(X,X).

We aim to prove the following result.

Lemma 1.1. The category of Artin motives over a number field K, with coefficients in another
number field E, is equivalent to the category of representations of the absolute Galois group of K
on E-vector spaces.

First let’s review Galois theory. Recall that a finite étale K-algebra is a K-algebra which is a
finite direct sum of fields, each finite over K.
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Theorem 1.2. There is an equivalence of categories between the category of finite sets with a
continuous action of G = Gal(Q/K), and the category of finite étale K-algebras. Specifically, from
a finite étale K-algebra L we obtain the finite set P (L) = Hom(L,Q) with the Galois structure
induced from Q; in the other direction, given a Galois set I, we obtain the algebra

A(I) =
(
QI
)G

of G-invariant Q-valued functions on A, where G acts on both A and Q.

Before we pass to motives, let’s consider the periods of these zero-dimensional varieties. We
restrict ourselves to the situation where L is a field, finite over Q, which we take as our base field.
The calculation is completely trivial.

The algebraic de Rham cohomology of SpecL is

H0
DR(SpecL) = H0(SpecL,OSpecL) = L.

The Betti cohomology is computed after base change to C; the base change of SpecL to C is
the spectrum of

L⊗Q C =
⊕

Cσ,

where the direct sum is over all d = [L : Q] embeddings σ of L into C, and the map from L to the
factor Cσ is exactly σ. This spectrum has d points, which give a basis for the rational Betti H0,
which in turn is dual to the Betti cohomology H0.

The period map can be expressed as a pairing between de Rham H0 and Betti H0, given by
evaluation. Explicitly, de Rham H0 is equal to L, which can be viewed as a vector space over Q with
some basis e1, . . . , ed. The de Rham class ei, after base change to C and evaluation on the point
σj , gives the complex number σj(ei); and the matrix of these numbers is the period matrix. The
determinant of this matrix is, up to rational multiple, the square root of the discriminant. However
this motive does not satisfy the criticality hypothesis so there is no corresponding L-function value
in this case.

At this point we should remark on the functorial relation between de Rham and Betti cohomol-
ogy. To do this we rephrase the Betti cohomology as follows: the (rational) Betti cohomology is
the set of Q-valued functions on a finite disjoint union of points indexed by the maps σ : L → C.
If Q denotes the algebraic closure of Q in C then we can without harm replace C with Q, so the
Betti cohomology is exactly

QHom(L,Q).

The de Rham cohomology can be recovered from the Betti cohomology via the relation

HDR =
(
HB ⊗Q Q

)G
,

where G, the absolute Galois group of K, acts on both

HB = QHom(L,Q) = QP (L)

and Q.
This relation will be useful when we compute the de Rham cohomology of motives.
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1.1 Correspondences and Representations
To construct the category of Artin motives we need to consider correspondences on X1×X2, where
each Xi is the spectrum of an étale K-algebra Li. Here X1×X2 is the spectrum of L1⊗K L2, which
is again an étale K-algebra. So X1 ×X2 is a finite disjoint union of points; a closed subscheme is
exactly a subset of those points, so a rational cycle is a Q-valued function on the set of those points.
By base change to the complex numbers, we see that the group of rational cycles on X1 ×X2 can
be viewed as the Galois-invariant elements(

QHom(L1⊗KL2,Q)
)G

.

By Galois theory, this is equal to(
QP (L1⊗KL2)

)G
=
(
QP (L1) ⊗QP (L2)

)G
= HomG(QP (L2),QP (L1)).

The functor from Artin motives to Galois representations will be given by the Betti cohomology.
As we have seen, a field L corresponding to a finite Galois set P (L) has Betti cohomology the
corresponding permutation representation QP (L). Hence, the space of correspondences is equal to

HomG(HB(SpecL2), HB(SpecL2).

For the construction of Artin motives with coefficients in an arbitrary number field E, one also
needs to know that the algebra of cycles with coefficients in E is(

EHom(L1⊗KL2,Q)
)G

= HomG(EP (L2),EP (L1)) = HomG(HB(SpecL2), HB(SpecL2).

Now the category of Artin motives with coefficients in E is constructed from the category C as
the category of pairs (X, p) withX an object of C and P an idempotent in its endomorphism algebra.
This C has for objects exactly the permutation representations of the Galois group G – in other
words, the representations of G on ES , for S a finite set with a G-action. And the endomorphisms
of these objects are exactly their usual endomorphisms in the sense of representation theory. Now,
for any representation X and subrepresentation V ⊆ X, there is a G-equivariant projection pV of
X onto V . Hence, this pair gives rise to a motive (X, p). We identify (X, p) with the representation
V . One sees immediately that V is indeed the Betti cohomology of the motive (X, p).

Again, some compatibilities must be verified: we must check that for any pairs (X, p) and (Y, q),
the morphisms between them inM are naturally identified with the G-equivariant homomorphisms
between the corresponding vector spaces. This is straightforward and we omit it.

Lemma 1.1 now follows from the fact that every continuous E-linear representation of the group
G is contained in a permutation representation.

1.2 Periods and Deligne’s Conjecture
Now we can return to Deligne’s conjecture. We will only state it for Artin motives of rank 1, that
is to say, for one-dimensional Galois representations. So, let ε be a character of the absolute Galois
group of K.

First we need to discuss criticality. Criticality is a hypothesis to Deligne’s conjecture; it is a
condition on the Hodge structure of the motive in question. For the details, see last week’s notes.
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To state Deligne’s conjecture we must suppose that our motive is defined over Q; otherwise we
must take a Weil restriction down to Q, as explained last week. We will limit ourselves to the case
of Artin representations of Q.

The Hodge structure of Artin motives is very simple: all the cohomology occurs in H00. If X
is an Artin motive then the Tate twist X(a) has all its cohomology in Haa. Recall the criticality
condition in this context. Let F∞ denote the action on Betti cohomology of complex conjugation
on our motive. The motive is critical if and only if F∞ acts as ε on the Betti cohomology, where ε
is taken to be −1 if a ≥ 0 and +1 otherwise.

In terms of Galois representations, one may check that F∞ corresponds to complex conjugation.
(Recall that we were treating Q as a subfield of C for the purposes of computing Betti cohomology,
so complex conjugation specifies a well-defined involution of Q.)

Hence, we obtain the following. If F∞ = −1 on X, then X(a) is critical if a is a nonnegative
even integer or a negative odd integer (e.g. -3, -1, 0, 2). If F∞ = +1 on X, then X(a) is critical if
a is nonnegative and odd, or negative and even (e.g. -4, -2, 1, 3). Deligne’s conjecture predicts the
values of Artin L-functions at these values (up to rational multiple).

Our next task is to compute the periods. We use the functorial relationship

HDR(X) =
(
HB(X)⊗E Q

)G
.

To justify this one must verify the following functoriality: any correpsondence induces maps on
both Betti and de Rham cohomology; the map on de Rham cohomology is exactly the map induced
on de Rham cohomology from the map on Betti cohomology by the relationship above. Once this
has been verified it follows that the relationship holds for arbitrary Artin motives.

So, consider our character ε of the Galois group of Q, and let X be the corresponding motive.
Let VQ denote a one-dimensional Q-vector space on which G acts by ε, and let V denote the base
change of VQ to Q, using the Galois action on Q. Explicitly, let e span VQ. Then for any a ∈ Q and
σ ∈ G, the Galois action is given by

σ(ae) = ε(σ)σ(a)e.

To compute the de Rham cohomology we need to find a Galois-fixed element of V . A natural
approach is to start with an arbitrary element of V and take the average of its Galois conjugates.
Of course if we start with e (and ε is nontrivial) we will get 0 as this average; we need to find some
other element of V which gives a nonzero average.

Remark 1.3. Alternatively, we could have approached this de Rham cohomology by the following
method: First, we would compute explictly the effect of correspondences on de Rham cohomology.
Suppose first we are given a correspondence from L1 to L2 that is given explictly as a direct factor
of L1 ⊗ L2 – note that our idempotent correspondences will in general be rational linear combi-
nations of correspondences of this form. Then the pull-push form on de Rham says that the map
on cohomology, from L2 to L1, is given by the following rule: embed L2 into the tensor product,
project down to the direct factor, and then trace down to L1. For arbitrary correspondences one
takes the appropriate linear combination of projections. To carry out the calculation in this way it
is necessary to translate our Galois character into the language of Artin motives as étale algebras
with idempotent correspondences. We introduced the functorial relationship between Betti and de
Rham cohomology exactly to avoid this unpleasant task.

But in this alternative approach, the problem of finding a basis for the de Rham cohomology of
our motive translates to finding a basis for the image, one-dimensional over Q, of our idempotent
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map induced on de Rham L → L. This map factors as a trace from L⊗ L to L, so it’s enough to
find some element of L that after this trace operation gives a nonzero image in L. This is essentially
the situation we find ourselves in.

What element of V (a torsor for Q) should we try? Inspired by the remark above, note that
ε splits over L = Q(ζf ), where f is the conductor of ε and ζf a primitive f -th root of unity. So
maybe it’s not unreasonable to try

v′ = ζfe.

Averaging over G gives the following sum

v =

 ∑
u∈(Z/fZ)∗

ε(u)ζuf

 e,

where we view ε as a Dirichlet character by means of the usual identification

Gal(Q(ζf )/Q) ≡ (Z/fZ)∗.

The sum above is a Gauss sum, and it is known to have nonzero value. Hence the period in
question, up to rational multiple, is

d(X) =
∑

u∈(Z/fZ)∗
ε(u)ζuf .

In this case, Deligne predicts that the Artin L-function will have

L(X, s) ∈ Q∗(2π)siεd(X)

for all critical values of s. (Here ε is either 0 or 1; an explicit formula is given in [Del].)

1.3 Our Example
Recall the identity
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The left-hand side is
L(X, 3),

where X is the quadratic Dirichlet character of discriminant −3. The relevant Galois character ε
splits over Q[ζ3], so the Gauss sum appearing in Deligne’s conjecture has value

ζ3 − ζ23 = i
√

3.

This is consistent with the actual value
4π3
√

3

243
.

5



2 Modular Forms
Now we consider the case of modular forms. Again, Deligne’s conjecture in this case will turn out
to be known. We will show that there is a motive associated to any modular form of weight 2. (The
result is true, but more difficult, for modular forms of arbitrary weight.) Deligne’s conjecture will
follow, assuming a couple of standard results in the theory of modular forms.

Our first goal is to arrive at a proof of the following theorem, in the case k = 2.

Theorem 2.1. Let f =
∑
anq

n be a holomorphic new cusp eigenform of weight k, and suppose
the an all lie in the number field E. Then there is a motive M(f) with coefficients in E whose
L-function is

∑
ann

−s.

The idea of the proof is as follows. For k = 2, modular forms give rise to global differentials on
the modular curve M (or its completion M); in other words, they naturally lie in H1

DR. Modular
forms are eigenvectors for the Hecke operators, which are exactly the endomorphisms of H1 induced
by the Hecke correspondences. Since modular forms can be described in terms of kernels and images
of elements of the Hecke algebra, there are corresponding motives. By a multiplicity one result, we
know that the Hecke eigenvalues cut out exactly the form f (instead of a higher-dimensional space
of modular forms). And by Eichler-Shimura, we know that the L-function of the motive agrees
with that of the modular form.

For k > 2 even, one proceeds as follows. Then modular forms of weight k naturally lie in H1(X),
where X is the k − 1-fold product of the universal elliptic curve with itself over M . But in this
situation the failure of X to be complete presents a more serious technical obstacle: it is necessary
to find a smooth projective completion of X to which the Hecke correspondences extend. This can
be done in general but it requires some effort and the details will not interest us. See [Sch].

2.1 Modular Curve and Hecke Correspondences
To make matters precise, suppose we have a modular form f of weight k = 2 and level N . Let’s
suppose for concreteness that f is a modular form for Γ1(N).

Let M be the modular curve for Γ1(N). This curve can be expressed as the quotient of the
complex upper half-plane by the action of the group Γ1(N). Alternatively, it is a coarse moduli space
for elliptic curves with N -level structure. Loosely speaking, an “N -level structure” on an elliptic
curve means a cyclic degree-N subgroup of the N -torsion of the curve. For a precise statement, see
[KM]. When we need to make the dependence on N explicit we will write M(N) for M .

Let p be a prime not dividing N . We wish to define the Hecke correspondence Tp on M(N).
This Tp will be a closed subscheme of M(N) ×M(N). In terms of moduli, consider an R-valued
point (E1, E2) of M(N)×M(N), with each Ei an elliptic curve with N -level structure. This point
will belong to Tp(R) if (and only if) there is a degree-p isogeny from E1 to E2 respecting the level
structure on each.

in another language, we can define our correspondence by giving a curve with two maps to
M(N). The curve will be M(pN). The first map doesn’t change the elliptic curve, and replaces
the cyclic pN -element group with its unique N -element subgroup. The second map replaces the
elliptic curve with its quotient by the p-element subgroup defined by the level structure.

Like all quasiprojective curves, M(N) has a canonical smooth projective model M(N). This
M(N) has, again, a moduli interpretation, and has been very well studied. The Hecke correspon-
dence extends to the projective curve M(N). For details see [DR] or [KM].
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The Hecke correspondences Tp, like all correspondences, induce maps on the cohomology of
M(N) for every cohomology theory. Hecke eigenforms are defined to be simultaneous eigenvectors
for all the Tp (which commute) acting on the space of modular forms. By strong multiplicity one, the
simultaneous eigenspaces for the Tp (even omitting those p not dividing N , for which we have not
defined the Hecke operators) are one-dimensional. So, any eigenform f spans such an eigenspace.

Since the cohomology of M(N) is finite-dimensional, given any Hecke correspondence Tp with
an eigenvalue λ lying in a number field E, one can produce a polynomial in Tp, with coefficients
in E, which projects onto the corresponding eigenspace. Hence, given our modular form f with
coefficients in E, we can produce a correspondence C(f) on M(N) with coefficients in the same E
whose action on cohomology is to project onto the one-dimensional span of f .

Now we have constructed the motive M(f); the Eichler-Shimura relation tells us that the L-
functions agree. This proves the theorem.

2.2 Deligne’s Conjecture for Modular Forms
Now we need to compute the periods of M(f). Let’s suppose for simplicity that f has coefficients
in Q.

In de Rham cohomology, f corresponds to something of Hodge type (1, 0); its conjugate (which
also lies in M(f)) is of type (0, 1). This f is a global differential form on M , which we need to
integrate against a rational Betti cycle that is fixed by F∞.

We will see that such a Betti cycle is given, in the upper half-plane, by the imaginary axis.
First of all, we can see from the moduli interpretation that the complex conjugation action L∞

on the upper half-plane is given by z 7→ −z. So the imaginary axis is indeed fixed by F∞. The axis
has as endpoints the cusps at 0 and i∞. If the modular group happened to identify these cusps (as,
for example, does the full modular group Γ(1)) then the imaginary axis would indeed represent an
F∞-invariant Betti cycle.

In general it does not. What is true, though, is that the difference between the two cusps is of
finite index in the Jacobian of the modular curve (Manin-Drinfeld). This means that the integral
of any global differential (like f) along this curve is a rational multiple of its integral along a Betti
cycle, which is again F∞-invariant.

Since Deligne’s conjecture is only up to rational multiples anyway this presents no issue.
So we have constructed a rational Betti cycle γ on M(N), invariant under F∞. We need such a

cycle on the subspace M(f); up to rational multiple, there is only one such. Now M(N) projects
onto M(f), so if our cycle projects to something nonzero it will do the job. As a matter of fact
that is good enough: we will show that the critical L-value L(f, 1) is in any case equal to∫ i∞

0

f(z)dz.

If γ is nonzero inM(f), then the above integral is exactly the determinant of the one-by-one period
matrix in question. If γ is zero in M(f) then the above integral is also equal to zero; so L(f, 1) = 0
is a rational multiple of the period whatever that period may be.
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2.3 The L-function of a Modular Form
First, a formal calculation to suggest why the integral above should give an L-value. We write
f(z) =

∑
ane

2πinz, where since f is cuspidal the sum ranges over n > 0. Then∫ i∞

0

f(z)dz =

∫ ∑
ane

2πinzdz =
∑∫

ane
2πinzdz =

∑ an
2πn

=
1

2πi
L0(f, 1).

Here L0 represents the part of the L-function coming from finite places; as usual the extra 2π is
swallowed by a gamma-factor, and Deligne’s conjecture is proved.

Of course this is not a proof because of pesky convergence issues. The sum appearing above is
divergent in general. We have not even shown that the L-function has the analytic continuation
needed to even talk about the value L(f, 1).

We now make the argument precise.
By elementary results on modular forms one knows that the coefficients an are bounded by

something of the form nk/2, and thus the L-function converges on some right half-plane.
Formally, we have∫ ∞

0

ysf(iy)
dy

y
=
∑∫

any
se−2πny

dy

y
=
∑ an

(2π)s
nsΓ(s) = ΓC(s)L0(f, s) = L(f, s).

Since f is a cusp form, its Fourier expansion has leading term e−2πiz, which decays exponentially
as z approaches i∞. So the integral on the left-hand side above (with the ys term) converges as y
goes to infinity, no matter how large s is.

To deal with the other end of the integral it is desirable (though not strictly necessary) to
introduce the Atkin-Lehner involution w (sometimes written wN to emphasize the dependence on
N). In terms of moduli, we want to find w(E,G), where E is an elliptic curve and G a cyclic
order-N subgroup. Take for the new elliptic curve E′ = E/G; the N -torsion of E maps to a cyclic
order-N subgroup G′ of the N -torsion of E′. We take w(E,G) = (E′, G′). We see immediately
that w is an involution.

In terms of the upper half-plane, wN interchanges the points z and −1Nz .
Every Hecke eigenform is also an eigenform for wN . (This may be built into the definition of

eigenform or regarded as a consequence of strong multiplicity one.)
As a first consequence, we consider the behavior of the integral above near y = 0. Under the

involution w the cusp 0 moves to i∞, and the integral becomes∫ ∞
0

N−syk−s(wf)(iy)
dy

y
.

Now we have seen that this integral converges as y goes to ∞, which is to say that the first integral
converges as y goes to 0, regardless of the value of s.

This implies immediately that our integral formula converges, and hence is valid, for all s for
which the L-series converges. Furthermore, the integral converges for all s, so it may be used to
define an analytic continuation, valid for all s. This implies Deligne’s conjecture.

As a side note, the second formula above, coupled with wf = ±f , proves the functional equation

L(k − s) = ±N−sL(s),

where the sign is given by the eigenvalue of w on f .
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