
Math 676. Homework 7

1. Let K = Q(ζ23) and let O = OK . Use the following steps to prove that O is not a PID; note that n = 23
is the least n such that Q(ζn) has class number > 1. This approach will use the arithmetic of the unique
quadratic subfield Q(

√
−23).

(i) Prove that 47Z splits completely in O.
(ii) Assuming O to be a PID, let x ∈ O be a generator of one of the 22 primes over 47Z in O. Let y be

the norm of x down to Q(
√
−23), and explain why y ∈ Z[(1 +

√
−23)/2] has norm 47 in Z.

(iii) Prove that there are two primes of Q(
√
−23) over 47Z, and show “by hand” that neither is principal.

Conclude that the assumption in (ii) is false, so Q(ζ23) has class number > 1.

2. Let K = Q(ζ17)+ denote the totally real subfield of Q(ζ17). Use the following steps to prove “by hand”
that hK = 1.

(i) For any odd prime p, you know the discriminant of Q(ζp) and you know that there is a unique prime
(ζp − 1) over p with trivial residue field degree (and hence ramification index p− 1). Since this is quadratic
over Q(ζp)+, use transitivity of discriminants to compute the discriminant of Q(ζp)+ over Q (the answer
will be p(p−3)/2 up to a sign that you must determine).

(ii) By (i), Q(ζ17)+/Q has discriminant 177. Use Minkowski’s bound to conclude that each ideal class
contains an integral ideal with norm at most 48. We will show that all such ideals are principal.

(iii) Using the identification of Gal(Q(ζ17)+/Q) with (Z/17Z)×/〈−1〉, prove that for any prime ` 6= 17
with ` having order f in (Z/17Z)×/〈−1〉, the prime ` splits into 8/f factors in Q(ζ17)+ with each prime of
residual degree f . Also check that the prime over 17 has norm 17 and find a principal generator for this
ideal.

(iv) Analyze the splitting in Q(ζ17)+ of all positive rational primes ` ≤ 48, and conclude that the only
prime ideals of Q(ζ17)+ with norm ≤ 48 are the ones over 2 and 17; hence, we just have to show that the
primes over 2 are principal.

(v) Show that 2 splits into two primes of Q(ζ17)+ with residual degree 4 and norm 16. Also show that 2
splits into a product of two principal primes P and P ′ in the (unique) quadratic subfield Q(

√
17); you have

to find algebraic integers in Q(
√

17) with norm ±2.
(vi) Prove that P and P ′ remain prime in Q(ζ17)+, and conclude the desired result.

3. Let A be the order of conductor f in a quadratic field K with discriminant D. Using the end of Exercise
5 on HW5, give a formula for the class number of A in terms of the class number hK of OK :

#Pic(A) =
hKf

[O×
K : A×]

·
∏
p|f

(
1− (D|p)

p

)
where (D|p) means 0 if p|D and otherwise it 1 or −1 depending respectively on whether p is split or inert
in OK (so it is the usual Legendre symbol for odd p, and for p = 2 it is 1 for D ≡ 1 mod 8 and −1 for
D ≡ 5 mod 8). You should explain in particular why O×

K/A× is finite for any order A in the ring of integers
of any number field K.

4. The purpose of this exercise is to fill in the omitted step in lecture for proving that the “abstract” measure-
theoretic definition of the regulator of K coincides with the “concrete” definition as the determinant of a
matrix (with one row removed).

Let M = (xij) be an (n + 1) × n-matrix over a commutative ring, and assume that the column sums∑n+1
i=1 xij vanish for all 1 ≤ j ≤ n. Let M (i0) = (xij)i 6=i0 be the n×n submatrix obtained by deleting the i0th

row. Prove detM (i0) = (−1)i0−1 det M (1). (hint: express detM (i0) as the determinant of an (n+1)× (n+1)
matrix containing M as a submatrix).

5. Let A be a finite-dimensional nonzero associative R-algebra with identity (and with R in its center). Let
n = dimR A > 0.
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(i) Define NA/R : A → R by NA/R(a) = det(x 7→ ax). Prove that this is a homogeneous polynomial map
of degree n in the sense that it is given by a homogenous polynomial of degree n in the linear coordinates
with respect to any choice of R-basis of A.

(ii) Prove that if aa′ = 1 for some a′ ∈ A then a′a = 1 as well (hint: think of the associated left-
multiplication endomorphisms of A). The set of such elements is denoted A×, and is called the unit group
of A; prove that it is a group with respect to multiplication. Prove that A× = N−1

A/R(R×), and conclude
that A× is open in A. Prove that with respect to the induced topology, it is a topological group; explain why
the laws for multiplication and inversion are even given by rational functions with denominators given by
powers of the polynomial function NA/R that is non-vanishing on A× (and so A× is thereby naturally a Lie
group).

(iii) If A ' A′ is an R-algebra isomorphism between two such R-algebras as above, prove that the induced
isomorphism A× ' A′× between unit groups is an isomorphism of topological groups (and even Lie groups,
if you know the meaning of such things).

(iv) Let K be a number field. Let σi : K → R (1 ≤ i ≤ r1) be the real embeddings and let σr1+j : K → C
(1 ≤ j ≤ r2) be representatives for the conjugate pairs of (non-real) complex embeddings. Using these to
define the familiar isomorphism K⊗Q R ' Rr1 ×Cr2 , explain why (K⊗Q R)× is open in K⊗Q R and why
the induced isomorphism of unit groups (K ⊗Q R)× ' (R×)r1 × (C×)r2 is an isomorphism of topological
groups (using the natural topologies on each side).

6. Let K be a field, and let P1(K) denote the set of K-points of the projective line over K. That is, it is
the quotient set (K2 − {(0, 0)})/K× for the action of K× on K2 − {(0, 0)}, or more geometrically it is the
set of lines in K2 passing through the origin. For (x, y) ∈ K2 − {(0, 0)}, we write [x, y] to denote the class
of (x, y) in P1(K) (the line joining (0, 0) and (x, y)).

There is a natural action of GL2(K) on P1(K) because the action of GL2(K) on K2 carries lines to lines
and fixes the origin. We shall assume that K is the fraction field of a Dedekind domain A.

(i) Use the fact that every fractional ideal of A admits two generators as an A-module to conclude that
[x, y] 7→ [xA + yA] ∈ Pic(A) is a well-defined map from P1(K) onto the class group of A.

(ii) Continuing in the setup of (i), prove that two points [x, y], [x′, y′] ∈ P1(K) map to the same ideal if
and only if there are in the same orbit for the action of the subgroup SL2(A) ⊆ GL2(K) on P1(K). (Hint:
To prove “only if”, which is the nontrivial implication, use the fact that the inverse ideal (xA + yA)−1 also
admits two generators.)

(iii) Prove that the quotient set P1(K)/SL2(A) of SL2(A)-orbits in P1(K) is in bijection with the class
group of A, and so this set of orbits is finite if the class group of A is finite; a notable example is A = OK

for K a number field, in which case this finiteness theorem is important in the study of Hilbert modular
varieties over totally real number fields.


