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1 Introduction to the BSD conjecture

1.1 Some history

The BSD conjecture originated from observations made by Birch and Swinnerton-
Dyer when studying the asymptotics of∏

p≤x

#E(Fp)

p

as x grows (“the first serious contribution to mathematics by a computer”). Specifi-
cally, Birch and Swinnerton-Dyer found that∏

p≤x

#E(Fp)

p
∼ CE(log x)rank(E(Q))

for some (explicit) constant CE . This phenomenon was then reformulated by Tate
in terms of an L-function L(E/Q, s) and then generalized to abelian varieties over
global fields.

1.2 Motivation: the class number formula

Let me give a completely ahistorical motivation by going back to the zeta function.
If K is a number field, then it has an associated Dedekind zeta function ζK . One

has that
ords=0 ζK = r := r1 + r2 − 1 = rank(O×K).

Moreover, the leading coefficient CK is described explicitly by fundamental invariants
associated to K:

CK = −hKRK
wK

where
∗Notes taken by Tony Feng
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1 INTRODUCTION TO THE BSD CONJECTURE

• hK is the class number of K; i.e. the size of the class group Pic(OK) '
H1

ét(OK ,Gm) (which classifies “Gm-torsors over OK”),

• wK = #(O×K)tors is the number of roots of unity in K,

• RK is the regulator of K, defined as follows. The map L : O×K → Rr1+r2 is
defined by

L(u) = (log ||u||v)v|∞
(where complex places are taken in pairs, and for such places the norm used
here is the square of the usual absolute value) and via the product formula
this factors through the hyperplane H = {(ti)i |

∑
ti = 0}. There is a natural

measure on H induced via the short exact sequence

0→ H → Rr1+r2 Σ−→ R→ 0

and the Lebesgue measures on Rr1+r2 and R. (Explicitly, the measure on H
corresponds to a choice of orthonormal basis via the standard inner product
on Rr1+r2 .)

Remark 1.2.1. It is a theme that comes up over and over again in number
theory that when you have a short exact sequence

1→ H → G→ G/H → 1

of locally compact Hausdorff topological groups and Haar measures chosen on
two out of the three groups, then there is a unique choice of Haar measure
on the third so that an appropriate “Fubini formula” holds among integration
on the three spaces (characterized for integration of continuous functions with
compact support, but valid and used in an L1-sense too). This is discussed
in Lang’s book Real and functional analysis for the characterization aspect
with continuous compactly-supported functions, and the L1-aspect is then an
instructive exercise.

With respect to this preferred measure on H, we set RK = vol(H/L(O×K)).

In Tate’s reformulation of the BSD conjecture, there are analogous pieces to those
appearing here. So the class number formula is a “Gm-version over OK” of the BSD
conjecture for the “Néron model over OK for an abeian variety over K” (though the
meaning and role and Néron models will be largely postponed until the next lecture,
with `-adic representations serving in place of Néron models today).

1.3 Construction of the L-function

Let A be an abelian variety over a global field K. We want to define an L-function
L(A/K, s).
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1 INTRODUCTION TO THE BSD CONJECTURE

The L-function will be constructed as an Euler product over local factors, which
are related to the “reduction” of A at the primes of K. There are complications at
places of bad reduction; some references on elliptic curves give case-wise formulas in
these cases that may seem ad hoc without a broader context.

We shall give a uniform definition of the local factors of L(A/K, s) using the
(rational) Tate module

V`(A) = T`(A)[1/`],

which is a vector space isomorphic to Q2g
` , equipped with a continuous linear action

of ΓK := Gal(Ks/K).

Definition 1.3.1. Let R be a discrete valuation ring and X be a smooth proper
scheme over F := Frac(R). We say that X has good reduction with respect to R if
X = X ⊗R F for some smooth proper R-scheme X .
Hard facts. If A is an abelian variety, then A has good reduction at v (i.e. with
respect to OK,v) if and only if AKv has good reduction with respect to OK,v. More-
over, in such cases we have A = Av⊗OK,v

K where A is an abelian scheme over OK,v
(i.e. a smooth proper OK,v-group scheme with connected reduction). In particular,
the special fiber of Av is an abelian variety over the residue field. This Av is in fact
unique and even functorial in A . All of these assertions rests crucially on the theory
of Néron models, to be discussed next time.

Remark 1.3.2. This is really miraculous. For a general X with good reduction there
is no preferred X , but for abelian varieties there is is a preferred X . Note that it
isn’t at all clear for general X that good reduction over the completion Kv should
imply the same over K (i.e., relative to the algebraic localization OK,v).

If dimX = 1 (and X is geometrically connected over F ) with positive genus then
there is a “best possible” X even when good reduction fails (the so-called minimal
regular proper model, to be discussed later), but this lacks the good functoriality
properties of the Néron model for abelian varieties.

If we want to make definitions (e.g. of the local factors of an L-function) for X
in terms of an integral model X , then it’s not clear that this is independent of that
choice. Beyond the case of curves and abelian varieties, there is no “best choice” of
integral model:

Example 1.3.3. For a discrete valuation ring R with fraction field K and residue field
k we shall give a smooth projective surface over K admitting two smooth projective
R-models that are not R-isomorphic (even ignoring the chosen identification of their
generic fibers).

The following example was suggested by R. Vakil. We will construct a projective
smooth R-scheme X whose generic fiber is P1

K ×P1
K and whose special fiber is the

Hirzebruch surface F2 := P(O ⊕ O(2)). (Note that P1 × P1 may be viewed as the
Hirzebruch surface F0.) Then X and P1

R × P1
R have isomorphic generic fibers but

non-isomorphic special fibers, so they are not R-isomorphic.
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1 INTRODUCTION TO THE BSD CONJECTURE

For the construction of X , let Q ⊂ P3
R be the R-flat quadric xy − z(z − tw) = 0

where t ∈ R is a uniformizer, so QK is smooth (hence the R-flat Q is reduced) and
Qk is a cone with singularity at ξ0 = [0, 0, 0, 1]. Since QK is defined by a K-split
quadratic form in 4 variables, namely xy − zw′ with w′ = z′ − tw, it is isomorphic
to P1

K ×P1
K (using P1

K ×P1
K ↪→ P3

K via ([α, β], [u, v]) 7→ [βu, αv, βv, (βv−αu)/t]).
Also, the blowup of the cone Qk at the cone point ξ0 is isomorphic to F2.

Now we introduce an incidence relation over R that picks out one of the two lines
through each point in QK by introducing an auxiliary slope parameter. Consider
the closed subscheme X ⊂ P3 ×P1 defined by

{([x, y, z, w], [α, β]) |αx = βz, βy = α(z − tw)}

where [α, β] denotes homogeneous coordinates on P1. The projection p2 : X → P1

is a P1-bundle: over {β 6= 0} it is P1 with homogenous coordinates [x,w] and over
{α 6= 0} it is P1 with homogeneous coordinates [y, w]. Thus, X is R-smooth with
geometrically connected fibers.

The projection X → P3 lands inside the quadric Q (as is sufficient to check over
K since X is R-flat, or can be checked by working on fibers over Spec(R) since Q
is reduced). The resulting map XK → QK = P1

K × P1
K is an isomorphism since

composing it with the first projection π1 : QK → P1
K recovers the composite map

XK ↪→ P3
K ×P1

K → P1
K (as is sufficient to check in the sense of rational maps since

XK is integral); in other words, the smooth closed subscheme XK ⊂ QK × P1
K lies

inside the graph of π1 and so must coincide with that graph.
The projection π1 : QK → P1

K extends to a map Π1 : Q − {ξ0} → P1
R by

using the two expressions [y, z] and [z − tw, x], so by the same reasoning as above
we see that the inclusion X ⊂ Q × P1

R coincides with the graph of Π1 away from
{ξ0}×P1

R = P1
k. Hence, the projection p1 : X → Q is an isomorphism over Q−{ξ0},

whereas p−1
1 (ξ0) ' P1

k. Since Xk is a smooth surface, the curve p−1
1 (ξ0) is Cartier in

Xk. Hence, (p1)k factors uniquely through the blow-up Blξ0(Qk).
To prove that the unique Qk-map f : Xk → Blξ0(Qk) = F2 between smooth

surfaces is an isomorphism, we have to show that the map fξ0 : P1
k → P1

k between
ξ0-fibers is an isomorphism. For this we shall go back to how a blow-up is built via
charts. Direct computation over {w 6= 0} = A3

k ⊂ P3
k shows that Blξ0(Qk) is covered

by the charts D+(x) and D+(y), and the very definition of Xk = X mod t identifies
D+(x) with Xk ∩ {β 6= 0} and identifies D+(y) with Xk ∩ {α 6= 0} compatibily with
gluing data, so we are done.

In view of Example 1.3.3 we will make definitions in terms of the Galois rep-
resentations intrinsically attached to the “generic fiber” X over K instead. This
introduces a different problem, namely possible dependence on ` (and rationality
issues to make sense of evaluating an `-adic Euler factor on a complex number q−sv ,
but there are ways around this when we can link the Euler factor to a geometric ob-
ject that doesn’t involve ` (such as by using the Néron model in the case of abelian
varieties, as we will see next time).
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Remark 1.3.4. It is a soft fact that if R is a Dedekind domain and X is smooth and
proper over F = Frac(R), then there exists r ∈ R − {0} and a smooth proper X
over R[1/r] such that X = X ⊗R[1/r] F , so X has good reduction at all but finitely
many maximal ideals of R. The principle is that any reasonable property over
the (geometric) generic fiber “spreads out” to an open subset of Spec(R) (and this
principle is valid with R any commutative ring whatsoever). There is an exhaustive
discussion of this principle in EGA IV3, §8–§9, §11, etc.

Let X be smooth and proper over a global field K, and ` 6= char (K) be a prime.
Then attached to X are étale cohomology groups Hi

ét(XKs ,Q`), which are finite-
dimensional Q`-vector spaces, equipped with a natural continuous ΓK-action. (Here
XKs = X ⊗K Ks).

Example 1.3.5. If A is an abelian variey, then there is a ΓK-equivariant isomorphism
H1

ét(AKs ,Q`) ' V`(A)∗. The dual here means (as usual in representation theory)
that the action of γ on H1

ét(AKs ,Q`) is identified with the linear dual of the action
of γ−1 on V`(A).

Theorem 1.3.6. If X has a smooth proper model Xv over OK,v then Hi
ét(XKs ,Q`) is

unramified at v, and naturally isomorphic to Hi
ét(Xv⊗OK,v

Fv,Q`) as Galois modules
with respect to the identification Dv/Iv ' ΓFv .

Remark 1.3.7. For abelian varieties, the Néron-Ogg-Shafarevich criterion provides a
converse result (to be proved next time using Néron models). In general, there is no
converse.

The upshot is that at unramified places, which constitute all but finitely many
places, we have an action of Frobenius, so we can try to define an L-function following
Artin’s formalism for associating Artin L-functions to Galois representations: we
consider the definition

Li(X/K, s)“ = ”
∏
v

det(1− q−sv φv | (Hi)Iv)−1

where qv = #Fv and φv is the “geometric Frobenius” in Dv (inverse to the “clas-
sical Frobenius”). Strictly speaking, for the local factor at v we should require
` 6= char(Fv), as is automatic for global function fields but is a mild nuisance at the
finitely many `-adic places when K is a number field; we will address the resulting
“independence of `” issue shorrtly.

Remark 1.3.8. Why the geometric Frobenius rather than the classical one? The ge-
ometric Frobenius on cohomology is dual to the usual Frobenius on the Tate module
in the case of degree-1 cohomology for abelian varieties. But the more serious reason
stems from the Grothendieck-Lefschetz cohomological formula for L-functions at-
tached to constructible `-adic sheaves on separated schemes of finite type over finite
fields, according to which the action of geometric rather arithmetic Frobenius in the
Galois group is what appears.
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1 INTRODUCTION TO THE BSD CONJECTURE

To make sense of the putative definition of Li(X/K, s), there are some compli-
cations to be overcome:

1. The characteristic polynomial of φv on (Hi)Iv lies a priori in Q`[T ], and thus
seems to depend on `. Moreover, it isn’t clear what is meant by evaluating
this `-adic polynomial in a manner that involves q−sv with s ∈ C. These
concerns would be eliminated if the polynomial is actually in Q[T ] and as such
is independent of ` (with ` 6= char(Fv)).

One solution to this in practice, which is what we’ll do for the abelian variety
case, is to give a geometric re-interpretation which is evidently independent of
`. For abelian varieties, this goes through the Néron model (as we will explain
next time, even for bad v). In general this is a serious issue, especially at
the bad places. At places of good reduction it is settled using the Riemann
Hypothesis proved by Deligne.

2. Does the product (absolutely) converge? To handle this we need to “uniformly”
(in a power of qv) bound the absolute values of the φv-eigenvalues in C. The
Riemann Hypothesis provides the bound, giving that L(X/K, s) is absolutely
convergent (uniformly in closed right half-planes) for Rep s > 1 + i/2.

With the above issues settled, we can then consider analytic continuation, poles,
leading terms, etc. This analytic continuation remains unsolved in general even for
abelian varieties (though some cases are now known following the work of Wiles,
Taylor, etc.).

This defines L(A/K, s) = L1(A/K, s) for Re(s) > 3/2.

1.4 The BSD conjecture

First we discuss the “weak form”.

Conjecture 1.4.1 (Weak BSD). L(A/K, s) has analytic continuation to C and

ords=1 L(A/K, s) = rankA(K).

Evidence. Very little of the conjecture has been proven; there is progress for
dimA = 1 with “rank” (algebraic or analytic) ≤ 1 for some classes of K.

The best evidence (in B. Conrad’s opinion) is for K a global function field and
A the Jacobian of a curve. The point is that here one has an interpretation via
surfaces over finite fields, called the Artin-Tate conjecture. To a curve over a global
function field we can attach canonically a fibered surface over a finite field via the
theory of minimal regular proper models, to be discussed later. The BSD conjecture
for the Jacobian of such a curve is then equivalent to a conjecture about this surface
which makes sense for any smooth projective surface over a finite field (in particular,
having nothing to do with a fibration structure).

Now we discuss the “strong form” of the conjecture, which also predicts the
leading coefficient.
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1 INTRODUCTION TO THE BSD CONJECTURE

Conjecture 1.4.2. Near s = 1, we have

L ∼ CA(s− 1)rankA(K)

where
CA =

#XA ·RA · ΩA

#A(K)tors ·#Â(K)tors

.

We shall now briefly describe the various terms (with some details postponed to
next time), and see how this is analogous to the class number formula.

• Here XA is the Tate-Shafarevich group of A. This admits a definition in terms
of Galois cohomology, to be discussed later, and it is also closely related to the
étale cohomology group H1

ét(OK ,A) for the Néron model A of A (analogous
to the term H1

ét(OK ,Gm) appearing in the class number formula). A precise
definition will be given next time. This is the analogue of the class group. It
is a major open problem to prove the finiteness of this group (known in some
very special cases related to low-rank elliptic curves).

• The regulator is a volume term. There is a canonical height pairing

A(K)R × Â(K)R → R

and the volume is attached to the lattice A(K) × Â(K) ↪→ A(K)R × Â(K)R
with respect to this pairing.

• ΩA is a volume term involving the archimedean and bad places (encoding
“Tamagawa factors”).

Cassels discovered an interesting structure for elliptic curves, which was then
generalized for abelian varieties by Tate, now known as the Cassels-Tate pairing :

〈·, ·〉A : XA ×X
Â
→ Q/Z.

(Definitions of this will be discussed later.) The construction shows that this is skew-
symmetric with respect to double-duality. If φ : A → Â is a polarization (which,
roughly speaking, is a symmetric isogeny to the dual abelian variety satisfying a
positivity property) then inserting it into the second variable yields (by symmetry
of φ) a skew-symmetric form on XA.

A serious result concerning the Cassels–Tate pairing is that the kernel on each
side of the pairing coincides with the maximal divisible subgroup (XA)div. (Re-
call that an abelian group M is divisible if n-multiplication on M is surjective for
all n > 0; e.g., Qp/Zp is divisible for any prime p, as is Q/Z.) Thus, if φ is a
principal polarization (i.e. deg φ = 1) then the resulting skew-symmetric form on
XA/(XA)div has trivial kernel in each variable; hence, the pairing is perfect if
XA/(XA)div is finite.
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1 INTRODUCTION TO THE BSD CONJECTURE

It is well-known that if X is a smooth projective geometrically connected curve
over K then A = Jac(X) then A has a canonical principal polarization. A basic
algebra fact is that given a finite abelian group with a perfect skew-symmetric form
valued in Q/Z, the size of the odd part has to be a square (this is the analogue of
the fact that a symplectic space has to have even dimension). The upshot is that if
A admits a principal polarization, then the size of the odd part of X/Xdiv – if this
group is finite! – is either a square or twice a square.

Given an ample line bundle L, one get a polarization φL in the usual manner
(functorially defined by x 7→ t∗x(L) ⊗ L−1). However, for abelian varieties over
general fields there are examples (when the ground field is not separably closed)
of polarizations that do not come from this construction (which happens for A =
Jac(X) and some curves X over number fields K with X(K) = ∅; recall that in
such cases the principal polarization is built indirectly via Galois descent). Tate
showed that if φ = φL for some L (as happens for elliptic curves, but generally not
for the principal polarization of higher-genus curves without a rational point) then
the associated perfect skew-symmetric form on XA is even alternating, so in such
cases #XA is a perfect square (even at 2).

Remark 1.4.3. Possibly due to a general lack of appreciation for the fact that not
every polarization arises from a line bundle on A itself, there arose a folklore belief
(never stated by Tate!) that for a principally polarized A, #XA is a square. In 1999
Poonen and Stoll gave examples of Tate-Shafarevich groups of principally polarized
Jacobians of higher-genus curves over Q whose order is not a square.

In fact they went much further: they discovered a 2-torsion cohomological in-
variant whose vanishing corresponds to the alternating property for a principally
polarized abelian variety. Using this, they found another incredible example: a prin-
cipally polarized Jacobian for which #X is a square but the Cassels-Tate form is
not alternating!

1.5 Isogeny invariance

Since we can basically prove nothing, one might ask how to test it - e.g. if there
are ways of probing whether or not the formulation is good with respect to known
properties of L-functions.

The L-function is built out of the `-adic representations, which are evidently
invariant under isogeny. More precisely, if f : A → B is an isogeny then V`(A) '
V`(B), so L(A/K, s) = L(B/K, s). For the conjecture to be true, we must then have
CA = CB. Recall that

CA =
#XA ·RA · ΩA

#A(K)tors ·#Â(K)tors

.

In general torsion isn’t isogeny-invariant, and #X likewise is not (it is essentially an
“integral” cohomology group). Overall, none of the pieces going into the definition
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of CA are invariant under isogeny. However, it turns out that the combination CA
is isogeny invariant. This is a theorem of Tate, which will be discussed later in the
seminar for number fields (see Theorem 7.3 in Chapter I of Milne’s book Arithmetic
Duality Theorems, which uses the full force of Tate global duality to be discussed in
a couple of weeks, along with the Cassels–Tate pairing).

A serious issue with the BSD conjecture, noted above, is that it’s not even known
that #XA < ∞. What is known is a much more elementary result that XA[m]
is finite for any m > 0 not divisible by char (K) (as will follow immediately from
general finiteness theorems in global Galois cohomology to be discussed in a couple
of weeks; see Remark 6.7 in Chapter I of Milne’s book Arithmetic Duality Theorems);
the same holds if char (K)|m but requires deeper methods with group schemes and
flat cohomology.

Of course, the m-torsion finiteness for all m > 0 isn’t good enough to prove the
finiteness of XA, since we haven’t ruled out possibilities such as that perhaps XA ⊃
Q7/Z7: the groupQ7/Z7 has finitem-torsion for anym > 0, but is obviously infinite.
(This is an instance of a “divisible group”: an abelian group on which n-multiplication
is surjective for every integer n > 0.) However, it is a formal consequence of finiteness
of the `-torsion finiteness for a prime ` that the `-primary part of the torsion abelian
group XA/(XA)div (the quotient by the maximal divisible subgroup) is finite:

Lemma 1.5.1. Let M be an abelian group that is `-power torsion for a prime `. If
M [`] is finite then M/Mdiv is finite.

Proof. By the snake lemma applied to the `-power endomorphism of the exact se-
quence

0→Mdiv →M →M/Mdiv → 0

we see that M [`] → (M/Mdiv)[`] is surjective. Hence, we may replace M with
M/Mdiv to reduce to the case that Mdiv = 0 (it is a simple exercise that M/Mdiv

has vanishing maximal divisible subgroup). In other words, the descending sequence
of subgroups `nM has vanishing intersection.

Our aim now is to show that M is finite. By Pontryagin duality, it is equivalent
to prove finiteness for the compact Hausdorff abelian dual M ′ of M . This dual is a
pro-` group (dual toM being `-power torsion), and the maximal subgroupMdiv ⊂M
on which `-multiplication is surjective is dual to the “smallest” torsion-free quotient
of M ′; i.e., Mdiv is dual to M ′/M ′tor. Hence, M ′ is torsion. Likewise, M [`] is dual to
M ′/`M ′, so M ′/`M ′ is finite. By compactness of M ′, if we choose m′1, . . . ,m′d ∈M ′
representing generators of M ′/`M ′ then the natural map

Zd` →M ′

defined by (aj) 7→
∑
ajm

′
j is surjective modulo ` and hence is surjective by successive

approximation with pro-` groups. Thus, the commutative pro-` groupM ′ is a finitely
generated as a Z`-module. But M ′ is torsion, so it is clearly finite.
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In general we do not know for number fields K how to rule out the possibility
that XA/(XA)div has nontrivial `-primary part for infinitely many primes `. By
contrast, in the function field case the situation is much better, as we’ll soon see.

1.6 Artin-Tate conjecture

Suppose K is the function field of a smooth proper geometrically connected curve
C over a finite field κ. Given a smooth proper and geometrically connected curve
X → Spec K of positive genus, there is a minimal regular proper model X → C.
(Thus, X is a smooth proper and geometrically connected surface over Fq; it is
projective by construction.) There is a lot of interesting geometry associated to this
surface (ignoring its fibration structure over C):

• the Néron-Severi group NS(X ), which has an intersection pairing; this is
closely related to J(K) equipped with its height pairing.

• Artin realized that XJ is closely related to Br(X ) := H2
ét(X ,Gm); e.g., the

finiteness of each is equivaent to that of the form, and the Brauer group admits
a pairing analogous to the Cassels–Tate pairing.

• The zeta function ζX ,Fq is closely related to L(J/K, s).

X X

NS(X ) J(X)
Br(X ) XJ

ζX ,Fq L(J/K, s)

Tate realized that one could recast the entire BSD conjecture for X in terms of
the invariants on the X -side. The L-function of J (in contrast with more general
abelian varieties!) is known to have analytic continuation via the link to the zeta
function of the surface, and Tate proved the following compelling result.

Theorem 1.6.1 (Tate). In the notation above, we have

ranks=1 L ≥ rank J(K).

Tate analyized a natural pairing built on Br(X ) via étale cohomology, including
perfectness and skew-symmetry properties, and deduced that if the order were finite
then it must be a square or twice a square. Manin found examples where the size is
Z/2Z. But 30 years later, a mistake was found in Manin’s example, and it was proved
that actually the order is always a square (when finite), contrary to the Poonen–
Stoll examples over number fields. This is used in the proof of the equivalence of
the Artin–Tate for X and the BSD Conjectures for Jacobians J over global function
fields, as we will see later.
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2 Introduction to the Bloch-Kato conjecture

2.1 Siegel’s mass formula

Let’s begin with an active learning exercise. Consider the equation

x2 + y2 + z2 = N

for a squarefree positive integer N . How many integral solutions are there when
N = 10001?

There were several guesses from the audience. The correct answer is 1920 (the
closest guess was 901).

Here is one approach. The question is obviously related to the geometry of the
sphere of radius r =

√
N = 10001 ≈ 100. The lattice points lying in a spherical shell

within a distance 1 of this sphere will necessarily be solutions to the equation. We
can approximate the number of such lattice points by the volume of the spherical
shell consisting of (x, y, z) with |x2 + y2 + z2 − 10001| < 1/2, which is 4πr2 times
the thickness of the shell. Since (r + δ)2 − r2 ≈ 2rδ, the thickness should be about

1
2
√
N
, so the volume of the shell is about 2π

√
N ≈ 600.

However, there are some congruence conditions on the possible values of a sum
of three squares. For instance:
Example 2.1.1. Consider the prime 2. The squares in Z2 are characterized modulo
8, and x2 mod 8 depends only on x mod 4. If we assume that x, y, z take values
uniformly at random modulo 8 (or modulo 4), then the distribution of x2 +y2 +z2 is
determined modulo 8, but it is not uniform: the values 1, 2, 5, 6 modulo 8 are taken
3/16 of the time each, the value 3 modulo 8 is taken 1/8 of the time, the values 0, 4
modulo 8 are taken 1/16 of the time each, and 7 modulo 8 is never attained.

To account for this disparity, we should multiply the volume estimate by the
ratio 3/16

1/8 = 3
2 for N ≡ 1, 2, 5, 6 mod 8 (such as for N = 10001) and 1/8

1/8 = 1 for
N ≡ 3 mod 8 (and 0 for N ≡ 7 mod 8), leading to an initial correction of 900 for
N = 10001. Yet this remains far from the correct count.

A systematic perspective on Example 2.1.1, incorporating congruential informa-
tion at all primes in a unified manner, goes back to Hardy–Littlewood. The idea
is that after approximating the number of integral solutions with a volume esti-
mate, we should adjust by multiplying against p-adic densities measuring p-adic
non-uniformities for all primes p.

Miraculously, Siegel’s “mass formula” proves that for positive-definite integral
quadratic forms which are unique in their genus, this always converges to exactly the
correct count! Fortunately, x2 + y2 + z2 is unique in its genus (first proved by Gauss
via his reduction theory for ternary quadratic forms in Disquisitiones Arithmeticae).
Siegel proved a more general result that computed a weighted sum of “representation
counts” #{~x ∈ Zm | q(~x) = N} across all quadratic lattices q in a fixed positive-
definite genus, with the count equal to a product of local densities at all places of Q
(the archimedean density playing the role of the volume term above).
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2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

The p-adic density measures non-uniformity in the distribution of values of the
quadratic form Q := x2 + y2 + z2 as a function Z3

p → Zp for primes p. Consider
the ratio of volumes vol(Q−1(U))/vol(U) relative to the standard Haar measure on
Zp (assigning volume 1 to both Z3

p and Zp) as U varies through ever-smaller open
balls centered at N . Such volume considerations will provide a precise language for
probabilistic reasoning.

If the values of Q were “uniformly distributed” in the p-adic sense then such ratios
would get close to 1 as U gets small. So we want to study these ratios for small U
centered at N . Taking U = N + peZp with e ≥ 1, the volume ratio for U is

#{(x, y, z) ∈ (Z/peZ)3 |Q(x, y, z) ≡ N mod pe}p−3e

p−e
; (2.1.1)

we want to understand the behavior as e grows.
If p - 2N then the affine quadric {Q = N} ⊂ A3 is Zp-smooth, so every solution

to Q(x, y, z) ≡ N mod pe lifts in p3/p = p2 ways to a solution mod pe+1 for all e ≥ 1.
Hence, for such p the ratio is always equal to the value for e = 1:

#{(x, y, z) ∈ F3
p |Q(x, y, z) = N mod p}

p2
. (2.1.2)

We will show below that this ratio is 1 +

(
−N
p

)
p . These quadratic residue symbols

for N = 10001 are positive for all the small primes 3, 5, 7, 11, 13, causing an “excess”
beyond 1 for such “correction factors”. By accounting for these and the appropriate
p-adic density factors for p|2N as discussed below, computing with the first 20000
primes yields something like 1919.8 for the heuristic prediction of the count of solu-
tions; much better than 900, and very close to the true count of 1920.

Now let’s elaborate on the calculation of the p-adic density for all primes p. (The
impatient reader may skip ahead to Theorem 2.1.3.)

Case I. First we complete the discussion for p - 2N by showing that (2.1.2)

is equal to 1 +

(
−N
p

)
p , or in other words that the number of solutions in F3

p to

x2 + y2 + z2 ≡ N mod p is p2 + p
(
−N
p

)
. We will establish this count for any integer

N (regardless of whether or not p divides 2N), assuming p is odd.
Let χ =

(
·
p

)
denote the Legendre symbol modulo p. Since a ∈ Z/pZ is a square

in 1 + χ(a) ways, the count of interest is equal to∑
a,b∈Z/pZ

(1 + χ(a))(1 + χ(b))(1 + χ(N − a− b))

=
∑

a,b∈Z/pZ

1 +
∑

a,b∈Z/pZ

χ(a)χ(b)χ(N − a− b)

12



2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

because the other character sums cancel. Therefore, it suffices to show that∑
a,b∈Z/pZ

χ(a)χ(b)χ(N − a− b) = pχ(−N). (2.1.3)

Lemma 2.1.2. We have

SN :=
∑

a∈Z/pZ

χ(a)χ(N − a) =

{
χ(−1)(p− 1) N ≡ 0 (mod p)

−χ(−1) N 6≡ 0 (mod p).

Proof. By the same reasoning as used in the preceding paragraph,

#{(a, b) | a2 + b2 ≡ N (mod p)} = p+ SN .

The caseN = 0 is now trivial, so we now assumeN 6= 0. Hence, the conic u2+v2 = N
in A2

Fp
has smooth projective closure (since p is odd). Furthermore, it has a rational

point by the pigeonhole principle, because the two expressions a2 and N − b2 each
take p+1

2 values modulo p as a, b range over Fp, and hence must share at least one
value. Therefore, the projectivization of the conic is isomorphic over Fp to P1

Fp
,

hence has exactly p+ 1 solutions over Fp.
To complete the proof, it only remains to count the number of rational points

of the conic on the line at infinity. But this is evidently 0 if χ(−1) = −1 and 2
otherwise, which can be written uniformly as 1 + χ(−1).

In conclusion, we have found that if N 6≡ 0 (mod p) then

#{(a, b) | a2 + b2 ≡ N (mod p)} = p+ 1− (1 + χ(−1)) = p− χ(−1)

which shows that SN = −χ(−1) in this case, as desired.

Rewriting (2.1.3) as∑
b∈Z/pZ

χ(b)
∑

a∈Z/pZ

χ(a)χ(N − a− b) =
∑

b∈Z/pZ

χ(b)SN−b

we can use Lemma 2.1.2 to simplify it to∑
b6≡N
−χ(b)χ(−1) + χ(N)χ(−1)(p− 1) =

∑
b∈Z/pZ

−χ(b)χ(−1) + χ(N)χ(−1)p

= χ(−N)p

as desired. This completes the determination of the p-adic density when p - 2N .

Case II. What if p = 2? In Example 2.1.1 we computed (2.1.1) for p = 2 and
e = 3, getting the ratio 3/2 for N ≡ 1, 2 mod 4 and 1 for N ≡ 3 mod 8 (and the other
cases either cannot occur for squarefree N or, as for 7 mod 8, admit no solutions at

13



2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

all). We claim that (2.1.1) for p = 2 stabilizes at all e ≥ 3. If x2
0+y2

0 +z2
0 ≡ N mod 2e

then for e ≥ 1 we see that to solve

(x0 + 2eε1)2 + (y0 + 2eε2)2 + (z0 + 2eε3)2 ≡ N mod 2e+1

the εj ’s drop out and so either the original triple is actually a solution modulo 2e+1

(in which case all 8 triples mod 2e+1 with the same reduction as (x0, y0, z0) modulo
2e are solutions modulo 2e+1) or it does not lift to a solution modulo 2e+1.

In cases when (x0, y0, z0) is a solution mod 2e+1 then exactly half of the 8 classes
mod 2e+1 sharing its reduction modulo 2e will lift to solutions mod 2e+2. Indeed,
the congruence

(x0 + 2eε1)2 + (y0 + 2eε2)2 + (z0 + 2eε3)2 ≡ N mod 2e+2

says exactly

x0ε1 + y0ε2 + z0ε3 ≡ (N − x2
0 − y2

0 − z2
0)/2e+1 mod 2.

The left side is a nontrivial linear form in the εj ’s because if x0, y0, z0 all vanish
mod 2 then N would be divisible by 4 (as we are assuming the triple is a solution
modulo 2e+1 ∈ 4Z) yet N is assumed to be squarefree. Hence, exactly half of the 8
possibilities for (ε1, ε2, ε3) mod 2 will work as claimed.

The upshot is that if we consider congruence classes of triples modulo 2e
′ with

e′ ≥ 2 (i.e., e′ = e + 1 with e ≥ 1) and consider them in 8-fold clumps based on
reduction modulo 2e

′−1 then half of each clump (i.e., 4 triples per clump) lifts to a
solution modulo 2e

′+1, with all 8 lifts of a triple providing solutions when any single
one does. Hence, among all 64 lifts mod 2e

′+1 of the 8 triples in such a clump of
solutions mod 2e

′ , exactly half are solutions mod 2e
′+1.

We have shown that if there are νe′ solutions mod 2e
′ then among the 8νe′ lifts of

these to triples modulo 2e
′+1 exactly 4νe′ of those lifts are solutions. In other words,

νe′+1 = 4νe′ for all e′ ≥ 2. This establishes the asserted stabilization of (2.1.1) for
p = 2 and e ≥ 3 (and actually for e ≥ 2 if one does the computation for e = 2).

Case III. Finally, what about the p-adic density for an odd prime factor p of
N? We claim that stabilization happens for e ≥ 2. The key point is that any triple
(x0, y0, z0) that is a solution to the congruence modulo pe with e ≥ 2 cannot reduce
to (0, 0, 0) modulo p, as otherwise we would get p2|N since e ≥ 2, contradicting that
N is squarefree. Hence, lifting a solution moduloe pe to a solution modulo pe+1 with
e ≥ 2 amounts to the congruence

(x0 + peε1)2 + (y0 + peε2)2 + (z0 + peε3)2 ≡ N mod pe+1

with unknown εj ’s that only matter modulo p and (x0, y0, z0) that does not vanish
modulo p. Since p is odd, this is exactly

x0ε1 + y0ε2 + z0ε3 ≡ (1/2)(N − x2
0 − y2

0 − z2
0) mod p

14



2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

which is a nontrivial linear condition on the εj ’s. Thus, each solution modulo pe lifts
to p2 solutions modulo pe+1 when e ≥ 2, proving the asserted stabilization for odd
p|N .

It remains to determine (2.1.1) for odd p|N with e = 2. The preceding calculation
for such p works equally well when e = 1 because we have already shown that any
solution modulo p2 must have nonzero reduction modulo p. Hence, if νe denotes the
number of solutions modulo pe then the absence of a mod-p2 congruential solution
lifting the solution (0, 0, 0) to x2 + y2 + z2 ≡ N mod p implies ν2 = p2(ν1 − 1) =
p2(p2 − 1), so

ν2

p4
=
p2 − 1

p2
= 1− 1

p2
.

Putting it all together, Siegel’s theorem gives:

Theorem 2.1.3. For a squarefree positive integer N ,

#{(x, y, z) ∈ Z3 |x2 + y2 + z2 = N} = 2π
√
Nρ2 ·

∏
p-2N

(
1 +

ψ(p)

p

)
·
∏

p|Nodd

(1− 1/p2),

where ψ =
(−N
•
)
is the quadratic character associated to Q(

√
−N) and the 2-adic

density ρ2 is equal to 3/2 when N ≡ 1, 2 mod 4 and is equal to 1 when N ≡ 3 mod 8.

Remark 2.1.4. If N were permitted to have nontrivial square factors then the com-
putations of the local densities at prime factors of N would change!

We want to relate this final expression to a Dirichlet L-function. For p - 2N , we
have (

1 +
ψ(p)

p

)
=

(
1− ψ(p)

p

)−1(
1− 1

p2

)
(2.1.4)

as ψ(p)2 = 1. For odd p|N , we have ψ(p) = 0 because p is ramified in Q(
√
−N), so

the factor 1 − 1/p2 at such p on the right side of Theorem 2.1.3 coincides with the
right side of (2.1.4). Therefore, the count is equal to

2π
√
Nρ2 ·

∏
p>2

(
1− ψ(p)

p

)−1(
1− 1

p2

)

Writing L(`) for the L-function with the Euler factor at a prime ` removed, this
can be rewritten as

2π
√
Nρ2 · L(2)(1, ψ)/ζ(2)(2).

By the analytic class number formula (recalled in Example 2.2.3 below) and Euler’s
calculation of ζ(2), this is

2π
√
Nρ2

(
1− ψ(2)

2

)
2πh

w
√
dN
· 6

π2

(
1− 1

4

)−1

15



2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

where w is the number of integral units in Q(
√
−N), h is its class number, and dN

is the absolute discriminant Q(
√
−N) (so dN = N if N ≡ 3 (mod 4) and dN = 4N

otherwise; likewise, w = 2 except when N = 1, 3). Cancelling factors of π2, etc., the
count is equal to

4

3
· ρ2

(
1− ψ(2)

2

)
12h

w/2

√
N

dN
.

This is still ugly, but we shall now transform it into something very clean, by sepa-
rately considering different cases for N mod 8.

If N ≡ 1, 2 (mod 4) then ψ(2) = 0, ρ2 = 3/2, and
√
N/dN = 1/2, so ρ2 cancels

out and we get the formula
12h

w/2

for the original count (so w/2 = 1 when N > 1); this applies to N = 10001. As
a reality check, this gives the correct count for N = 1 due to the presence of w/2
(which is equal to 2 when N = 1), as well as for N = 5 (with h = 2).

If N ≡ 3 (mod 8) then ψ(2) = −1, ρ2 = 1, and
√
N/dN = 1, so the count is

24h

w/2

(with w/2 = 1 when N > 3). As a reality check, this gives the correct count for
N = 3 (with w/2 = 3) and N = 11 (with h = 1).

2.2 Hints of a general conjecture

Birch and Swinnerton-Dyer were inspired by Siegel’s mass formula. Their idea was
to estimate the size of E(Q) using the product of “local densities”

∏
p≤x

#E(Fp)
p .

Remark 2.2.1. There is something subtle going on here. The Riemann Hypothesis for
elliptic curves over finite fields suggests that it is more natural to compare #E(Fp)
to p+1 instead of p, yet such a change has a huge effect since

∏
p≤x(p+1)/p diverges

like log x.

For an elliptic curve E/Q, Birch and Swinnerton-Dyer predict that

L(r)(E, 1)

r!
=

XE · ΩE ·RE
E(Q)2

tors

.

The goal of this year’s learning seminar is to get to a generalization of this formula.
For a variety X, you have cohomology groups Hi(X) and an L-function Li(X, s).
We want to give a similar prediction for Li(X, q) at q ∈ Z.

It is conjectured that this L-function has a functional equation relating the values
at s and i+ 1− s. More precisely, a product of the form L∞(s)Li(X, s) is symmet-
ric under s ↔ i + 1 − s. (The L∞(s) should essentially be comprised of Gamma
functions).

16



2 INTRODUCTION TO THE BLOCH-KATO CONJECTURE

Let p = i+ 1 and q∗ = p− q . Without loss of generality, we may assume that
q ≥ p/2 and q∗ ≤ p/2. We briefly survey some of the evidence for such a conjecture.

Example 2.2.2. (BSD conjecture.) If X = E, then i = 1 and p = 2, q = 1. The
Tate-Shafarevich group should be interpreted as a “generalized class number”. The
RE is the size of a “generalized unit group” (analogous to the classical regulator).
The ΩE is, up to Tamagawa factors,

∫
E(R) ω where ω is a rational form. We’ll call

it a “period” since it’s the integral of an algebraic differential form over a cycle.

Example 2.2.3. (The class number formula.) ConsiderQ(
√
d). There is an associated

Dirichlet character χd, and

ζQ(
√
d) = ζ(s)L(s, χd).

Then the class number formula says that

L(1, χd) =


2πh

w
√
|d|

d < 0,

2hR
w
√
d

d > 0.

Here h is the class number and 2π/
√
|d| is like a period (coming from integrating

over a circle). For d < 0 the formula involves a class number and a period, but no
units. In the d > 0 case, there is a class number and units, but no period.

Writing in terms of the value at s = 0 instead, we get

L(0, χd) = ζQ(
√
d)(0)/ζQ(0) =

2hR

w

(where h, R, and w are the usual invariants for Q(
√
d)).

Example 2.2.4. Another piece of evidence comes from the L-functions of modular
forms. (Zagier attributes this to Eichler-Shimura-Manin.) The following type of
statement was known by the early 70s. Let ∆ = q

∏
(1− qn)24 ∈ S12(1), so

∆ =
∑

τ(n)qn

and
L(∆, s) =

∑ τ(n)

ns
.

A fact about this is that there exist Ωeven and Ωodd ∈ R such that

L(∆, q)

(2πi)qΩq
∈ Q∗

for 1 ≤ q ≤ 11. (Here Ωq = Ωeven if q is even and similarly if q is odd.) Two
striking features of this are that there is a restricted range, and that there is a parity
consideration.
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Example 2.2.5. There are examples coming from other L-functions.

• Euler knew that ζ(2n) ∈ Qπ2n and ζ(1− 2n) ∈ Q.

• Hurwitz showed that∑
(a,b)

1

(a+ bi)4n
∈ Qω4n, ω =

∫ 1

0

dx√
1− x4

.

2.3 Deligne’s conjecture

In the end we’ll have a precise conjecture, but for now we work up to Q∗, which
means that we can ignore class numbers. Deligne made a conjecture that describes
examples with no regulator, i.e. no “unit group”.

First, what does it mean to have “no unit group”? Deligne calls Li(X, q) is a
critical value if L∞(q) 6=∞ and L∞(q∗) 6=∞. Deligne’s conjecture is that

Li(X, q∗) ∈ Q(2πi)1−q det〈ωi, γj〉

where ωi is a Q-basis for F qHi
dR(X) and γj is a Q-basis for Hsing(X(C),Q)±. What

does the ± mean? In BSD, you integrate ω against the real points of E(R), so the
complex conjugation comes into play. Here, the space ± is the (−1)q−1 eigenspace
for complex conjugation.

The fact that these two things have the same dimension is a consequence of the
“criticality.” In the case of an elliptic curve, this picks out the holomorphic differential
and the real points of the elliptic curve.

What’s going on in Example 2.2.4? In these terms, the point is that the Hodge
structure has huge gaps. The 1 and 11 correspond to when the Hodge filtration
changes. The reason why a parity condition enters is obvious.
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