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We follow the ideas of Gordon [3] (who seems to follow the sketch of Tate [6, p.427-430]), with minor
modifications:

(1) We make a simplifying assumption that the fibered surface X → C has a section;
(2) We introduce the notion of Néron-Severi structures to clean up the combinatorics.

1. Statement of the conjectures

1.1. Setup. Let k be a finite field with q elements. Let σ ∈ Gal(k/k) denote the geometric Frobenius.
Let p = char(k) and let ` 6= p be a prime number.

Let C be a smooth, projective and geometrically connected curve over k of genus g. Let F = k(C)
be the function field of C. Let |C| be the set of closed points of C. For v ∈ |C|, let Ov, Fv, k(v) be the
completed local ring at v, its fraction field and residue field.

Let X be a smooth projective surface over k and f : X → C be a flat morphism such that the generic
fiber XF is a smooth and geometrically connected curve over F . Assume also:

• X(F ) 6= ∅; equivalently f admits a section γ : C → X.
Let NS(X) be the Néron-Severi group of X, i.e., divisors on X modulo algebraic equivalence. This is a

finitely generated abelian group equipped with a non-degenerate symmetric bilinear pairing into Z.
Notation: for any free abelian group Λ with a non-degenerate symmetric bilinear pairing 〈−,−〉 :

Λ× Λ→ C we denote

(1.1) Disc(Λ) := |det(〈λi, λj〉)|
be the absolute value of the Gram matrix formed by any Z-basis {λi} of Λ.

1.2. Fact (Raynaud [5, Th 7.2.1]). In our situation, f is cohomologically flat, i.e., for any geometric point
s ∈ C, we have h0(Xs,OXs) = 1 and h1(Xs,OXs) = n is independent of s. Therefore R1f∗OX is locally
free of rank n over C.

1.3. Conjecture (Artin-Tate [6, p. 426, (C)]).
(1) Let P2(X, q−s) := det(1− σq−s|H2(Xk,Q`)). Then

ords=1P2(X, q−s) = rkNS(X).
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(2) The Brauer group Br(X) = H2
ét(X,Gm) is finite;

(3) As s→ 1, we have

P2(X, q−s) ∼ (1− q1−s)rkNS(X)Disc(NS(X)/NS(X)tor)

|NS(X)tor|2
· q−α(X) · |Br(X)|.

where α(X) = χ(X,OX)− 1 + dimPic◦X/k.

1.4. Jacobian and Néron model. Let AF = Pic0
XF /F be the Jacobian of the curve XF . This is a

principally polarized abelian variety over Spec F . Let A be its Néron model over C. Let A◦ be the
fiberwise neutral component of A. Let ωA/C be the sheaf of relative top differential forms on A → C,
viewed as a line bundle on C via the identity section.

For each place v of C, let Av denote the fiber of A over Spec k(v). Let cv = [Av(k(v)) : A◦v(k(v))] be
the Tamagawa factor at v.

1.5. Fact ([1]). In our situation, the relative Picard functor PicX/C is represented by an algebraic space.
Let Pic◦X/C be the fiberwise neutral component of PicX/C . Then Pic◦X/C is a smooth group scheme of
finite type over C. The canonical map Pic◦X/C → A◦ (by the Néron mapping property) is an isomorphism.

1.6. Conjecture (Birch–Swinnerton-Dyer [6, p.419, (B)]).
(1) Let L(s,AF ) be the complete L-function for the abelian variety AF over F . Then

ords=1L(s,AF ) = rkA(F ).

(2) X(AF ) is finite.
(3) As s→ 1, we have

(1.2) L(s,AF ) ∼ (s− 1)rkA(F )DiscNT (A(F )/A(F )tor)

|A(F )tor|2
· (
∏
v

cv) · q− degωA/C−n(g−1) · |X(AF )|

In (1.2) we put DiscNT to emphasize that we are using the Néron-Tate pairing on A(F )/A(F )tor, which
takes values in Q log(q) (see §5.3). If we divide the Néron-Tate by log(q) (we call it the modified NT pair-
ing), we denote the discriminant of the resulting pairing on A(F )/A(F )tor simply by Disc(A(F )/A(F )tor).
After change of variables s 7→ q−s, (1.2) is equivalent to

(1.3) L(s,AF ) ∼ (1− q1−s)rkA(F )Disc(A(F )/A(F )tor)

|A(F )tor|2
· (
∏
v

cv) · q− degωA/C−n(g−1) · |X(AF )|.

We will sketch a proof of the following result.

1.7. Theorem (Gordon, conjectured by Tate [6, p.427, (d)]). Conjectures 1.3 and 1.6 are equivalent.

2. Néron-Severi structures

2.1. Definition. A Néron-Severi structure (NS structure for short) is a triple (Λ, V, ι) where
(1) Λ is a finitely generated abelian group;
(2) V is a finite-dimensional Q`-vector space with a Q`-linear automorphism σ;
(3) ι is a map of abelian groups Λ→ V σ.

A NS structure (Λ, V, ι) satisfies the Tate condition if ι induces an isomorphism

Λ⊗Z Q`
∼→ V σ.

There is an obvious notion of morphisms between NS structures, making NS structures an abelian
category NS with a monoidal structure given by the tensor product.

2.2. Definition. A polarization on a NS structure (Λ, V, ι) is a symmetric bilinear σ-invariant perfect
pairing

〈−,−〉 : V × V → Q`
such that its pullback to Λ× Λ takes values in Q, and is perfect on ΛQ.



AT⇐⇒BSD 3

Note that a polarization on (Λ, V, ι) forces Λ⊗ZQ` → V σ to be injective. Polarized NS structures form
an exact category PNS under the following definition of short exact sequences.

2.3.Definition. Let (Λ, V, ι, 〈−,−〉) and (Λi, Vi, ιi, 〈−,−〉i) be polarized NS structures. An exact sequence

(2.1) 0→ (Λ1, V1, ι1)→ (Λ, V, ι)→ (Λ2, V2, ι2)→ 0

in NS is an exact sequence in PNS if the 〈−,−〉 restricts to 〈−,−〉1 on V1, whose orthogonal complement
maps isometrically to (V2, 〈−,−〉2). In this case we have a canonical orthogonal decomposition V = V1⊕V2

and ΛQ = Λ1,Q ⊕ Λ2,Q.

2.4. Lemma. If (Λ, V, ι, 〈−,−〉) is a polarized NS structure which satisfies the Tate condition, then the
generalized σ-eignspace V (σ) of V for eigenvalue 1 is equal to V σ (eigenspace for eigenvalue 1).

Proof. Replacing V by its generalized eigenspace for eigenvalue 1, the pairing is still perfect there. So we
may assume σ is an unipotent element in SO(V ). By Jacobson-Morosov, one can find a homomorphism

φ : SL2 → SO(V ) such that φ
(

1 1
0 1

)
= σ. The diagonal torus in SL2 gives a grading V = ⊕iVi such

that 〈Vi, Vj〉 = 0 for i 6= −j. Clearly V σ ⊂ V≥0. If σ 6= 1, V σ has nonzero intersection with V>0, then
〈V>0 ∩ V σ, V σ〉 = 0, i.e., the pairing on V σ is degenerate. This contradicts the non-degeneracy of the
pairing on Λ⊗Q` = V σ (by Tate’s condition). �

2.5. Example. Let X be a smooth projective surface over a finite field k. Then

(NS(X),H2(Xk,Q`(1)), cl)

is a NS structure where cl : NS(X) → H2(Xk,Q`(1))σ is the cycle class map. The intersection pair-
ing on NS(X) and the cup product pairing on H2(Xk,Q`(1)) with values in H4(Xk,Q`(2)) ∼= Q` make
(NS(X),H2(Xk,Q`(1)), cl,∪) a polarized NS structure. It satisfies the Tate condition if and only if the
Tate conjecture holds for divisors on X.

2.6. Example. Let VZ be a finitely generated abelian group with an action of σ. Then (V σZ , VZ ⊗ Q`, ι)
(where ι is the obvious embedding) is a NS structure that satisfies Tate’s condition.

2.7. Definition. Let (Λ, V, ι, 〈−,−〉) be a polarized NS structure. Define

∆(Λ, V, ι, 〈−,−〉) := det(1− σ|V/V (σ)) · |Λtor|2

Disc(Λ/Λtor, 〈−,−〉)
.

Here V (σ) is the generalized eigenspace of σ on V for eigenvalue 1. We often abbreviate the above quantity
as ∆(Λ, V ).

2.8. More on discriminants. Why is |Λtor|2
Disc(Λ/Λtor)

a natural quantity to consider? Recall for a map
f : A→ B of abelian groups with finite kernel and cokernel, we can define z(f) = | ker(f)|/|coker(f)|. For
any complex C• of abelian groups with bounded and finite homology, we may define z(C•) =

∏
i |HiC|(−1)i .

Applying this construction to the complex A→ B in degrees 0 and 1 recover z(A→ B). This descends to
a homomorphism z : K0(Df (Ab)) → Q×, where Df (Ab) is the derived category of complexes in abelian
groups with bounded and finite homology.

A Z-valued pairing on Λ gives a map Λ→ RHom(Λ,Z) whose cone has finite cohomology if the pairing
is perfect on Λ⊗Q. It is easy to check that

|Λtor|2

Disc(Λ/Λtor)
= z(Λ→ RHom(Λ,Z)).

This measures how far the pairing 〈−,−〉 is from being perfect. We define the discriminant of the pairing
on Λ to be

Disc(Λ) := z(Λ→ RHom(Λ,Z))−1 =
Disc(Λ/Λtor)

|Λtor|2
.

This is consistent with the old definition of Disc in (1.1) for free abelian groups.
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If the pairing on Λ is only Q-valued, we may choose n such that the pairing is 1
nZ-valued. Then we

define

Disc(Λ) :=
z(RHom(Λ,Z)→ RHom(Λ, 1

nZ)

z(Λ→ RHom(Λ, 1
nZ))

The map on the numerator is given by the inclusion Z ↪→ 1
nZ; the map on the denominator is given by

the pairing on Λ. One can check that this is still equal to Disc(Λ/Λtor)
|Λtor|2 (hence independent of n).

More generally, for a pairing Λ1 × Λ2 → Q between finitely generated abelian groups that is perfect
after tensoring with Q, we may define

Disc(Λ1,Λ2) :=
z(RHom(Λ2,Z)→ RHom(Λ2,

1
nZ))

z(Λ1 → RHom(Λ2,
1
nZ))

for sufficiently divisible n.

2.9. Example. In the situation of Example 2.6, suppose further that VZ carries a symmetric bilinear Z-
valued pairing 〈−,−〉 that is perfect on VQ. Then we get a polarized NS structure (V σZ , V = VQ`

, ι, 〈−,−〉).
By Lemma 2.4, we have V (σ) = V σ. One easily calculates

det(1− σ|V/V σ) = ±z(V σZ → VZ,σ)−1.

The sign is positive if σ has finite order. Therefore we have

∆(V σZ , VQ`
) = ±z(V σZ → VZ,σ)−1Disc(V σZ )−1 = ±Disc(V σZ , VZ,σ)−1.

which measures how far the pairing V σZ × VZ,σ → Z (induced from 〈−,−〉) is from being perfect.
For a smooth projective variety X over k and V = H2i(Xk,Q`(i))), we may dream for a “motivic

cohomology lattice” VZ = “H2i(Xk,Z(i))′′ that makes (VZ, V ) into a situation like the one discussed above.
Although VZ does not exist in general, its completion VZ ⊗ Ẑ exists naturally (as Z`-cohomology if V is
Q`-cohomology, for various `), which sometimes works as well as VZ.

The following lemma, which is an easy exercise, describes the behavior of ∆(Λ, V ) under “isogeny”.

2.10. Lemma. Let (Λ, V, ι, 〈−,−〉) be a polarized NS structure. Let α : Λ′ → Λ be a map of abelian groups
with finite kernel and cokernel. Then (Λ′, V, ι ◦ α, 〈−,−〉) is also a polarized NS structure. Moreover, we
have

∆(Λ′, V, ι ◦ α, 〈−,−〉) = ∆(Λ, V, ι ◦ α, 〈−,−〉)z(Λ′ → Λ)2.

The next two lemmas, although both trivial to prove, are the key properties of ∆(Λ, V ) that link the
leading term formulae in Conjectures 1.3 and 1.6.

2.11. Lemma. The map ∆ : Ob(PNS)→ Q×` descends to a homomorphism ∆ : K0(PNS)→ Q×` .

Proof. We need to check that for an exact sequence (2.1), we have

(2.2) ∆(Λ, V ) = ∆(Λ1, V1)∆(Λ2, V2).

Since ΛQ = Λ1,Q ⊕ Λ2,Q isometrically, there is a subgroup Λ′2 ⊂ Λ2 of finite index such that Λ1 ⊕ Λ′2 ⊂ Λ
isometrically, with cokernel Λ2/Λ

′
2. By Lemma 2.10, we have

∆(Λ1 ⊕ Λ′2, V1 ⊕ V2)

∆(Λ, V )
= [Λ2 : Λ′2]−2 =

∆(Λ′2, V2)

∆(Λ2, V2)
.

Since ∆(Λ1 ⊕ Λ′2, V1 ⊕ V2) = ∆(Λ1, V1)∆(Λ′2, V2), we conclude (2.2) from the above identity. �

Consider the following situation. Let (Λ, V, ι, 〈−,−〉) be a polarized NS structure. Let (Γ,W, ′) be an
isotropic subobject of the NS structure (Λ, V, ι) with the trivial σ-action on W . Let Γ′ ⊂ Γ⊥ ⊂ Λ be a
subgroup of finite index, then (Γ′,W⊥, ′) (′ is the restriction of ι to Γ′) is a sub NS structure of (Λ, V, ι).
The subquotient (Γ′/Γ,W⊥/W, , 〈−,−〉) carries a polarization induced from that of V , hence it is an
object of PNS. The following lemma is an easy exercise.
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2.12. Lemma. In the above situation, we have

∆(Λ, V ) = ∆(Γ′/Γ,W⊥/W ) ·Disc(Γ,Λ/Γ′)−2.

In particular, if Γ is free and saturated in Λ, and Γ′ = Γ⊥, then

∆(Λ, V ) = ∆(Γ⊥/Γ,W⊥/W ).

3. Reformulation of the conjectures

Using the notation ∆(Λ, V ), we may reformulate Conjecture 1.3 as

3.1. Conjecture (Reformulation of Artin-Tate).
(1) The NS structure (NS(X),H2(Xk,Q`(1)), cl) satisfies the Tate condition.
(2) Br(X) is finite.
(3) We have

∆(NS(X),H2(Xk,Q`(1)), cl,∪) = q−α(X)|Br(X)|.

Next we give a reformulation of the Conjecture 1.6 in terms of ∆(Λ, V ).

3.2. Fact (The F/k-trace, for more details see [2]). There is an (unique) abelian variety B over k with
a map B ⊗k F → AF and is final for such maps from abelian varieties over k. The above map has finite
infinitesimal kernel. We have B ∼= Pic◦X/k/Pic

0
C/k (note Pic

◦
X/k means the neutral component of PicX/k, for

proof see [3, Prop 4.4]). Moreover, if we view V`(B) as a Gal(F s/F )-module via Gal(F s/F )→ Gal(k/k),
V`(B) is the maximal submodule of V`(A) (which is semisimple as Gal(F s/F )-module) on which the action
of Gal(F s/F ) factors through Gal(k/k).

We assume the following statement, which will be proved in §5.

3.3. Proposition. There is a natural map ι : A(F )/B(k)→ H1(Ck,R
1f∗Q`(1))σ which makes

(A(F )/B(k),H1(Ck,R
1f∗Q`(1)), ι)

a NS structure. Moreover, up to a sign, ι is an isometry with respect to the modified NT pairing on
A(F )/B(k) and the cup product on H1(Ck,R

1f∗Q`(1)), the latter giving a polarization 〈−,−〉A of the
above NS structure.

Note that A(F )/B(k) is a finitely generated abelian group by the theorem of Lang-Néron.

3.4. Conjecture (Refomulation of B-SD).
(1) The NS structure (A(F )/B(k),H1(Ck,R

1f∗Q`(1)), ι) satisfies the Tate condition.
(2) X(AF ) is finite;
(3) We have

(3.1) ∆(A(F )/B(k),H1(Ck,R
1f∗Q`(1)), ι, 〈−,−〉A) = (

∏
v

cv) · q−α(A) · |X(AF )|

where α(A) := degωA/C + n(g − 1) + dimB.

3.5. Lemma. Conjecture (3.4) is equivalent to Conjecture 1.6.

Proof. The L-function L(s,AF ) is attached to the constructible sheaf R1f∗Q` over C. By Grothendieck-
Lefschetz fixed point formula, we have

L(s,AF ) =
det(1− σq−s|H1(Ck,R

1f∗Q`))
det(1− σq−s|H0(Ck,R

1f∗Q`)) det(1− σq−s|H2(Ck,R
1f∗Q`))

.

Let V = H1(Ck,R
1f∗Q`(1)). By Fact 3.2, V`(B)∗ as a geometrically constant sheaf on C exhausts the geo-

metrically constant constituents ofR1f∗Q` (as a shifted perverse sheaf on Ck). Therefore H
0(Ck,R

1f∗Q`) ∼=
V`(B)∗ as Gal(k/k)-modules, and by duality H2(Ck,R

1f∗Q`) ∼= V`(B)∗(−1) as Gal(k/k)-modules. We get

(3.2) L(s,AF ) =
det(1− σq1−s|V )

det(1− σq−s|V`(B)∗) det(1− σq1−s|V`(B)∗)
.
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Consider the rank part of the conjectures. Since the eigenvalues of σ on V`(B) are q-Weil numbers of
weight −1, the denominator above does not vanish at s = 1. Therefore L(s,AF ) and det(1 − σq1−s|V )
have the same vanishing order at s = 1, which is r = dimV (σ) (generalized eigenspace). From the fact
that (A(F )/B(k), V, ι) is a NS structure we see that

(3.3) rkA(F ) = rkA(F )/B(k) ≤ dimV σ ≤ dimV (σ) = r

If the L(s,AF ) has order rkA(F ), then all equalities hold, and in particular rkA(F )/B(k) = dimV σ which
says that (A(F )/B(k), V, ι) satisfies the Tate condition. Conversely, if (A(F )/B(k), V, ι) satisfies the Tate
condition, then V σ = V (σ) by Lemma 2.4, hence again all inequalities (3.3) are equalities, and in particular
the vanishing order r of L(s,AF ) is rkA(F ).

Now we may assume the rank part of both conjectures and compare the leading coefficients of L(s,AF )
and det(1− σq1−s|V ). By (3.2), we have

lim
s→1

L(s,AF )

(1− q1−s)r
= lim
s→1

det(1− σq1−s|V )

(1− q1−s)r
· 1

det(1− σq−1|V`(B)∗) det(1− σ|V`(B)∗)
.

Since

lim
s→1

det(1− σq1−s|V )

(1− q1−s)r
= det(1− σ|V/V (σ)) = det(1− σ|V/V σ);

det(1− σ|V`(B)∗) = |B(k)|;
det(1− σq−1|V`(B)∗) = q− dimB |B(k)|.

Therefore

lim
s→1

L(s,AF )

(1− q1−s)r
= qdimB |B(k)|−2 det(1− σ|V/V σ).

By definition,

∆(A(F )/B(k), V ) =
det(1− σ|V/V (σ))

Disc(A(F )/B(k))
=

det(1− σ|V/V σ)

Disc(A(F ))|B(k)|2
.

Therefore

lim
s→1

L(s,AF )

(1− q1−s)r
= qdimBDisc(A(F ))∆(A(F )/B(k), V )

= qdimBDisc(A(F )/A(F )tor)

|A(F )tor|2
∆(A(F )/B(k), V )

whence the equivalence of two leading term formulae (1.3) and (3.1). �

4. Structure of the proof

The proof of Theorem 1.7 is accomplished by the following steps.

4.1. NS structures attached to bad fibers. Let v ∈ |C| be a place. Let Xv,1, · · · , Xv,hi
be the reduced

irreducible components, each being an integral curve with field of constants k(v)i/k(v). Inside NS(X),
write Xv =

∑
imiXv,i where mi is the length of Xv at the generic point of Xv,i. We may assume that the

section γ(C) passes (only) through Xv,1 (at necessarily a k(v) point in the smooth locus of Xv,1), forcing
k(v)1 = k(v) and m1 = 1.

Let Dv be the free abelian group with basis {Xv,1, · · · , Xv,m}. Let

Λv := Dv/Z ·Xv.

Since m1 = 1, Λv is a free-abelian group with a basis given by the images of {Xv,2, · · · , Xv,hi}. Similarly,
base changing to Xv ⊗k k (tensor over k, not k(v)), we have similar lattices Dv,k with basis given by the
irreducible components of Xv ⊗k k and quotient

Λv,k := Dv,k/Span{Xs; s ∈ C(k) over v}.



AT⇐⇒BSD 7

Then Λv,k is a free abelian group with a σ-action and an intersection pairing. By the Hodge Index
Theorem, the intersection pairing on Λv,k is negative definite. Clearly Λv = Λσ

v,k
. As in Example 2.6, we

may form the polarized NS structure
(Λv,Λv,k ⊗Z Q`)

which is zero if Xv is irreducible.

4.2. Proposition. There is a 3-step filtration of the object (NS(X),H2(Xk,Q`(1)), cl) ∈ NS:

0 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = (NS(X),H2(Xk,Q`(1)), cl)

with the following properties.
• Fil2 = (ZΦ,H2(Ck,Q`(1)) = Q` · cl(Φ)), where Φ ∈ NS(X) is the class of any divisor f−1(E),
where E is a divisor on C of degree 1;

• Fil1 = (Fil0)⊥, Gr0 ∼= (Zγ(C),Q`), i.e., Gr0NS(X) is generated by the image of γ(C);
• Gr1 = (Fil2)⊥/Fil2 is a polarized NS structure admitting a short exact sequence in the category
PNS:

0→ ⊕v(Λv,Λv,k ⊗Q`)→ Gr1(NS(X),H2(Xk,Q`(1)))→ (A(F )/B(k),H1(Ck,R
1f∗Q`(1)))→ 0.

Applying Lemma 2.12 to the above filtration and Lemma 2.11 to Gr1 of the filtration, we get

4.3. Corollary. The NS structure (NS(X),H2(Xk,Q`(1)), cl) satisfies the Tate condition if and only if
(A(F )/B(k),H1(Ck,R

1f∗Q`(1)), ι) does. When they satisfy the Tate condition, we have

∆(NS(X),H2(Xk,Q`(1))) = ∆(A(F )/B(k),H1(Ck,R
1f∗Q`(1)))

∏
v

∆(Λv,Λv,k ⊗Q`).

Using this corollary, comparing the Conjectures 3.1 and 3.4, their equivalence then follows from the
combination of the three statements below.

4.4. Theorem (Artin, Grothendieck [4, §4]). There is a canonical isomorphism

X(AF ) ∼= Br(X).

4.5. Proposition. For each v ∈ |C| we have

∆(Λv,Λv,k ⊗Q`) = c−1
v .

4.6. Proposition. We have

(4.1) α(X) = α(A).

5. More details

5.1. Sketch of proof of Prop 3.3 and Prop 4.2. Leray-spectral sequence for the fibbration f : Xk → Ck
degenerates at E2, giving a filtration on V := H2(Xk,Q`(1)):

0 ⊂ L2V ⊂ L1V ⊂ L0V = V

with associated graded

Gr2LV = H2(Ck,R
0f∗Q`(1)) = H2(Ck,Q`(1)) ∼= Q`;

Gr1LV = H1(Ck,R
1f∗Q`(1));Gr0LV = H0(Ck,R

2f∗Q`(1)).

Note the argument for degeneration at E2 uses the Hodge Index theorem (negative definiteness of the
intersection pairing on Λv,k).

The sheaf R2f∗Q`(1) over Ck admits a further filtration

0→ ⊕s∈C(k)is,∗Ws → R2f∗Q`(1)→ Q` → 0.
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Here each is : Spec k ↪→ Ck is the inclusion of a geometric point, and Ws = ker(H2(Xs,Q`(1)) → Q`)
given by integration along Xs. We have a natural isomorphism of Gal(k/k)-modules

⊕C(k)3s over vWs
∼= Hom(Λv,k,Q`)

given by the pairing between the divisor group Λv,k and the cohomology group H2(Xs,Q`(1)), which is
perfect by the Hodge Index Theorem. In particular, we have

0→ ⊕vHom(Λv,k,Q`)→ Gr2LV → Q` → 0.

If we combine Gr1LV with the ⊕s∈C(k)Ws part of Gr0LV , and renumber the filtration steps, we get a
filtration

0 ⊂ Fil2V ⊂ Fil1V ⊂ Fil0V = V

with Fil2V = L2V and Fil1V = (Fil2V )⊥, and

(5.1) 0→ H1(Ck,R
1f∗Q`(1))→ Gr1FilV → ⊕vHom(Λv,k,Q`)→ 0.

We remark that this is the filtration on V induced from the perverse filtration of the complex Rf∗Q`. In
general, the perverse filtration behaves better than the filtration FiliV in that it satisfies Poincaré duality
and Hard Lefschetz.

We consider a similar filtration on NS(X):

0 ⊂ Fil2NS(X) ⊂ Fil1NS(X) ⊂ Fil0NS(X) = NS(X)

as designated by Prop 4.2, i.e., Fil2NS(X) = ZΦ and Fil1NS(X) = (Fil2NS(X))⊥, which consists of all
divisor classes with total degree 0 long fibers of f . Since γ(C) · Φ = 1, Gr2NS(X) is freely generated by
the image of γ(C). We have a similar filtration on NS(Xk).

Let NS(X)ver ⊂ NS(X) be generated by the irreducible components of all fibers of f . Note that there
is a canonical isomorphism.

NS(X)ver/ZΦ ∼= ⊕vΛv
Then we have a further filtration of Gr1NS(X)

0→ ⊕vΛv → Gr1NS(X)→ Gr1NS(X)hor → 0.

where Gr1NS(X)hor is defined to be the quotient. Similarly, we have an inclusion

⊕vΛv,k ↪→ Gr1NS(Xk).

5.2. Theorem (Shioda-Tate, see [3, Prop 4.5], [7, Prop 4.1]). The above map induces an isomorphism

Gr1NS(X)hor
∼→ A(F )/B(k).

Sketch of proof. Let Div0(X) ⊂ Div(X) be the divisors whose intersection number with any fiber of f is
zero. Restricting a divisor on X to its generic fiber gives τ : Div0(X) → Pic(X) → Pic0(XF ) = A(F ),
which is surjective (set-theoretic inverse given by taking closure). Now let Divalg(X) = ker(Div0(X) →
Fil1NS(X)) be those divisors algebraically equivalent to zero. Then τ restricts to Divalg(X)→ Pic◦(X)→
A(F ), the latter map comes from Pic◦X/k×Spec k Spec F → AF hence lands in the F/k-trace B. Therefore
τ(Divalg(X)) ⊂ B(k), and τ induces τ : Fil1NS(X) → A(F )/B(k). Since vertical divisors are mapped to
0 under τ , τ factors through

Gr1NS(X)hor → A(F )/B(k).

The fact this is an isomorphism follows from the surjectivity of Pic◦X/k → B (see [3, Prop 4.4]). �

To summarize, we have an exact sequence

(5.2) 0→ ⊕vΛv → Gr1NS(X)→ A(F )/B(k)→ 0.

Now consider the cycle class map cl : NS(Xk) ⊗ Q` → V . It is easy to see that this map is strictly
compatible with the filtrations denoted by Fil. Now we consider cl : Gr1NS(Xk)→ Gr1FilV . The map

⊕vΛv,k ⊂ Gr1NS(Xk)
cl−→ Gr1FilV � ⊕vHom(Λv,k,Q`)
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is given by the intersection pairing is an isomorphism after tensoring the source by Q`. Therefore, the
exact sequence (5.1) admits a canonical splitting

(5.3) Gr1FilV
∼= (⊕vΛv ⊗Q`)⊕H1(Ck,R

1f∗Q`(1)).

Moreover this is an orthogonal decomposition. The exact sequence (5.2) induces

ι : A(F )/B(k) ∼= Gr1NS(X)/⊕v Λv → Gr1FilV/(⊕vΛv,k ⊗Q`) ∼= H1(Ck,R
1f∗Q`(1))

whose image lies in the σ-invariants. This makes (A(F )/B(k),H1(Ck,R
1f∗Q`(1))) into a NS structure.

5.3. Fact (Tate). For α, β ∈ A(F ), if we extend them to divisors α̃, β̃ (with Q-coefficients in general) with
zero intersection with all vertical divisors, then we have

〈α, β〉NT = −〈α̃, β̃〉 log(q).

Since α̃ is orthogonal to all vertical divisors, cl(α̃) has image (0, ι(α)) ∈ Gr1FilV under the decomposition
(5.3). Therefore, ι respects the negated modified NT pairing on A(F )/B(k) and the cup product pairing
on H1(Ck,R

1f∗Q`(1)). This finishes the proof of Prop 3.3.
Using the splitting (5.3), we may view ⊕vΛv,k⊗Q` as a sub of Gr1FilV with quotient H1(Ck,R

1f∗Q`(1)),
forming a new filtration of Gr1FilV compatible with the filtration (5.2) on Gr1NS(X). This proves Prop
4.2. �

5.4. Proof of Prop 4.5. For simplicity let L = Λv,k. This is the free abelian group with basis given by
irreducible components of Xv ⊗k k. The σ-action is by permuting this basis. In particular, both Lσ and
Lσ are free Z-modules. The NS structure (Λv,Λv,k ⊗Q`) = (Lσ, L⊗Q`) fits into Example 2.6. According
to the calculations there, we have

∆(Λv,Λv,k ⊗Q`) = z(Lσ → Hom(Lσ,Z))

is the reciprocal of the discriminant of the pairing between Lσ and Lσ. The pairing on L gives

0→ L→ L∨ → Q→ 0

for some finite abelian group Q whose order is Disc(L). Taking σ-invariants gives an exact sequence

0→ Lσ → (L∨)σ → Qσ → Lσ

Since Lσ is free while Qσ is finite, the last map is zero hence Qσ = (L∨)σ/Lσ = Hom(Lσ,Z)/Lσ whose
order is then z(Lσ → Hom(Lσ,Z))−1. We reduce the problem to showing that

|Qσ| = cv = [Av(k(v)) : A◦v(k(v))] = π0(Av ⊗k k)σ,

where the last equality uses Lang’s theorem to A0
v. This follows from the isomorphism of σ-modules ([1,

9.5, Thm 4])

Q ∼= π0(Av ⊗k k).

Idea of proof: we may replace C by its strict henselization at v, therefore consider X over a strict henselian
DV R R with fraction field K and closed point s, and define L accordingly. In this case, the Néron model A
over R may be obtained as the quotient P/E, where P ⊂ PicX/R is the open subgroup scheme consisting of
line bundles with total degree zero on fibers of X → Spec R, and E is the closure of the identity section of
PK (P/E is the maximal separated quotient of P ). Then π0(Ps) can be identified with L∨ (by evaluating
degrees along each component of Xs) and E(R) ∼= L (line bundles trivial on the generic fiber are of the
form O(D) for divisors D supported on the special fiber), and the natural map E(R) → P (R) → π0(Ps)
coincides with the map L→ L∨ given by the intersection pairing. �
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5.5. Proof of Prop 4.6. Since Pic◦X/C ∼= A◦, we have det(R1f∗OX) ∼= ω−1
A/C . Applying Riemann-Roch

to R1f∗OX we get
χ(C,R1f∗OX) = −degωA/C − n(g − 1).

Therefore

α(X) = χ(C,OC)− χ(C,R1f∗OX)− 1 + dimPic◦X/k = degωA/C + n(g − 1) + dimPic◦X/k − g.

Since B ∼= Pic◦X/k/Pic
0
C/k, we get dimPic◦X/k − g = dimB, hence the formula (4.1). �
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