MATH 676. HOMEWORK 9

1. Read §7–§9 in the handout on absolute values.

2. Let p be a prime. Prove that the only elements of \mathbf{Q}_p^{\times} that admit eth roots for all e relatively prime to p are the elements in $1 + p\mathbf{Z}_p$, and deduce that all automorphisms of \mathbf{Q}_p are continuous and hence equal the identity. Also prove that $\mathbf{Q}_p \neq \mathbf{Q}_{p'}$ as abstract fields for any $p' \neq p$.

3. Let K be a (non-archimedean) local field with normalized absolute value $\|\cdot\|_K$. Let dx denote a Haar measure on K. Prove that $dx/\|x\|_K$ on the open subset K^{\times} is a Haar measure for K^{\times} . (Hint: $x \mapsto \|x\|_K$ is locally constant on K^{\times})

4. Let F be the fraction field of a Dedekind domain A. Let \mathfrak{m} be a maximal ideal of A and let $F_{\mathfrak{m}}$ be the corresponding completion of F, with valuation ring $A_{\mathfrak{m}}^{\wedge}$.

(i) If I and J are two fractional ideals of F, prove that I = J in A if and only if $IA_{\mathfrak{m}}^{\wedge} = JA_{\mathfrak{m}}^{\wedge}$ inside of $F_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of A. (Hint: First reduce to the case when A is a discrete valuation ring.)

(ii) Let F'/F be a finite separable extension, and let A' be the integral closure of A in F' (so A' is a finite A-module). Let \mathfrak{m}'_i ($1 \leq i \leq g$) be the maximal ideals of A' over \mathfrak{m} , and let $F'_{\mathfrak{m}'_i}$ be the corresponding completion of F' (so it is a finite separable extension of $F_{\mathfrak{m}}$, as is shown in the study of completions in the handout). Let $A'_{\mathfrak{m}'_i}$ be the valuation ring of $F'_{\mathfrak{m}'_i}$.

handout). Let $A^{\wedge}_{\mathfrak{m}'_i}$ be the valuation ring of $F'_{\mathfrak{m}'_i}$. Prove that $A^{\wedge}_{\mathfrak{m}'_i}$ is the integral closure of $A^{\wedge}_{\mathfrak{m}}$ in $F'_{\mathfrak{m}'_i}$, and that the nonzero product of local discriminants $\prod_i \mathfrak{d}_{A^{\wedge}_{\mathfrak{m}'_i}/A^{\wedge}_{\mathfrak{m}}}$ in $A^{\wedge}_{\mathfrak{m}}$ is equal to $\mathfrak{d}_{A'/A}A^{\wedge}_{\mathfrak{m}}$; in this sense, formation of the discriminant is "compatible" with completion. (Hint: reduce to the case when A is a discrete valuation ring.)

(*iii*) If $f \in F[X]$ is a monic separable polynomial with positive degree and F'/F is a splitting field, prove that a maximal ideal \mathfrak{m} of A is unramified in F' if and only if the splitting field for f over $F_{\mathfrak{m}}$ is unramified. 5. Let K be a field that is complete with respect to a non-trivial non-archimedean absolute value $|\cdot|$.

(i) For $a_0, a_1, \dots \in K$, define $r = 1/\limsup |a_n|^{1/n} \in [0, \infty]$. Prove that $\sum a_n x^n$ converges for $x \in K$ if |x| < r and does not converge if |x| > r. Prove that if it converges for one x_0 with $|x_0| = r$ then it converges for all x with |x| = r. Also prove that if r > 0 then $\sum a_n x^n = 0$ for all x near 0 only if $a_n = 0$ for all n.

(ii) Assume that K has characteristic 0 and that its residue field k has characteristic p. Replace $|\cdot|$ with a suitable power so that |p| = 1/p. Prove that the power series $\log_p(1+x) = \sum_{n\geq 1} (-1)^{n+1} x^n/n$ converges if and only if |x| < 1, and that $\log_p((1+x)(1+y)) = \log_p(1+x+y+xy)$ is equal to $\log_p(1+x) + \log_p(1+y)$ for all |x|, |y| < 1. (Be rigorous!) Also prove that $|\log_p(1+x)| = |x|$ if $|x| < p^{-1/(p-1)}$.

(*iii*) Prove that $\operatorname{ord}_p(n!) = (n - S_n)/(p - 1)$ for a positive integer n, where S_n is the sum of the digits in the ordinary base-p decimal expansion of n. Conclude that for K as in (*ii*), the formal power series $\exp_p(x) = \sum x^n/n!$ converges if and only if $|x| < p^{-1/(p-1)}$, and that $|\exp_p(x) - 1| = |x|$ for all such x. Prove that $\exp_p(x + y) = \exp_p(x) \exp_p(y)$ for $|x|, |y| < p^{-1/(p-1)}$.

(*iv*) Prove that open disc |t-1| < r in K (as in (*ii*)) is a subgroup of K^{\times} whenever r < 1, and show that $t \mapsto \log_p(t)$ and $x \mapsto \exp_p(x)$ define inverse isomorphism between the open disc $|t-1| < p^{-1/(p-1)}$ and the open disc $|x| < p^{-1/(p-1)}$.

(v) Taking $K = \mathbf{Q}_p$, prove that \log_p maps the multiplicative group $1 + p\mathbf{Z}_p$ homeomorphically onto the additive group $p\mathbf{Z}_p$ if p > 2 and that it maps $1 + 4\mathbf{Z}_2$ homeomorphically onto the additive group $4\mathbf{Z}_2$ if p = 2. Conclude that all elements of $1 + 8\mathbf{Z}_2$ have square roots in \mathbf{Q}_2 , and as an application describe all quadratic extensions of \mathbf{Q}_p for all primes p (the case p = 2 requires separate treatment).

6. (i) Prove that if K is a non-archimedean local field with residue characteristic p and $n \in \mathbb{Z}$ is nonzero, then $(K^{\times})^n$ is open in K^{\times} with finite index if $p \nmid n$ (hint: Hensel's lemma), and prove the same for char(K) = 0 and any $n \in \mathbb{Z} - \{0\}$ by using the *p*-adic logarithm. Deduce that every subgroup of finite index in K^{\times} is open if char(K) = 0.

(*ii*) If K is a local field with positive characteristic p, then use the description of K as k((t)) to show that $(K^{\times})^p$ is closed but not open in K^{\times} . Also prove the existence of a finite-index subgroup of K^{\times} that is not open. (Hint: Prove that $K^{\times}/(K^{\times})^p$ is an \mathbf{F}_p -vector space with uncountable dimension.)