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We follow the ideas of Gordon [3] (who seems to follow the sketch of Tate [6l, p.427-430]), with minor
modifications:
(1) We make a simplifying assumption that the fibered surface X — C' has a section;
(2) We introduce the notion of Néron-Severi structures to clean up the combinatorics.

1. STATEMENT OF THE CONJECTURES

1.1. Setup. Let k be a finite field with ¢ elements. Let o € Gal(k/k) denote the geometric Frobenius.
Let p = char(k) and let £ # p be a prime number.

Let C be a smooth, projective and geometrically connected curve over k of genus g. Let F = k(C)
be the function field of C. Let |C| be the set of closed points of C. For v € |C|, let O,, F,, k(v) be the
completed local ring at v, its fraction field and residue field.

Let X be a smooth projective surface over k and f : X — C be a flat morphism such that the generic
fiber Xr is a smooth and geometrically connected curve over F. Assume also:

e X(F) # &; equivalently f admits a section v: C — X.

Let NS(X) be the Néron-Severi group of X, i.e., divisors on X modulo algebraic equivalence. This is a
finitely generated abelian group equipped with a non-degenerate symmetric bilinear pairing into Z.

Notation: for any free abelian group A with a non-degenerate symmetric bilinear pairing (—, —) :
A x A — C we denote
(1.1) Disc(A) := | det({(A;, A;))]

be the absolute value of the Gram matrix formed by any Z-basis {\;} of A.

1.2. Fact (Raynaud [5, Th 7.2.1]). In our situation, f is cohomologically flat, i.e., for any geometric point
s € O, we have h(X,,0x,) = 1 and h'(X,,Ox,) = n is independent of s. Therefore R!f.Ox is locally
free of rank n over C.

1.3. Conjecture (Artin-Tate [6l p. 426, (C)]).
(1) Let Py(X,q™*) :=det(1 — oq~*|H*(X7,Qr)). Then

ords—1 P>(X, ¢7°) = rkNS(X).
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(2) The Brauer group Br(X) = H2(X,G,,) is finite;
(3) As s — 1, we have
g1 )rNS(X) Disc(NS(X)/NS(X)¢or)

Py(X.q %) ~ (1—
2( q ) ( |NS(X)§OI~‘2

Sq ) Br(X).

where a(X) = x(X, Ox) — 1 + dim Pic% .

1.4. Jacobian and Néron model. Let Ap = Picg(F/F be the Jacobian of the curve Xp. This is a
principally polarized abelian variety over Spec F. Let A be its Néron model over C. Let A° be the
fiberwise neutral component of A. Let wy,c be the sheaf of relative top differential forms on A — C,

viewed as a line bundle on C via the identity section.
For each place v of C, let A, denote the fiber of A over Spec k(v). Let ¢, = [A,(k(v)) : AS(k(v))] be
the Tamagawa factor at v.

L.5. Fact ([1]). In our situation, the relative Picard functor Picx,c is represented by an algebraic space.
Let Picg(/c be the fiberwise neutral component of Picy,c. Then Picg(/c is a smooth group scheme of
finite type over C. The canonical map Pic% Votus A° (by the Néron mapping property) is an isomorphism.

1.6. Conjecture (Birch-Swinnerton-Dyer [0, p.419, (B)]).
(1) Let L(s,Ar) be the complete L-function for the abelian variety Ap over F. Then

OI'dszlL(S7 AF) = I‘kA(F)

(2) II(AF) is finite.
(3) As s — 1, we have

1)FRA(P) Disenr (A(F)/AF)tor)

(1.2) L(s, Arp) ~ (s — |A(F) o0 |2

([T en)-aeseare G0 ji(Ap)

In (1.2) we put Discyr to emphasize that we are using the Néron-Tate pairing on A(F)/A(F)tor, which
takes values in Qlog(q) (see §5.3). If we divide the Néron-Tate by log(q) (we call it the modified NT pair-
ing), we denote the discriminant of the resulting pairing on A(F')/A(F)or simply by Disc(A(F)/A(F)tor)-
After change of variables s — ¢7%, (1.2)) is equivalent to

rkA(F) Disc(A(F) /A(F)tor)

(13)  L(s,Ap) ~ (1—¢'7%) [A(F)or |2

([ ew) - adesware=nlo= HI(AR)|.

v

We will sketch a proof of the following result.
1.7. Theorem (Gordon, conjectured by Tate [0 p.427, (d)]). C’onjectures and are equivalent.

2. NERON-SEVERI STRUCTURES

2.1. Definition. A Néron-Severi structure (NS structure for short) is a triple (A, V,¢) where

(1) A is a finitely generated abelian group;
(2) V is a finite-dimensional Qg-vector space with a Q-linear automorphism o;
(3) ¢ is a map of abelian groups A — V7.

A NS structure (A, V1) satisfies the Tate condition if ¢ induces an isomorphism
A®zQ S V.

There is an obvious notion of morphisms between NS structures, making NS structures an abelian
category N'S with a monoidal structure given by the tensor product.

2.2. Definition. A polarization on a NS structure (A,V,:) is a symmetric bilinear o-invariant perfect
pairing

(=, =)V xV—=>Q
such that its pullback to A x A takes values in Q, and is perfect on Ag.
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Note that a polarization on (A, V) forces A ®z Qy — V' to be injective. Polarized NS structures form
an exact category PN'S under the following definition of short exact sequences.

2.3. Definition. Let (A, V, ¢, (—, —)) and (A;, Vi, t;, (—, —);) be polarized NS structures. An exact sequence

(2.1) 0— (Al,‘/i,bl) —>(A,V,L>—>(A2,Vé,b2)—>0
in /S is an exact sequence in PN'S if the (—, —) restricts to (—, —); on V3, whose orthogonal complement
maps isometrically to (Va, (—, —)2). In this case we have a canonical orthogonal decomposition V = V; &V,

and AQ = ALQ D AQ,Q.

2.4. Lemma. If (A,V,¢,(—,—)) is a polarized NS structure which satisfies the Tate condition, then the
generalized o-eignspace V) of V' for eigenvalue 1 is equal to V' (eigenspace for eigenvalue 1).

Proof. Replacing V' by its generalized eigenspace for eigenvalue 1, the pairing is still perfect there. So we
may assume o is an unipotent element in SO(V'). By Jacobson-Morosov, one can find a homomorphism

oLy — such that =o0. e diagonal torus in SLo gives a grading V' = @;V; suc
¢ :SL SOV hhgzﬁ(l)1 The di 1 in SLo gi ding V \% h

1

that (V;,V;) = 0 for i # —j. Clearly V7 C V>¢. If ¢ # 1, V7 has nonzero intersection with V%, then

(VsoNV?2,V?) = 0, i.e., the pairing on V7 is degenerate. This contradicts the non-degeneracy of the
pairing on A ® Qg = V7 (by Tate’s condition). O

2.5. Example. Let X be a smooth projective surface over a finite field k. Then

(NS(X), H* (X, Qe(1)), ¢l)
is a NS structure where ¢l : NS(X) — H?(Xz, Q¢(1))° is the cycle class map. The intersection pair-
ing on NS(X) and the cup product pairing on H?(X7, Q¢(1)) with values in H*(Xz, Q¢(2)) = Q; make

(NS(X),H?*(X%,Q¢(1)),cl,U) a polarized NS structure. It satisfies the Tate condition if and only if the
Tate conjecture holds for divisors on X.

2.6. Example. Let V7 be a finitely generated abelian group with an action of 0. Then (Vi7,Vz ® Qg,¢)
(where ¢ is the obvious embedding) is a NS structure that satisfies Tate’s condition.

2.7. Definition. Let (A, V,¢,{(—,—)) be a polarized NS structure. Define
|Ato1v|2
Disc(A/Asor, {(—, —))

Here V(9) is the generalized eigenspace of o on V for eigenvalue 1. We often abbreviate the above quantity
as A(A,V).

ANV, 1, (—, =) == det(1 — o|V/V(D)).

2
2.8. More on discriminants. Why is % a natural quantity to consider? Recall for a map

f: A — B of abelian groups with finite kernel and cokernel, we can define z(f) = | ker(f)|/|coker(f)|. For
any complex C, of abelian groups with bounded and finite homology, we may define z(C4) = [, [H;C|(~V)".
Applying this construction to the complex A — B in degrees 0 and 1 recover z(A — B). This descends to
a homomorphism z : Ko(Ds (b)) — Q*, where Dy(b) is the derived category of complexes in abelian
groups with bounded and finite homology.

A Z-valued pairing on A gives a map A — RHom(A, Z) whose cone has finite cohomology if the pairing
is perfect on A ® Q. It is easy to check that

|A/\t0r|2
—— =2z2(A - RH A 7).
Disc(A/Argy) ~ A = Rifom(A, Z))
This measures how far the pairing (—, —) is from being perfect. We define the discriminant of the pairing
on A to be Disc(A/A
Disc(A) := 2(A — RHom(A, Z)) " = IS|C[§ / |2t°f).
tor

This is consistent with the old definition of Disc in (1.1f) for free abelian groups.
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If the pairing on A is only Q-valued, we may choose n such that the pairing is %Z—valued. Then we
define
z(RHom(A,Z) — RHom(A, 27)

z(A — RHom(A, 17))

The map on the numerator is given by the inclusion Z — %Z; the map on the denominator is given by
the pairing on A. One can check that this is still equal to % (hence independent of n).

More generally, for a pairing A1 x Ay — Q between finitely generated abelian groups that is perfect
after tensoring with Q, we may define

Disc(A) :=

z(RHom(A2,Z) — RHom(A, £7))
z(Ay — RHom(A2, 17))

DiSC(Al, AQ) =

for sufficiently divisible n.

2.9. Example. In the situation of Example suppose further that V7 carries a symmetric bilinear Z-
valued pairing (—, —) that is perfect on V. Then we get a polarized NS structure (V7,V = Vg,, ¢, (—, —)).
By Lemma we have V(9 = V7. One easily calculates

det(1—o|V/V7) = +2(V§ = Vz,) "
The sign is positive if o has finite order. Therefore we have
A(VF, Vg,) = £2(Vf — Vy,,) 'Disc(Vy) ™ = £Disc(Vy, Vz,0) "
which measures how far the pairing V7 x Vz , — Z (induced from (—, —)) is from being perfect.

For a smooth projective variety X over k and V = H>(Xy,Q(i))), we may dream for a “motivic
cohomology lattice” V7, = “H* (X7, Z(4))" that makes (Vz, V) into a situation like the one discussed above.
Although V7 does not exist in general, its completion V7 ® Z exists naturally (as Zy-cohomology if V' is
Qg-cohomology, for various ¢), which sometimes works as well as V7.

The following lemma, which is an easy exercise, describes the behavior of A(A, V) under “isogeny”.

2.10. Lemma. Let (A,V,¢,{—,—)) be a polarized NS structure. Let a: A’ — A be a map of abelian groups
with finite kernel and cokernel. Then (A, V 10 «a,{—,—)) is also a polarized NS structure. Moreover, we
have

AN Viioa, (— =) = ANV, o, (— —))z(A = A)2.

The next two lemmas, although both trivial to prove, are the key properties of A(A, V') that link the
leading term formulae in Conjectures and

2.11. Lemma. The map A : Ob(PNS) — Q, descends to a homomorphism A : Ko(PNS) — Q).
Proof. We need to check that for an exact sequence (2.1)), we have
(2.2) AN V) = A(A, V1)A(Ag, V3).

Since Ag = A1 g B Ag g isometrically, there is a subgroup A)j C As of finite index such that Ay @ A5 C A
isometrically, with cokernel As/A}. By Lemma we have

AAL O A VID V) Ao s Ay2 = A(Ay, Va)
AQAV) ST A )
Since A(A; @ AL, VL @ V2) = A(A1, Vi)A(AL, V), we conclude (2.2) from the above identity. O

Consider the following situation. Let (A, V,t, (—,—)) be a polarized NS structure. Let (T, W, ') be an
isotropic subobject of the NS structure (A, V,:) with the trivial o-action on W. Let I’ C Tt C A be a
subgroup of finite index, then (I, W+, ') (5 is the restriction of + to ") is a sub NS structure of (A, V,¢).
The subquotient (IV/T, W= /W,7,(—,—)) carries a polarization induced from that of V, hence it is an
object of PA'S. The following lemma is an easy exercise.
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2.12. Lemma. In the above situation, we have
A(A, V) = AT, W+ /W) - Disc(T', A/T") 2.
In particular, if T is free and saturated in A, and I" =T, then
A(A, V) = A(L/T,WH/W).
3. REFORMULATION OF THE CONJECTURES

Using the notation A(A, V), we may reformulate Conjecture as

3.1. Conjecture (Reformulation of Artin-Tate).
(1) The NS structure (NS(X), H*(X%, Qe(1)), cl) satisfies the Tate condition.
(2) Br(X) is finite.
(3) We have
A(NS(X), H* (X7, Qe (1)), cl,U) = ¢~ [Br(X))].
Next we give a reformulation of the Conjecture in terms of A(A,V).
3.2. Fact (The F/k-trace, for more details see [2]). There is an (unique) abelian variety B over k with

amap B ®, F — Ar and is final for such maps from abelian varieties over k. The above map has finite
infinitesimal kernel. We have B = Pic% , / Picy, /i (note Pic% ), means the neutral component of Picxy, for

proof see [3, Prop 4.4]). Moreover, if we view V;(B) as a Gal(F*/F)-module via Gal(F*/F) — Gal(k/k),
Ve(B) is the maximal submodule of V;(A) (which is semisimple as Gal(#*/F')-module) on which the action
of Gal(F*/F) factors through Gal(k/k).

We assume the following statement, which will be proved in §5}
3.3. Proposition. There is a natural map ¢ : A(F)/B(k) — H'(C, R £.Qu(1))® which makes
(A(F)/B(k), H'(Cr, R £.Qe(1)), 1)

a NS structure. Moreover, up to a sign, v is an isometry with respect to the modified NT pairing on
A(F)/B(k) and the cup product on H'(Cy, R f.Q((1)), the latter giving a polarization (—,—)a of the
above NS structure.

Note that A(F)/B(k) is a finitely generated abelian group by the theorem of Lang-Néron.

3.4. Conjecture (Refomulation of B-SD).

(1) The NS structure (A(F)/B(k), H' (Cz, R £.Qu(1)), ) satisfies the Tate condition.
(2) II(AF) is finite;
(3) We have
)

(3.1 A(A(F)/B(k), B (Cp, R £.Qe(1)), 1, (=, =)a) = ([ [ ) - g™ - [TI(AR))|

where a(A) := degwa,c +n(g — 1) +dim B.
3.5. Lemma. Conjecture (3.4)) is equivalent to Conjecture .
Proof. The L-function L(s, Ar) is attached to the constructible sheaf R! f,Q, over C. By Grothendieck-

Lefschetz fixed point formula, we have

det(1 — og~*|H' (Cr, R* £.Qp))
det(l — oq~ M (Cr. R £.Q0) det(1 — oq— | HA(C. R £.Q0)
Let V = Hl(CE, R!'f.Q(1)). By Fact Ve(B)* as a geometrically constant sheaf on C exhausts the geo-
metrically constant constituents of R! f,Qp (as a shifted perverse sheaf on C%). Therefore H(Cr, R £,Qy) =
Vo(B)* as Gal(k/k)-modules, and by duality H*(C, R* £.Q;) = V;(B)*(—1) as Gal(k/k)-modules. We get

B det(1 — ag'=*|V)
(3:2) Ls, Ar) = det(1 — oq*|Vi(B)*) det(1 — og'~*|Vi(B)*)

L(S, AF) =
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Consider the rank part of the conjectures. Since the eigenvalues of o on V;(B) are g-Weil numbers of
weight —1, the denominator above does not vanish at s = 1. Therefore L(s, Ar) and det(1 — og'~*|V)
have the same vanishing order at s = 1, which is 7 = dim V(?) (generalized eigenspace). From the fact
that (A(F)/B(k),V,.) is a NS structure we see that

(3.3) rkA(F) = 1kA(F)/B(k) < dimV? < dim V(") =

If the L(s, Ar) has order rkA(F), then all equalities hold, and in particular rkA(F)/B(k) = dim V' which
says that (A(F)/B(k),V, ) satisfies the Tate condition. Conversely, if (A(F)/B(k),V, ) satisfies the Tate
condition, then V7 = V() by Lemma hence again all inequalities are equalities, and in particular
the vanishing order r of L(s, Ar) is rkA(F).

Now we may assume the rank part of both conjectures and compare the leading coefficients of L(s, Ag)
and det(1 — og'~*|V). By (B.2), we have

lim L(s,Ap) lim det(1 — oq'=%|V) 1
sol (1—gl=s)r  s=1 (1 —ql=5)r det(1 — oq=1|Vy(B)*)det(1 — o|Ve(B)*)"
Since
1— 1-s
lim, 3 o4 V) _ det(1 — o|V/V@)) = det(1 — o|V/V°);
s—1 (]_ — ql S)T
det(1—o|Ve(B)") = [B(k)];
det(1—aq ' Ve(B)*) = ¢ “™F|B(k)|.
Therefore

. L(s, Ar) _ dimB -2 o
lng = ¢4 B|B(k)|72 det(1 — o|V/V).

By definition,
~det(1—o|V/V@)  det(1—o|V/V)

AAEBR).V) = DA F) /B~ Dise(A(F)|BR)E"

Therefore
. L(s,Ap) __dim BTy
;1_% m = 49 Disc(A(F))A(A(F)/B(k), V)
iy g Disc(A(F)/A(F)tor)
= ¢imB A(A(F)/B(k),V
q E o MAGP) B, V)
whence the equivalence of two leading term formulae (1.3]) and (3.1)). O

4. STRUCTURE OF THE PROOF

The proof of Theorem [1.7]is accomplished by the following steps.

4.1. NS structures attached to bad fibers. Let v € |C| be a place. Let X, 1, -+, Xy 5, be the reduced
irreducible components, each being an integral curve with field of constants k(v);/k(v). Inside NS(X),
write X, = ), m; X, ; where m; is the length of X, at the generic point of X, ;. We may assume that the
section v(C') passes (only) through X, 1 (at necessarily a k(v) point in the smooth locus of X, 1), forcing
k(v)y = k(v) and mq = 1.

Let D, be the free abelian group with basis {X, 1, -+, Xy m}. Let

Ay :=D,/Z - X,.

Since m; = 1, A, is a free-abelian group with a basis given by the images of {X, 2, -+, Xy p,}. Similarly,
base changing to X, @y k (tensor over k, not k(v)), we have similar lattices D, 7 with basis given by the

irreducible components of X, ®; k and quotient

A,z =D, z/Span{X;;s € C(k) over v}.
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Then A 7 is a free abelian group with a o-action and an intersection pairing. By the Hodge Index
Theorem, the intersection pairing on A is negative definite. Clearly A, = AZE' As in Example @7 we
may form the polarized NS structure

(Ay, AU,E ®z Qp)
which is zero if X, is irreducible.
4.2. Proposition. There is a 3-step filtration of the object (NS(X),HQ(XE, Qe(1)),cl) e NS:
0 C Fil* ¢ Fil' € Fil” = (NS(X), H* (X3, Q¢(1)), cl)
with the following properties.

o Fil*> = (Z&,H*(Cy, Qu(1)) = Q- cl(P)), where ® € NS(X) is the class of any divisor f~'(E),
where E is a divisor on C of degree 1;

e Fil' = (Fil°)*, G1° = (Z~(C),Qy), i.e., Gr®NS(X) is generated by the image of v(C);

e Gr! = (Fil2)J‘/F112 is a polarized NS structure admitting a short exvact sequence in the category

PNS:
0= @y (Av, A, 5 ® Q) — Gr' (NS(X), H* (X7, Qe(1))) — (A(F)/B(k), H' (C, R . Q(1))) — 0.
Applying Lemma to the above filtration and Lemma to Gr! of the filtration, we get

4.3. Corollary. The NS structure (NS(X), H*(Xz, Q¢(1)),cl) satisfies the Tate condition if and only if
(A(F)/B(k), H (Cr, R £,Qq(1)), 1) does. When they satisfy the Tate condition, we have

A(NS(X), H* (X7, Qe(1))) = A(A(F)/B(k), B (Cp, R £.Qu(1) [T AAw, A, 7 © Qo).
v
Using this corollary, comparing the Conjectures and their equivalence then follows from the
combination of the three statements below.
4.4. Theorem (Artin, Grothendieck [4], §4]). There is a canonical isomorphism
M(Ar) = Br(X).
4.5. Proposition. For each v € |C| we have
AAp, A, ;@ Q) = ¢,
4.6. Proposition. We have
(4.1) a(X) = a(A),

5. MORE DETAILS

5.1. Sketch of proof of Prop and Prop Leray-spectral sequence for the fibbration f : X7 — Cy.
degenerates at Es, giving a filtration on V := H*(X7, Qq(1)):

0CL?VcIL'VcI'Vv=V
with associated graded
GriV = H*(Cp, RO £.Qu(1)) = H*(Cg, Qe(1)) 2= Q3
GrpV =H'(Cp, R' £,Q,(1)); GV = H(C, R? £, Qu(1)).

Note the argument for degeneration at Es uses the Hodge Index theorem (negative definiteness of the
intersection pairing on A, 7).
The sheaf R? f,Q,(1) over C; admits a further filtration

0— EBSEC(E)Z-S7*WS — RZf*Qé<1) - Qy — 0.
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Here each i, : Spec k < Cy is the inclusion of a geometric point, and W, = ker(H?(X,, Q(1)) — Q)
given by integration along X,. We have a natural isomorphism of Gal(k/k)-modules

Do) W; = Hom(A, 7, Q)

Ssover v’ 'S

given by the pairing between the divisor group A, 7 and the cohomology group H?(X,,Qq(1)), which is
perfect by the Hodge Index Theorem. In particular, we have

0 — @,Hom(A, 7, Q) — GriV — Qr — 0.

If we combine GrlLV with the @ sec(®) W part of Gr%V, and renumber the filtration steps, we get a

filtration
0CFil’V CcFil'V CcFi'V=V

with Fil’V = L?V and Fil'V = (Fil*V)*, and
(5.1) 0 — H'(CR, R £.Qu(1)) = GrgyV — @,Hom(A, 7, Q) — 0.
We remark that this is the filtration on V' induced from the perverse filtration of the complex R f.Qe. In
general, the perverse filtration behaves better than the filtration Fil'V in that it satisfies Poincaré duality
and Hard Lefschetz.

We consider a similar filtration on NS(X):

0 C Fil?’NS(X) c Fil'NS(X) ¢ Fil’NS(X) = NS(X)

as designated by Prop i.e., FiI°NS(X) = Z® and Fil'NS(X) = (Fil*NS(X))*, which consists of all
divisor classes with total degree 0 long fibers of f. Since v(C) - ® = 1, Gr*NS(X) is freely generated by
the image of y(C'). We have a similar filtration on NS(X%).
Let NS(X)yer € NS(X) be generated by the irreducible components of all fibers of f. Note that there
is a canonical isomorphism.
NS(X )ver /Z® 2 By A,

Then we have a further filtration of Gr'NS(X)
0 — ®yAy = Cr'NS(X) — Gr'NS(X)por — 0.
where Gr'NS(X)po; is defined to be the quotient. Similarly, we have an inclusion
@u, = GriNS(Xp).
5.2. Theorem (Shioda-Tate, see [3, Prop 4.5], [7, Prop 4.1]). The above map induces an isomorphism
Gr'NS(X)nor =+ A(F)/B(k).

Sketch of proof. Let Divg(X) C Div(X) be the divisors whose intersection number with any fiber of f is
zero. Restricting a divisor on X to its generic fiber gives 7 : Divo(X) — Pic(X) — Pic’(Xr) = A(F),
which is surjective (set-theoretic inverse given by taking closure). Now let Divag(X) = ker(Divo(X) —
Fil'NS(X)) be those divisors algebraically equivalent to zero. Then 7 restricts to Divae(X) — Pic®(X) —
A(F), the latter map comes from Pic%; Xspec x Spec F' — Ap hence lands in the F'/k-trace B. Therefore
7(Divae(X)) € B(k), and 7 induces 7 : Fil'NS(X) — A(F)/B(k). Since vertical divisors are mapped to
0 under 7, 7 factors through
Gr'NS(X)nor — A(F)/B(k).

The fact this is an isomorphism follows from the surjectivity of Pic%,, — B (see [3, Prop 4.4]). O

To summarize, we have an exact sequence
(5.2) 0 — @A, — Gr'NS(X) — A(F)/B(k) — 0.

Now consider the cycle class map ¢l : NS(X3) ® Q, — V. It is easy to see that this map is strictly
compatible with the filtrations denoted by Fil. Now we consider ¢l : Gr'NS(Xz) — Grgy, V. The map

@A, 7 C Gr'NS(Xz) L GriyV — @,Hom(A, 7, Q)
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is given by the intersection pairing is an isomorphism after tensoring the source by Q. Therefore, the
exact sequence (5.1)) admits a canonical splitting

(5.3) GrgV 2 (©Ay © Q) © H (Cp, R Qe (1))
Moreover this is an orthogonal decomposition. The exact sequence induces
v A(F)/B(k) = Gr'NS(X)/ @, Ay = Grpg V/(@,A, 7 © Q) = H'(Cp, R £.Qe(1))
whose image lies in the o-invariants. This makes (A(F)/B(k), H'(Cy, R £.Q,(1))) into a NS structure.

5.3. Fact (Tate). For o, 3 € A(F), if we extend them to divisors &,  (with Q-coefficients in general) with
zero intersection with all vertical divisors, then we have

(o, B)nT = — (@, B) log(q)-

Since @& is orthogonal to all vertical divisors, ¢l(&) has image (0, t(t)) € Gryy,V under the decomposition
(5.3). Therefore, ¢ respects the negated modified NT pairing on A(F)/B(k) and the cup product pairing
on H'(Cr, R! £,Q,(1)). This finishes the proof of Prop

Using the splitting (5.3), we may view ©ul, 7®Qy as a sub of Grpy V' with quotient H' (O, R £,.Qq(1)),
forming a new filtration of GrllmV compatible with the filtration on GrlNS(X). This proves Prop
4.2 O

5.4. Proof of Prop For simplicity let L = A . This is the free abelian group with basis given by

irreducible components of X, ®j k. The o-action is by permuting this basis. In particular, both L and
L, are free Z-modules. The NS structure (A,, A, z ® Q¢) = (L7, L ® Qy) fits into Example According
to the calculations there, we have

A(Ay, A, 7 ©Qp) = 2(L7 — Hom(L,, Z))
is the reciprocal of the discriminant of the pairing between L and L,. The pairing on L gives
0=-L—->LYV—=-Q—=0
for some finite abelian group @ whose order is Disc(L). Taking o-invariants gives an exact sequence
0—L°—(LY)Y - Q" — L,

Since L, is free while Q7 is finite, the last map is zero hence Q7 = (LV)?/L° = Hom(L,,Z)/L? whose
order is then z(L° — Hom(L,,Z))~'. We reduce the problem to showing that

Q7] = cv = [Au(k(v)) + AT (k(v))] = mo (A @4 k)7,
where the last equality uses Lang’s theorem to A%. This follows from the isomorphism of o-modules ([T}
9.5, Thm 4])

Q = (A, @ k).

Idea of proof: we may replace C' by its strict henselization at v, therefore consider X over a strict henselian
DV R R with fraction field K and closed point s, and define L accordingly. In this case, the Néron model A
over R may be obtained as the quotient P/E, where P C Picx/p is the open subgroup scheme consisting of
line bundles with total degree zero on fibers of X — Spec R, and F is the closure of the identity section of
Py (P/FE is the maximal separated quotient of P). Then mo(Ps) can be identified with LY (by evaluating
degrees along each component of X;) and E(R) = L (line bundles trivial on the generic fiber are of the
form O(D) for divisors D supported on the special fiber), and the natural map E(R) — P(R) — mo(Ps)
coincides with the map L — LV given by the intersection pairing. O
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9.5.

ZHIWEI YUN

Proof of Prop [4.6, Since Pic o = A°, we have det(R!f,Ox) = w;! .. Applying Riemann-Roch
X/C A/C

to R1f,Ox we get

X(C,R'f,Ox) = —degwa/c —n(g — 1).

Therefore

a(X) = x(C,0¢) — x(C,R ,0x) — 1+ dimPicgf/k =degwa/c +n(g—1)+ dimPicg(/k —g.

Since B & Picg(/k/Pic%/k, we get dim Pic% , — g = dim B, hence the formula (4.1)). O
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