THE EQUIVALENCE OF ARTIN–TATE AND BIRCH–SWINNERTON-DYER CONJECTURES

ZHIWEI YUN

Contents

1.	Statement of the conjectures	1
2.	Néron-Severi structures	2
3.	Reformulation of the conjectures	Ę
4.	Structure of the proof	ϵ
5.	More details	7
References		10

We follow the ideas of Gordon [3] (who seems to follow the sketch of Tate [6, p.427-430]), with minor modifications:

- (1) We make a simplifying assumption that the fibered surface $X \to C$ has a section;
- (2) We introduce the notion of Néron-Severi structures to clean up the combinatorics.

1. Statement of the conjectures

1.1. **Setup.** Let k be a finite field with q elements. Let $\sigma \in \operatorname{Gal}(\overline{k}/k)$ denote the geometric Frobenius. Let $p = \operatorname{char}(k)$ and let $\ell \neq p$ be a prime number.

Let C be a smooth, projective and geometrically connected curve over k of genus g. Let F = k(C) be the function field of C. Let |C| be the set of closed points of C. For $v \in |C|$, let $\mathcal{O}_v, F_v, k(v)$ be the completed local ring at v, its fraction field and residue field.

Let X be a smooth projective surface over k and $f: X \to C$ be a flat morphism such that the generic fiber X_F is a smooth and geometrically connected curve over F. Assume also:

• $X(F) \neq \emptyset$; equivalently f admits a section $\gamma: C \to X$.

Let NS(X) be the Néron-Severi group of X, i.e., divisors on X modulo algebraic equivalence. This is a finitely generated abelian group equipped with a non-degenerate symmetric bilinear pairing into \mathbb{Z} .

Notation: for any free abelian group Λ with a non-degenerate symmetric bilinear pairing $\langle -, - \rangle$: $\Lambda \times \Lambda \to \mathbb{C}$ we denote

(1.1)
$$\operatorname{Disc}(\Lambda) := |\det(\langle \lambda_i, \lambda_j \rangle)|$$

be the absolute value of the Gram matrix formed by any \mathbb{Z} -basis $\{\lambda_i\}$ of Λ .

- 1.2. Fact (Raynaud [5, Th 7.2.1]). In our situation, f is cohomologically flat, i.e., for any geometric point $s \in C$, we have $h^0(X_s, \mathcal{O}_{X_s}) = 1$ and $h^1(X_s, \mathcal{O}_{X_s}) = n$ is independent of s. Therefore $\mathbf{R}^1 f_* \mathcal{O}_X$ is locally free of rank n over C.
- 1.3. Conjecture (Artin-Tate [6, p. 426, (C)]).

(1) Let
$$P_2(X, q^{-s}) := \det(1 - \sigma q^{-s} | H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}))$$
. Then

$$\operatorname{ord}_{s=1} P_2(X, q^{-s}) = \operatorname{rkNS}(X).$$

Date: Jan 6, 2016.

- (2) The Brauer group $Br(X) = H^2_{\text{\'et}}(X, \mathbb{G}_m)$ is finite;
- (3) $As s \rightarrow 1$, we have

$$P_2(X, q^{-s}) \sim (1 - q^{1-s})^{\operatorname{rkNS}(X)} \frac{\operatorname{Disc}(\operatorname{NS}(X)/\operatorname{NS}(X)_{\operatorname{tor}})}{|\operatorname{NS}(X)_{\operatorname{tor}}|^2} \cdot q^{-\alpha(X)} \cdot |\operatorname{Br}(X)|.$$

where
$$\alpha(X) = \chi(X, \mathcal{O}_X) - 1 + \dim \operatorname{Pic}_{X/k}^{\circ}$$
.

1.4. Jacobian and Néron model. Let $A_F = \operatorname{Pic}_{X_F/F}^0$ be the Jacobian of the curve X_F . This is a principally polarized abelian variety over Spec F. Let A be its Néron model over C. Let A° be the fiberwise neutral component of A. Let $\omega_{A/C}$ be the sheaf of relative top differential forms on $A \to C$, viewed as a line bundle on C via the identity section.

For each place v of C, let A_v denote the fiber of A over Spec k(v). Let $c_v = [A_v(k(v)) : A_v^{\circ}(k(v))]$ be the Tamagawa factor at v.

- 1.5. Fact ([1]). In our situation, the relative Picard functor $\operatorname{Pic}_{X/C}$ is represented by an algebraic space. Let $\operatorname{Pic}_{X/C}^{\circ}$ be the fiberwise neutral component of $\operatorname{Pic}_{X/C}$. Then $\operatorname{Pic}_{X/C}^{\circ}$ is a smooth group scheme of finite type over C. The canonical map $\operatorname{Pic}_{X/C}^{\circ} \to A^{\circ}$ (by the Néron mapping property) is an isomorphism.
- 1.6. Conjecture (Birch-Swinnerton-Dyer [6, p.419, (B)]).
 - (1) Let $L(s, A_F)$ be the complete L-function for the abelian variety A_F over F. Then

$$\operatorname{ord}_{s=1} L(s, A_F) = \operatorname{rk} A(F).$$

- (2) $\coprod (A_F)$ is finite.
- (3) $As s \rightarrow 1$, we have

(1.2)
$$L(s, A_F) \sim (s-1)^{\operatorname{rk} A(F)} \frac{\operatorname{Disc}_{NT}(A(F)/A(F)_{\operatorname{tor}})}{|A(F)_{\operatorname{tor}}|^2} \cdot (\prod_{v} c_v) \cdot q^{-\operatorname{deg} \omega_{A/C} - n(g-1)} \cdot |\operatorname{III}(A_F)|$$

In (1.2) we put Disc_{NT} to emphasize that we are using the Néron-Tate pairing on $A(F)/A(F)_{\text{tor}}$, which takes values in $\mathbb{Q} \log(q)$ (see §5.3). If we divide the Néron-Tate by $\log(q)$ (we call it the modified NT pairing), we denote the discriminant of the resulting pairing on $A(F)/A(F)_{\text{tor}}$ simply by $\operatorname{Disc}(A(F)/A(F)_{\text{tor}})$. After change of variables $s \mapsto q^{-s}$, (1.2) is equivalent to

(1.3)
$$L(s, A_F) \sim (1 - q^{1-s})^{\operatorname{rk} A(F)} \frac{\operatorname{Disc}(A(F)/A(F)_{\operatorname{tor}})}{|A(F)_{\operatorname{tor}}|^2} \cdot (\prod_v c_v) \cdot q^{-\deg \omega_{A/C} - n(g-1)} \cdot |\operatorname{III}(A_F)|.$$

We will sketch a proof of the following result.

1.7. Theorem (Gordon, conjectured by Tate [6, p.427, (d)]). Conjectures 1.3 and 1.6 are equivalent.

2. Néron-Severi structures

- 2.1. **Definition.** A Néron-Severi structure (NS structure for short) is a triple (Λ, V, ι) where
 - (1) Λ is a finitely generated abelian group;
 - (2) V is a finite-dimensional \mathbb{Q}_{ℓ} -vector space with a \mathbb{Q}_{ℓ} -linear automorphism σ ;
 - (3) ι is a map of abelian groups $\Lambda \to V^{\sigma}$.

A NS structure (Λ, V, ι) satisfies the *Tate condition* if ι induces an isomorphism

$$\Lambda \otimes_{\mathbb{Z}} \mathbb{O}_{\ell} \xrightarrow{\sim} V^{\sigma}$$
.

There is an obvious notion of morphisms between NS structures, making NS structures an abelian category NS with a monoidal structure given by the tensor product.

2.2. **Definition.** A polarization on a NS structure (Λ, V, ι) is a symmetric bilinear σ -invariant perfect pairing

$$\langle -, - \rangle : V \times V \to \mathbb{Q}_{\ell}$$

such that its pullback to $\Lambda \times \Lambda$ takes values in \mathbb{Q} , and is perfect on $\Lambda_{\mathbb{Q}}$.

 $AT \iff BSD$ 3

Note that a polarization on (Λ, V, ι) forces $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \to V^{\sigma}$ to be injective. Polarized NS structures form an exact category \mathcal{PNS} under the following definition of short exact sequences.

2.3. **Definition.** Let $(\Lambda, V, \iota, \langle -, - \rangle)$ and $(\Lambda_i, V_i, \iota_i, \langle -, - \rangle_i)$ be polarized NS structures. An exact sequence (2.1) $0 \to (\Lambda_1, V_1, \iota_1) \to (\Lambda, V, \iota) \to (\Lambda_2, V_2, \iota_2) \to 0$

in \mathcal{NS} is an exact sequence in \mathcal{PNS} if the $\langle -, - \rangle$ restricts to $\langle -, - \rangle_1$ on V_1 , whose orthogonal complement maps isometrically to $(V_2, \langle -, - \rangle_2)$. In this case we have a canonical orthogonal decomposition $V = V_1 \oplus V_2$ and $\Lambda_{\mathbb{Q}} = \Lambda_{1,\mathbb{Q}} \oplus \Lambda_{2,\mathbb{Q}}$.

2.4. **Lemma.** If $(\Lambda, V, \iota, \langle -, - \rangle)$ is a polarized NS structure which satisfies the Tate condition, then the generalized σ -eignspace $V^{(\sigma)}$ of V for eigenvalue 1 is equal to V^{σ} (eigenspace for eigenvalue 1).

Proof. Replacing V by its generalized eigenspace for eigenvalue 1, the pairing is still perfect there. So we may assume σ is an unipotent element in $\mathrm{SO}(V)$. By Jacobson-Morosov, one can find a homomorphism $\phi: \mathrm{SL}_2 \to \mathrm{SO}(V)$ such that $\phi \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \sigma$. The diagonal torus in SL_2 gives a grading $V = \oplus_i V_i$ such that $\langle V_i, V_j \rangle = 0$ for $i \neq -j$. Clearly $V^{\sigma} \subset V_{\geq 0}$. If $\sigma \neq 1$, V^{σ} has nonzero intersection with $V_{>0}$, then $\langle V_{>0} \cap V^{\sigma}, V^{\sigma} \rangle = 0$, i.e., the pairing on V^{σ} is degenerate. This contradicts the non-degeneracy of the pairing on $\Lambda \otimes \mathbb{Q}_{\ell} = V^{\sigma}$ (by Tate's condition).

2.5. **Example.** Let X be a smooth projective surface over a finite field k. Then

$$(NS(X), H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1)), cl)$$

is a NS structure where $cl: \mathrm{NS}(X) \to \mathrm{H}^2(X_{\overline{k}}, \mathbb{Q}_\ell(1))^\sigma$ is the cycle class map. The intersection pairing on $\mathrm{NS}(X)$ and the cup product pairing on $\mathrm{H}^2(X_{\overline{k}}, \mathbb{Q}_\ell(1))$ with values in $\mathrm{H}^4(X_{\overline{k}}, \mathbb{Q}_\ell(2)) \cong \mathbb{Q}_\ell$ make $(\mathrm{NS}(X), \mathrm{H}^2(X_{\overline{k}}, \mathbb{Q}_\ell(1)), cl, \cup)$ a polarized NS structure. It satisfies the Tate condition if and only if the Tate conjecture holds for divisors on X.

- 2.6. **Example.** Let $V_{\mathbb{Z}}$ be a finitely generated abelian group with an action of σ . Then $(V_{\mathbb{Z}}^{\sigma}, V_{\mathbb{Z}} \otimes \mathbb{Q}_{\ell}, \iota)$ (where ι is the obvious embedding) is a NS structure that satisfies Tate's condition.
- 2.7. **Definition.** Let $(\Lambda, V, \iota, \langle -, \rangle)$ be a polarized NS structure. Define

$$\Delta(\Lambda, V, \iota, \langle -, - \rangle) := \det(1 - \sigma | V / V^{(\sigma)}) \cdot \frac{|\Lambda_{\text{tor}}|^2}{\operatorname{Disc}(\Lambda / \Lambda_{\text{tor}}, \langle -, - \rangle)}.$$

Here $V^{(\sigma)}$ is the generalized eigenspace of σ on V for eigenvalue 1. We often abbreviate the above quantity as $\Delta(\Lambda, V)$.

2.8. More on discriminants. Why is $\frac{|\Lambda_{\text{tor}}|^2}{\text{Disc}(\Lambda/\Lambda_{\text{tor}})}$ a natural quantity to consider? Recall for a map $f:A\to B$ of abelian groups with finite kernel and cokernel, we can define $z(f)=|\ker(f)|/|\operatorname{coker}(f)|$. For any complex C_{\bullet} of abelian groups with bounded and finite homology, we may define $z(C_{\bullet})=\prod_{i}|\mathrm{H}_{i}C|^{(-1)^{i}}$. Applying this construction to the complex $A\to B$ in degrees 0 and 1 recover $z(A\to B)$. This descends to a homomorphism $z:K_{0}(D_{f}(\mathfrak{Ab}))\to \mathbb{Q}^{\times}$, where $D_{f}(\mathfrak{Ab})$ is the derived category of complexes in abelian groups with bounded and finite homology.

A \mathbb{Z} -valued pairing on Λ gives a map $\Lambda \to \mathbf{R}\mathrm{Hom}(\Lambda,\mathbb{Z})$ whose cone has finite cohomology if the pairing is perfect on $\Lambda \otimes \mathbb{Q}$. It is easy to check that

$$\frac{|\Lambda_{\mathrm{tor}}|^2}{\mathrm{Disc}(\Lambda/\Lambda_{\mathrm{tor}})} = z(\Lambda \to \mathbf{R}\mathrm{Hom}(\Lambda,\mathbb{Z})).$$

This measures how far the pairing $\langle -, - \rangle$ is from being perfect. We define the discriminant of the pairing on Λ to be

$$\operatorname{Disc}(\Lambda) := z(\Lambda \to \mathbf{R}\operatorname{Hom}(\Lambda,\mathbb{Z}))^{-1} = \frac{\operatorname{Disc}(\Lambda/\Lambda_{\operatorname{tor}})}{|\Lambda_{\operatorname{tor}}|^2}.$$

This is consistent with the old definition of Disc in (1.1) for free abelian groups.

If the pairing on Λ is only \mathbb{Q} -valued, we may choose n such that the pairing is $\frac{1}{n}\mathbb{Z}$ -valued. Then we define

$$\operatorname{Disc}(\Lambda) := \frac{z(\mathbf{R}\operatorname{Hom}(\Lambda, \mathbb{Z}) \to \mathbf{R}\operatorname{Hom}(\Lambda, \frac{1}{n}\mathbb{Z})}{z(\Lambda \to \mathbf{R}\operatorname{Hom}(\Lambda, \frac{1}{n}\mathbb{Z}))}$$

The map on the numerator is given by the inclusion $\mathbb{Z} \hookrightarrow \frac{1}{n}\mathbb{Z}$; the map on the denominator is given by the pairing on Λ . One can check that this is still equal to $\frac{n}{|\Lambda_{\text{tor}}|^2}$ (hence independent of n). More generally, for a pairing $\Lambda_1 \times \Lambda_2 \to \mathbb{Q}$ between finitely generated abelian groups that is perfect

after tensoring with \mathbb{Q} , we may define

$$\operatorname{Disc}(\Lambda_1, \Lambda_2) := \frac{z(\mathbf{R}\operatorname{Hom}(\Lambda_2, \mathbb{Z}) \to \mathbf{R}\operatorname{Hom}(\Lambda_2, \frac{1}{n}\mathbb{Z}))}{z(\Lambda_1 \to \mathbf{R}\operatorname{Hom}(\Lambda_2, \frac{1}{n}\mathbb{Z}))}$$

for sufficiently divisible n.

2.9. **Example.** In the situation of Example 2.6, suppose further that $V_{\mathbb{Z}}$ carries a symmetric bilinear \mathbb{Z} valued pairing $\langle -, - \rangle$ that is perfect on $V_{\mathbb{Q}}$. Then we get a polarized NS structure $(V_{\mathbb{Z}}^{\sigma}, V = V_{\mathbb{Q}_{\ell}}, \iota, \langle -, - \rangle)$. By Lemma 2.4, we have $V^{(\sigma)} = V^{\sigma}$. One easily calculates

$$\det(1 - \sigma | V/V^{\sigma}) = \pm z(V_{\mathbb{Z}}^{\sigma} \to V_{\mathbb{Z},\sigma})^{-1}.$$

The sign is positive if σ has finite order. Therefore we have

$$\Delta(V_{\mathbb{Z}}^{\sigma}, V_{\mathbb{Q}_{\ell}}) = \pm z(V_{\mathbb{Z}}^{\sigma} \to V_{\mathbb{Z}, \sigma})^{-1} \operatorname{Disc}(V_{\mathbb{Z}}^{\sigma})^{-1} = \pm \operatorname{Disc}(V_{\mathbb{Z}}^{\sigma}, V_{\mathbb{Z}, \sigma})^{-1}.$$

which measures how far the pairing $V_{\mathbb{Z}}^{\sigma} \times V_{\mathbb{Z},\sigma} \to \mathbb{Z}$ (induced from $\langle -, - \rangle$) is from being perfect.

For a smooth projective variety X over k and $V = H^{2i}(X_{\overline{k}}, \mathbb{Q}_{\ell}(i))$, we may dream for a "motivic cohomology lattice" $V_{\mathbb{Z}} = \text{"H}^{2i}(X_{\overline{k}}, \mathbb{Z}(i))$ " that makes $(V_{\mathbb{Z}}, V)$ into a situation like the one discussed above. Although $V_{\mathbb{Z}}$ does not exist in general, its completion $V_{\mathbb{Z}} \otimes \widehat{\mathbb{Z}}$ exists naturally (as \mathbb{Z}_{ℓ} -cohomology if V is \mathbb{Q}_{ℓ} -cohomology, for various ℓ), which sometimes works as well as $V_{\mathbb{Z}}$.

The following lemma, which is an easy exercise, describes the behavior of $\Delta(\Lambda, V)$ under "isogeny".

2.10. **Lemma.** Let $(\Lambda, V, \iota, \langle -, - \rangle)$ be a polarized NS structure. Let $\alpha : \Lambda' \to \Lambda$ be a map of abelian groups with finite kernel and cokernel. Then $(\Lambda', V, \iota \circ \alpha, \langle -, - \rangle)$ is also a polarized NS structure. Moreover, we have

$$\Delta(\Lambda', V, \iota \circ \alpha, \langle -, - \rangle) = \Delta(\Lambda, V, \iota \circ \alpha, \langle -, - \rangle) z(\Lambda' \to \Lambda)^2.$$

The next two lemmas, although both trivial to prove, are the key properties of $\Delta(\Lambda, V)$ that link the leading term formulae in Conjectures 1.3 and 1.6.

2.11. **Lemma.** The map $\Delta : \mathrm{Ob}(\mathcal{PNS}) \to \mathbb{Q}_{\ell}^{\times}$ descends to a homomorphism $\Delta : K_0(\mathcal{PNS}) \to \mathbb{Q}_{\ell}^{\times}$.

Proof. We need to check that for an exact sequence (2.1), we have

(2.2)
$$\Delta(\Lambda, V) = \Delta(\Lambda_1, V_1)\Delta(\Lambda_2, V_2).$$

Since $\Lambda_{\mathbb{Q}} = \Lambda_{1,\mathbb{Q}} \oplus \Lambda_{2,\mathbb{Q}}$ isometrically, there is a subgroup $\Lambda_2' \subset \Lambda_2$ of finite index such that $\Lambda_1 \oplus \Lambda_2' \subset \Lambda_2$ isometrically, with cokernel Λ_2/Λ_2' . By Lemma 2.10, we have

$$\frac{\Delta(\Lambda_1 \oplus \Lambda_2', V_1 \oplus V_2)}{\Delta(\Lambda, V)} = [\Lambda_2 : \Lambda_2']^{-2} = \frac{\Delta(\Lambda_2', V_2)}{\Delta(\Lambda_2, V_2)}.$$

Since $\Delta(\Lambda_1 \oplus \Lambda'_2, V_1 \oplus V_2) = \Delta(\Lambda_1, V_1)\Delta(\Lambda'_2, V_2)$, we conclude (2.2) from the above identity.

Consider the following situation. Let $(\Lambda, V, \iota, \langle -, - \rangle)$ be a polarized NS structure. Let (Γ, W, \jmath') be an isotropic subobject of the NS structure (Λ, V, ι) with the trivial σ -action on W. Let $\Gamma' \subset \Gamma^{\perp} \subset \Lambda$ be a subgroup of finite index, then (Γ', W^{\perp}, j') (j') is the restriction of ι to Γ' is a sub NS structure of (Λ, V, ι) . The subquotient $(\Gamma'/\Gamma, W^{\perp}/W, \bar{\jmath}, \langle -, - \rangle)$ carries a polarization induced from that of V, hence it is an object of \mathcal{PNS} . The following lemma is an easy exercise.

 $AT \iff BSD$ 5

2.12. **Lemma.** In the above situation, we have

$$\Delta(\Lambda, V) = \Delta(\Gamma'/\Gamma, W^{\perp}/W) \cdot \mathrm{Disc}(\Gamma, \Lambda/\Gamma')^{-2}$$
.

In particular, if Γ is free and saturated in Λ , and $\Gamma' = \Gamma^{\perp}$, then

$$\Delta(\Lambda, V) = \Delta(\Gamma^{\perp}/\Gamma, W^{\perp}/W).$$

3. Reformulation of the conjectures

Using the notation $\Delta(\Lambda, V)$, we may reformulate Conjecture 1.3 as

- 3.1. Conjecture (Reformulation of Artin-Tate).
 - (1) The NS structure (NS(X), $H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1))$, cl) satisfies the Tate condition.
 - (2) Br(X) is finite.
 - (3) We have

$$\Delta(NS(X), H^2(X_{\overline{L}}, \mathbb{Q}_{\ell}(1)), cl, \cup) = q^{-\alpha(X)}|Br(X)|.$$

Next we give a reformulation of the Conjecture 1.6 in terms of $\Delta(\Lambda, V)$.

3.2. Fact (The F/k-trace, for more details see [2]). There is an (unique) abelian variety B over k with a map $B \otimes_k F \to A_F$ and is final for such maps from abelian varieties over k. The above map has finite infinitesimal kernel. We have $B \cong \operatorname{Pic}_{X/k}^{\circ}/\operatorname{Pic}_{C/k}^{0}$ (note $\operatorname{Pic}_{X/k}^{\circ}$ means the neutral component of $\operatorname{Pic}_{X/k}$, for proof see [3, Prop 4.4]). Moreover, if we view $V_{\ell}(B)$ as a $\operatorname{Gal}(F^s/F)$ -module via $\operatorname{Gal}(F^s/F) \to \operatorname{Gal}(\overline{k}/k)$, $V_{\ell}(B)$ is the maximal submodule of $V_{\ell}(A)$ (which is semisimple as $\operatorname{Gal}(F^s/F)$ -module) on which the action of $\operatorname{Gal}(F^s/F)$ factors through $\operatorname{Gal}(\overline{k}/k)$.

We assume the following statement, which will be proved in §5.

3.3. **Proposition.** There is a natural map $\iota: A(F)/B(k) \to H^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1))^{\sigma}$ which makes

$$(A(F)/B(k), \mathrm{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)), \iota)$$

a NS structure. Moreover, up to a sign, ι is an isometry with respect to the modified NT pairing on A(F)/B(k) and the cup product on $H^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1))$, the latter giving a polarization $\langle -, - \rangle_A$ of the above NS structure.

Note that A(F)/B(k) is a finitely generated abelian group by the theorem of Lang-Néron.

- 3.4. Conjecture (Reformulation of B-SD).
 - (1) The NS structure $(A(F)/B(k), H^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)), \iota)$ satisfies the Tate condition.
 - (2) $\coprod (A_F)$ is finite;
 - (3) We have

(3.1)
$$\Delta(A(F)/B(k), \mathbf{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)), \iota, \langle -, - \rangle_A) = (\prod_v c_v) \cdot q^{-\alpha(A)} \cdot |\mathrm{III}(A_F)|$$

where $\alpha(A) := \deg \omega_{A/C} + n(g-1) + \dim B$.

3.5. Lemma. Conjecture (3.4) is equivalent to Conjecture 1.6.

Proof. The L-function $L(s, A_F)$ is attached to the constructible sheaf $\mathbf{R}^1 f_* \mathbb{Q}_\ell$ over C. By Grothendieck-Lefschetz fixed point formula, we have

$$L(s,A_F) = \frac{\det(1 - \sigma q^{-s} | \operatorname{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}))}{\det(1 - \sigma q^{-s} | \operatorname{H}^0(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell})) \det(1 - \sigma q^{-s} | \operatorname{H}^2(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}))}.$$

Let $V = \mathrm{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell(1))$. By Fact 3.2, $V_\ell(B)^*$ as a geometrically constant sheaf on C exhausts the geometrically constant constituents of $\mathbf{R}^1 f_* \mathbb{Q}_\ell$ (as a shifted perverse sheaf on $C_{\overline{k}}$). Therefore $\mathrm{H}^0(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell) \cong V_\ell(B)^*$ as $\mathrm{Gal}(\overline{k}/k)$ -modules, and by duality $\mathrm{H}^2(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell) \cong V_\ell(B)^*(-1)$ as $\mathrm{Gal}(\overline{k}/k)$ -modules. We get

(3.2)
$$L(s, A_F) = \frac{\det(1 - \sigma q^{1-s}|V)}{\det(1 - \sigma q^{-s}|V_{\ell}(B)^*) \det(1 - \sigma q^{1-s}|V_{\ell}(B)^*)}.$$

Consider the rank part of the conjectures. Since the eigenvalues of σ on $V_{\ell}(B)$ are q-Weil numbers of weight -1, the denominator above does not vanish at s=1. Therefore $L(s,A_F)$ and $\det(1-\sigma q^{1-s}|V)$ have the same vanishing order at s=1, which is $r=\dim V^{(\sigma)}$ (generalized eigenspace). From the fact that $(A(F)/B(k), V, \iota)$ is a NS structure we see that

(3.3)
$$\operatorname{rk} A(F) = \operatorname{rk} A(F)/B(k) \le \dim V^{\sigma} \le \dim V^{(\sigma)} = r$$

If the $L(s, A_F)$ has order $\operatorname{rk} A(F)$, then all equalities hold, and in particular $\operatorname{rk} A(F)/B(k) = \dim V^{\sigma}$ which says that $(A(F)/B(k), V, \iota)$ satisfies the Tate condition. Conversely, if $(A(F)/B(k), V, \iota)$ satisfies the Tate condition, then $V^{\sigma} = V^{(\sigma)}$ by Lemma 2.4, hence again all inequalities (3.3) are equalities, and in particular the vanishing order r of $L(s, A_F)$ is $\operatorname{rk} A(F)$.

Now we may assume the rank part of both conjectures and compare the leading coefficients of $L(s, A_F)$ and $\det(1 - \sigma q^{1-s}|V)$. By (3.2), we have

$$\lim_{s \to 1} \frac{L(s, A_F)}{(1 - q^{1-s})^r} = \lim_{s \to 1} \frac{\det(1 - \sigma q^{1-s}|V)}{(1 - q^{1-s})^r} \cdot \frac{1}{\det(1 - \sigma q^{-1}|V_{\ell}(B)^*) \det(1 - \sigma|V_{\ell}(B)^*)}.$$

Since

$$\lim_{s \to 1} \frac{\det(1 - \sigma q^{1-s}|V)}{(1 - q^{1-s})^r} = \det(1 - \sigma|V/V^{(\sigma)}) = \det(1 - \sigma|V/V^{\sigma});$$

$$\det(1 - \sigma|V_{\ell}(B)^*) = |B(k)|;$$

$$\det(1 - \sigma q^{-1}|V_{\ell}(B)^*) = q^{-\dim B}|B(k)|.$$

Therefore

$$\lim_{s \to 1} \frac{L(s, A_F)}{(1 - q^{1-s})^r} = q^{\dim B} |B(k)|^{-2} \det(1 - \sigma |V/V^{\sigma}).$$

By definition,

$$\Delta(A(F)/B(k),V) = \frac{\det(1-\sigma|V/V^{(\sigma)})}{\operatorname{Disc}(A(F)/B(k))} = \frac{\det(1-\sigma|V/V^{\sigma})}{\operatorname{Disc}(A(F))|B(k)|^2}.$$

Therefore

$$\lim_{s \to 1} \frac{L(s, A_F)}{(1 - q^{1-s})^r} = q^{\dim B} \operatorname{Disc}(A(F)) \Delta(A(F)/B(k), V)$$
$$= q^{\dim B} \frac{\operatorname{Disc}(A(F)/A(F)_{\text{tor}})}{|A(F)_{\text{tor}}|^2} \Delta(A(F)/B(k), V)$$

whence the equivalence of two leading term formulae (1.3) and (3.1).

4. Structure of the proof

The proof of Theorem 1.7 is accomplished by the following steps.

4.1. NS structures attached to bad fibers. Let $v \in |C|$ be a place. Let $X_{v,1}, \dots, X_{v,h_i}$ be the reduced irreducible components, each being an integral curve with field of constants $k(v)_i/k(v)$. Inside NS(X), write $X_v = \sum_i m_i X_{v,i}$ where m_i is the length of X_v at the generic point of $X_{v,i}$. We may assume that the section $\gamma(C)$ passes (only) through $X_{v,1}$ (at necessarily a k(v) point in the smooth locus of $X_{v,1}$), forcing $k(v)_1 = k(v)$ and $m_1 = 1$.

Let D_v be the free abelian group with basis $\{X_{v,1}, \dots, X_{v,m}\}$. Let

$$\Lambda_v := D_v / \mathbb{Z} \cdot X_v$$
.

Since $m_1 = 1$, Λ_v is a free-abelian group with a basis given by the images of $\{X_{v,2}, \dots, X_{v,h_i}\}$. Similarly, base changing to $X_v \otimes_k \overline{k}$ (tensor over k, not k(v)), we have similar lattices $D_{v,\overline{k}}$ with basis given by the irreducible components of $X_v \otimes_k \overline{k}$ and quotient

$$\Lambda_{v,\overline{k}} := D_{v,\overline{k}}/\operatorname{Span}\{X_s; s \in C(\overline{k}) \text{ over } v\}.$$

7 AT⇔BSD

Then $\Lambda_{v,\overline{k}}$ is a free abelian group with a σ -action and an intersection pairing. By the Hodge Index Theorem, the intersection pairing on $\Lambda_{v,\overline{k}}$ is negative definite. Clearly $\Lambda_v = \Lambda_{v,\overline{k}}^{\sigma}$. As in Example 2.6, we may form the polarized NS structure

$$(\Lambda_v, \Lambda_{v,\overline{k}} \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell})$$

which is zero if X_v is irreducible.

4.2. **Proposition.** There is a 3-step filtration of the object $(NS(X), H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1)), cl) \in \mathcal{NS}$:

$$0 \subset \operatorname{Fil}^2 \subset \operatorname{Fil}^1 \subset \operatorname{Fil}^0 = (\operatorname{NS}(X), \operatorname{H}^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1)), cl)$$

with the following properties.

- $\operatorname{Fil}^2 = (\mathbb{Z}\Phi, \operatorname{H}^2(C_{\overline{k}}, \mathbb{Q}_{\ell}(1)) = \mathbb{Q}_{\ell} \cdot \operatorname{cl}(\Phi)), \text{ where } \Phi \in \operatorname{NS}(X) \text{ is the class of any divisor } f^{-1}(E),$ where E is a divisor on C of degree 1; • $\mathrm{Fil}^1 = (\mathrm{Fil}^0)^{\perp}$, $\mathrm{Gr}^0 \cong (\mathbb{Z}\gamma(C), \mathbb{Q}_{\ell})$, i.e., $\mathrm{Gr}^0\mathrm{NS}(X)$ is generated by the image of $\gamma(C)$;
- $Gr^1 = (Fil^2)^{\perp}/Fil^2$ is a polarized NS structure admitting a short exact sequence in the category PNS:

$$0 \to \oplus_v(\Lambda_v, \Lambda_{v,\overline{k}} \otimes \mathbb{Q}_\ell) \to \operatorname{Gr}^1(\operatorname{NS}(X), \operatorname{H}^2(X_{\overline{k}}, \mathbb{Q}_\ell(1))) \to (A(F)/B(k), \operatorname{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell(1))) \to 0.$$

Applying Lemma 2.12 to the above filtration and Lemma 2.11 to ${\rm Gr}^1$ of the filtration, we get

4.3. Corollary. The NS structure $(NS(X), H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1)), cl)$ satisfies the Tate condition if and only if $(A(F)/B(k), H^1(C_{\overline{\iota}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)), \iota)$ does. When they satisfy the Tate condition, we have

$$\Delta(\mathrm{NS}(X),\mathrm{H}^2(X_{\overline{k}},\mathbb{Q}_\ell(1))) = \Delta(A(F)/B(k),\mathrm{H}^1(C_{\overline{k}},\mathbf{R}^1f_*\mathbb{Q}_\ell(1)))\prod_{v\in K}\Delta(\Lambda_v,\Lambda_{v,\overline{k}}\otimes\mathbb{Q}_\ell).$$

Using this corollary, comparing the Conjectures 3.1 and 3.4, their equivalence then follows from the combination of the three statements below.

4.4. **Theorem** (Artin, Grothendieck [4, §4]). There is a canonical isomorphism

$$\coprod (A_F) \cong Br(X).$$

4.5. **Proposition.** For each $v \in |C|$ we have

$$\Delta(\Lambda_v, \Lambda_v, \overline{k} \otimes \mathbb{Q}_\ell) = c_v^{-1}.$$

4.6. **Proposition.** We have

$$\alpha(X) = \alpha(A).$$

5. More details

5.1. Sketch of proof of Prop 3.3 and Prop 4.2. Leray-spectral sequence for the fibbration $f: X_{\overline{k}} \to C_{\overline{k}}$ degenerates at E_2 , giving a filtration on $V := H^2(X_{\overline{k}}, \mathbb{Q}_{\ell}(1))$:

$$0 \subset L^2 V \subset L^1 V \subset L^0 V = V$$

with associated graded

$$\operatorname{Gr}_{L}^{2}V = \operatorname{H}^{2}(C_{\overline{k}}, \mathbf{R}^{0} f_{*} \mathbb{Q}_{\ell}(1)) = \operatorname{H}^{2}(C_{\overline{k}}, \mathbb{Q}_{\ell}(1)) \cong \mathbb{Q}_{\ell};$$

$$\operatorname{Gr}_{L}^{1}V = \operatorname{H}^{1}(C_{\overline{k}}, \mathbf{R}^{1} f_{*} \mathbb{Q}_{\ell}(1)); \operatorname{Gr}_{L}^{0}V = \operatorname{H}^{0}(C_{\overline{k}}, \mathbf{R}^{2} f_{*} \mathbb{Q}_{\ell}(1)).$$

Note the argument for degeneration at E_2 uses the Hodge Index theorem (negative definiteness of the intersection pairing on $\Lambda_{v,\overline{k}}$).

The sheaf $\mathbf{R}^2 f_* \mathbb{Q}_{\ell}(1)$ over $C_{\overline{k}}$ admits a further filtration

$$0 \to \oplus_{s \in C(\overline{k})} i_{s,*} W_s \to \mathbf{R}^2 f_* \mathbb{Q}_{\ell}(1) \to \mathbb{Q}_{\ell} \to 0.$$

Here each i_s : Spec $\overline{k} \hookrightarrow C_{\overline{k}}$ is the inclusion of a geometric point, and $W_s = \ker(\mathrm{H}^2(X_s, \mathbb{Q}_\ell(1)) \to \mathbb{Q}_\ell)$ given by integration along X_s . We have a natural isomorphism of $\operatorname{Gal}(\overline{k}/k)$ -modules

$$\bigoplus_{C(\overline{k})\ni s \text{ over } v} W_s \cong \operatorname{Hom}(\Lambda_{v,\overline{k}}, \mathbb{Q}_{\ell})$$

given by the pairing between the divisor group $\Lambda_{v,\overline{k}}$ and the cohomology group $\mathrm{H}^2(X_s,\mathbb{Q}_\ell(1))$, which is perfect by the Hodge Index Theorem. In particular, we have

$$0 \to \bigoplus_{v} \operatorname{Hom}(\Lambda_{v,\overline{k}}, \mathbb{Q}_{\ell}) \to \operatorname{Gr}_{L}^{2}V \to \mathbb{Q}_{\ell} \to 0.$$

If we combine $\operatorname{Gr}^1_L V$ with the $\bigoplus_{s \in C(\overline{k})} W_s$ part of $\operatorname{Gr}^0_L V$, and renumber the filtration steps, we get a filtration

$$0 \subset \mathrm{Fil}^2 V \subset \mathrm{Fil}^1 V \subset \mathrm{Fil}^0 V = V$$

with $\operatorname{Fil}^2 V = L^2 V$ and $\operatorname{Fil}^1 V = (\operatorname{Fil}^2 V)^{\perp}$, and

$$(5.1) 0 \to \mathrm{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)) \to \mathrm{Gr}^1_{\mathrm{Fil}} V \to \oplus_v \mathrm{Hom}(\Lambda_{v, \overline{k}}, \mathbb{Q}_{\ell}) \to 0.$$

We remark that this is the filtration on V induced from the perverse filtration of the complex $\mathbf{R}f_*\mathbb{Q}_\ell$. In general, the perverse filtration behaves better than the filtration Fil^iV in that it satisfies Poincaré duality and Hard Lefschetz.

We consider a similar filtration on NS(X):

$$0 \subset \operatorname{Fil}^2 \operatorname{NS}(X) \subset \operatorname{Fil}^1 \operatorname{NS}(X) \subset \operatorname{Fil}^0 \operatorname{NS}(X) = \operatorname{NS}(X)$$

as designated by Prop 4.2, i.e., $\mathrm{Fil}^2\mathrm{NS}(X) = \mathbb{Z}\Phi$ and $\mathrm{Fil}^1\mathrm{NS}(X) = (\mathrm{Fil}^2\mathrm{NS}(X))^{\perp}$, which consists of all divisor classes with total degree 0 long fibers of f. Since $\gamma(C) \cdot \Phi = 1$, $\mathrm{Gr}^2\mathrm{NS}(X)$ is freely generated by the image of $\gamma(C)$. We have a similar filtration on $\mathrm{NS}(X_{\overline{k}})$.

Let $NS(X)_{ver} \subset NS(X)$ be generated by the irreducible components of all fibers of f. Note that there is a canonical isomorphism.

$$NS(X)_{ver}/\mathbb{Z}\Phi \cong \bigoplus_{v} \Lambda_{v}$$

Then we have a further filtration of $\operatorname{Gr}^1 \operatorname{NS}(X)$

$$0 \to \bigoplus_v \Lambda_v \to \operatorname{Gr}^1 \operatorname{NS}(X) \to \operatorname{Gr}^1 \operatorname{NS}(X)_{\operatorname{hor}} \to 0.$$

where $\operatorname{Gr}^{1}\operatorname{NS}(X)_{\operatorname{hor}}$ is defined to be the quotient. Similarly, we have an inclusion

$$\bigoplus_v \Lambda_{v,\overline{k}} \hookrightarrow \operatorname{Gr}^1 \operatorname{NS}(X_{\overline{k}}).$$

5.2. Theorem (Shioda-Tate, see [3, Prop 4.5], [7, Prop 4.1]). The above map induces an isomorphism

$$\operatorname{Gr}^1\operatorname{NS}(X)_{\operatorname{hor}} \stackrel{\sim}{\to} A(F)/B(k).$$

Sketch of proof. Let $\mathrm{Div}_0(X) \subset \mathrm{Div}(X)$ be the divisors whose intersection number with any fiber of f is zero. Restricting a divisor on X to its generic fiber gives $\tau: \mathrm{Div}_0(X) \to \mathrm{Pic}(X) \to \mathrm{Pic}^0(X_F) = A(F)$, which is surjective (set-theoretic inverse given by taking closure). Now let $\mathrm{Div}_{\mathrm{alg}}(X) = \ker(\mathrm{Div}_0(X) \to \mathrm{Fil}^1\mathrm{NS}(X))$ be those divisors algebraically equivalent to zero. Then τ restricts to $\mathrm{Div}_{\mathrm{alg}}(X) \to \mathrm{Pic}^\circ(X) \to A(F)$, the latter map comes from $\mathrm{Pic}_{X/k}^\circ \times_{\mathrm{Spec}\ k} \mathrm{Spec}\ F \to A_F$ hence lands in the F/k-trace B. Therefore $\tau(\mathrm{Div}_{\mathrm{alg}}(X)) \subset B(k)$, and τ induces $\overline{\tau}: \mathrm{Fil}^1\mathrm{NS}(X) \to A(F)/B(k)$. Since vertical divisors are mapped to 0 under τ, τ factors through

$$\operatorname{Gr}^1\operatorname{NS}(X)_{\operatorname{hor}} \to A(F)/B(k).$$

The fact this is an isomorphism follows from the surjectivity of $\operatorname{Pic}_{X/k}^{\circ} \to B$ (see [3, Prop 4.4]).

To summarize, we have an exact sequence

$$(5.2) 0 \to \bigoplus_v \Lambda_v \to \operatorname{Gr}^1 \operatorname{NS}(X) \to A(F)/B(k) \to 0.$$

Now consider the cycle class map $cl: NS(X_{\overline{k}}) \otimes \mathbb{Q}_{\ell} \to V$. It is easy to see that this map is strictly compatible with the filtrations denoted by Fil. Now we consider $cl: Gr^1NS(X_{\overline{k}}) \to Gr^1_{Fil}V$. The map

$$\oplus_v \Lambda_{v,\overline{k}} \subset \mathrm{Gr}^1\mathrm{NS}(X_{\overline{k}}) \xrightarrow{cl} \mathrm{Gr}^1_{\mathrm{Fil}}V \twoheadrightarrow \oplus_v \mathrm{Hom}(\Lambda_{v,\overline{k}},\mathbb{Q}_\ell)$$

 $AT \iff BSD$ 9

is given by the intersection pairing is an isomorphism after tensoring the source by \mathbb{Q}_{ℓ} . Therefore, the exact sequence (5.1) admits a canonical splitting

(5.3)
$$\operatorname{Gr}^1_{\mathrm{Fil}}V \cong (\oplus_v \Lambda_v \otimes \mathbb{Q}_\ell) \oplus \operatorname{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell(1)).$$

Moreover this is an orthogonal decomposition. The exact sequence (5.2) induces

$$\iota: A(F)/B(k) \cong \operatorname{Gr}^1\operatorname{NS}(X)/\oplus_v \Lambda_v \to \operatorname{Gr}^1_{\operatorname{Fil}}V/(\oplus_v \Lambda_{v\overline{k}} \otimes \mathbb{Q}_\ell) \cong \operatorname{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell(1))$$

whose image lies in the σ-invariants. This makes $(A(F)/B(k), H^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1)))$ into a NS structure.

5.3. Fact (Tate). For $\alpha, \beta \in A(F)$, if we extend them to divisors $\widetilde{\alpha}, \widetilde{\beta}$ (with \mathbb{Q} -coefficients in general) with zero intersection with all vertical divisors, then we have

$$\langle \alpha, \beta \rangle_{NT} = -\langle \widetilde{\alpha}, \widetilde{\beta} \rangle \log(q).$$

Since $\widetilde{\alpha}$ is orthogonal to all vertical divisors, $cl(\widetilde{\alpha})$ has image $(0, \iota(\alpha)) \in \operatorname{Gr}^1_{\operatorname{Fil}}V$ under the decomposition (5.3). Therefore, ι respects the negated modified NT pairing on A(F)/B(k) and the cup product pairing on $H^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_{\ell}(1))$. This finishes the proof of Prop 3.3.

Using the splitting (5.3), we may view $\bigoplus_v \Lambda_{v,\overline{k}} \otimes \mathbb{Q}_\ell$ as a sub of $\operatorname{Gr}^1_{\operatorname{Fil}}V$ with quotient $\operatorname{H}^1(C_{\overline{k}}, \mathbf{R}^1 f_* \mathbb{Q}_\ell(1))$, forming a new filtration of $\operatorname{Gr}^1_{\operatorname{Fil}}V$ compatible with the filtration (5.2) on $\operatorname{Gr}^1\operatorname{NS}(X)$. This proves Prop 4.2.

5.4. **Proof of Prop 4.5.** For simplicity let $L = \Lambda_{v,\overline{k}}$. This is the free abelian group with basis given by irreducible components of $X_v \otimes_k \overline{k}$. The σ -action is by permuting this basis. In particular, both L^{σ} and L_{σ} are free \mathbb{Z} -modules. The NS structure $(\Lambda_v, \Lambda_{v,\overline{k}} \otimes \mathbb{Q}_{\ell}) = (L^{\sigma}, L \otimes \mathbb{Q}_{\ell})$ fits into Example 2.6. According to the calculations there, we have

$$\Delta(\Lambda_v, \Lambda_{v,\overline{k}} \otimes \mathbb{Q}_{\ell}) = z(L^{\sigma} \to \operatorname{Hom}(L_{\sigma}, \mathbb{Z}))$$

is the reciprocal of the discriminant of the pairing between L^{σ} and L_{σ} . The pairing on L gives

$$0 \to L \to L^\vee \to Q \to 0$$

for some finite abelian group Q whose order is Disc(L). Taking σ -invariants gives an exact sequence

$$0 \to L^{\sigma} \to (L^{\vee})^{\sigma} \to Q^{\sigma} \to L_{\sigma}$$

Since L_{σ} is free while Q^{σ} is finite, the last map is zero hence $Q^{\sigma} = (L^{\vee})^{\sigma}/L^{\sigma} = \text{Hom}(L_{\sigma}, \mathbb{Z})/L^{\sigma}$ whose order is then $z(L^{\sigma} \to \text{Hom}(L_{\sigma}, \mathbb{Z}))^{-1}$. We reduce the problem to showing that

$$|Q^{\sigma}| = c_v = [A_v(k(v)) : A_v^{\circ}(k(v))] = \pi_0(A_v \otimes_k \overline{k})^{\sigma},$$

where the last equality uses Lang's theorem to A_v^0 . This follows from the isomorphism of σ -modules ([1, 9.5, Thm 4])

$$Q \cong \pi_0(A_v \otimes_k \overline{k}).$$

Idea of proof: we may replace C by its strict henselization at v, therefore consider X over a strict henselian DVR R with fraction field K and closed point s, and define L accordingly. In this case, the Néron model A over R may be obtained as the quotient P/E, where $P \subset \operatorname{Pic}_{X/R}$ is the open subgroup scheme consisting of line bundles with total degree zero on fibers of $X \to \operatorname{Spec} R$, and E is the closure of the identity section of P_K (P/E is the maximal separated quotient of P). Then $\pi_0(P_s)$ can be identified with L^{\vee} (by evaluating degrees along each component of X_s) and $E(R) \cong L$ (line bundles trivial on the generic fiber are of the form $\mathcal{O}(D)$ for divisors D supported on the special fiber), and the natural map $E(R) \to P(R) \to \pi_0(P_s)$ coincides with the map $L \to L^{\vee}$ given by the intersection pairing.

5.5. **Proof of Prop 4.6.** Since $\operatorname{Pic}_{X/C}^{\circ} \cong A^{\circ}$, we have $\det(\mathbf{R}^{1}f_{*}\mathcal{O}_{X}) \cong \omega_{A/C}^{-1}$. Applying Riemann-Roch to $\mathbf{R}^{1}f_{*}\mathcal{O}_{X}$ we get

$$\chi(C, \mathbf{R}^1 f_* \mathcal{O}_X) = -\deg \omega_{A/C} - n(g-1).$$

Therefore

$$\alpha(X) = \chi(C, \mathcal{O}_C) - \chi(C, \mathbf{R}^1 f_* \mathcal{O}_X) - 1 + \dim \operatorname{Pic}_{X/k}^{\circ} = \deg \omega_{A/C} + n(g-1) + \dim \operatorname{Pic}_{X/k}^{\circ} - g.$$
 Since $B \cong \operatorname{Pic}_{X/k}^{\circ}/\operatorname{Pic}_{C/k}^0$, we get $\dim \operatorname{Pic}_{X/k}^{\circ} - g = \dim B$, hence the formula (4.1).

References

- [1] Bosch, S.; Lütkebohmert, W.; Raynaud, M. Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990.
- [2] Conrad, B. Chow's K/k-image and K/k-trace, and the Lang-Néron theorem. Enseign. Math. (2) 52 (2006), no. 1-2, 37-108.
- [3] Gordon, W. J. Linking the conjectures of Artin–Tate and Birch–Swinnerton-Dyer. Compositio Math. 38 (1979), no. 2, 163-199.
- [4] Grothendieck, A. Le groupe de Brauer. III. Exemples et compléments. In *Dix exposés sur la cohomologie des schémas*, 88-188, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968.
- [5] Raynaud, M. Spécialisation du foncteur de Picard. Publ. Math. IHES. 38 (1970), 27-76.
- [6] Tate, J. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki, Vol. 9, Exp. No. 306, 415-440, Soc. Math. France, Paris, 1995.
- [7] Ulmer, D. Curves and Jacobians over function fields. In Arithmetic Geometry over Global Function Fields, Advanced Courses in Mathematics CRM Barcelona (2014), 283-337.