Math 676. Homework 7

1. Let $K=\mathbf{Q}\left(\zeta_{23}\right)$ and let $\mathscr{O}=\mathscr{O}_{K}$. Use the following steps to prove that \mathscr{O} is not a PID; note that $n=23$ is the least n such that $\mathbf{Q}\left(\zeta_{n}\right)$ has class number >1. This approach will use the arithmetic of the unique quadratic subfield $\mathbf{Q}(\sqrt{-23})$.
(i) Prove that $47 \mathbf{Z}$ splits completely in \mathscr{O}.
(ii) Assuming \mathscr{O} to be a PID, let $x \in \mathscr{O}$ be a generator of one of the 22 primes over $47 \mathbf{Z}$ in \mathscr{O}. Let y be the norm of x down to $\mathbf{Q}(\sqrt{-23})$, and explain why $y \in \mathbf{Z}[(1+\sqrt{-23}) / 2]$ has norm 47 in \mathbf{Z}.
(iii) Prove that there are two primes of $\mathbf{Q}(\sqrt{-23})$ over $47 \mathbf{Z}$, and show "by hand" that neither is principal. Conclude that the assumption in (ii) is false, so $\mathbf{Q}\left(\zeta_{23}\right)$ has class number >1.
2. Let $K=\mathbf{Q}\left(\zeta_{17}\right)^{+}$denote the totally real subfield of $\mathbf{Q}\left(\zeta_{17}\right)$. Use the following steps to prove "by hand" that $h_{K}=1$.
(i For any odd prime p, you know the discriminant of $\mathbf{Q}\left(\zeta_{p}\right)$ and you know that there is a unique prime $\left(\zeta_{p}-1\right)$ over p with trivial residue field degree (and hence ramification index $p-1$). Since this is quadratic over $\mathbf{Q}\left(\zeta_{p}\right)^{+}$, use transitivity of discriminants to compute the discriminant of $\mathbf{Q}\left(\zeta_{p}\right)^{+}$over \mathbf{Q} (the answer will be $p^{(p-3) / 2}$ up to a sign that you must determine).
(ii) By $(i), \mathbf{Q}\left(\zeta_{17}\right)^{+} / \mathbf{Q}$ has discriminant 17^{7}. Use Minkowski's bound to conclude that each ideal class contains an integral ideal with norm at most 48 . We will show that all such ideals are principal.
(iii) Using the identification of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{17}\right)^{+} / \mathbf{Q}\right)$ with $(\mathbf{Z} / 17 \mathbf{Z})^{\times} /\langle-1\rangle$, prove that for any prime $\ell \neq 17$ with ℓ having order f in $(\mathbf{Z} / 17 \mathbf{Z})^{\times} /\langle-1\rangle$, the prime ℓ splits into $8 / f$ factors in $\mathbf{Q}\left(\zeta_{17}\right)^{+}$with each prime of residual degree f. Also check that the prime over 17 has norm 17 and find a principal generator for this ideal.
(iv) Analyze the splitting in $\mathbf{Q}\left(\zeta_{17}\right)^{+}$of all positive rational primes $\ell \leq 48$, and conclude that the only prime ideals of $\mathbf{Q}\left(\zeta_{17}\right)^{+}$with norm ≤ 48 are the ones over 2 and 17 ; hence, we just have to show that the primes over 2 are principal.
(v) Show that 2 splits into two primes of $\mathbf{Q}\left(\zeta_{17}\right)^{+}$with residual degree 4 and norm 16 . Also show that 2 splits into a product of two principal primes P and P^{\prime} in the (unique) quadratic subfield $\mathbf{Q}(\sqrt{17})$; you have to find algebraic integers in $\mathbf{Q}(\sqrt{17})$ with norm ± 2.
(vi) Prove that P and P^{\prime} remain prime in $\mathbf{Q}\left(\zeta_{17}\right)^{+}$, and conclude the desired result.
3. Let A be the order of conductor f in a quadratic field K with discriminant D. Using the end of Exercise 5 on HW5, give a formula for the class number of A in terms of the class number h_{K} of \mathscr{O}_{K} :

$$
\# \operatorname{Pic}(A)=\frac{h_{K} f}{\left[\mathscr{O}_{K}^{\times}: A^{\times}\right]} \cdot \prod_{p \mid f}\left(1-\frac{(D \mid p)}{p}\right)
$$

where $(D \mid p)$ means 0 if $p \mid D$ and otherwise it 1 or -1 depending respectively on whether p is split or inert in \mathscr{O}_{K} (so it is the usual Legendre symbol for odd p, and for $p=2$ it is 1 for $D \equiv 1 \bmod 8$ and -1 for $D \equiv 5 \bmod 8)$. You should explain in particular why $\mathscr{O}_{K}^{\times} / A^{\times}$is finite for any order A in the ring of integers of any number field K.
4. The purpose of this exercise is to fill in the omitted step in lecture for proving that the "abstract" measuretheoretic definition of the regulator of K coincides with the "concrete" definition as the determinant of a matrix (with one row removed).

Let $M=\left(x_{i j}\right)$ be an $(n+1) \times n$-matrix over a commutative ring, and assume that the column sums $\sum_{i=1}^{n+1} x_{i j}$ vanish for all $1 \leq j \leq n$. Let $M^{\left(i_{0}\right)}=\left(x_{i j}\right)_{i \neq i_{0}}$ be the $n \times n$ submatrix obtained by deleting the i_{0} th row. Prove $\operatorname{det} M^{\left(i_{0}\right)}=(-1)^{i_{0}-1} \operatorname{det} M^{(1)}$. (hint: express $\operatorname{det} M^{\left(i_{0}\right)}$ as the determinant of an $(n+1) \times(n+1)$ matrix containing M as a submatrix).
5. Let A be a finite-dimensional nonzero associative \mathbf{R}-algebra with identity (and with \mathbf{R} in its center). Let $n=\operatorname{dim}_{\mathbf{R}} A>0$.
(i) Define $\mathrm{N}_{A / \mathbf{R}}: A \rightarrow \mathbf{R}$ by $\mathrm{N}_{A / \mathbf{R}}(a)=\operatorname{det}(x \mapsto a x)$. Prove that this is a homogeneous polynomial map of degree n in the sense that it is given by a homogenous polynomial of degree n in the linear coordinates with respect to any choice of \mathbf{R}-basis of A.
(ii) Prove that if $a a^{\prime}=1$ for some $a^{\prime} \in A$ then $a^{\prime} a=1$ as well (hint: think of the associated leftmultiplication endomorphisms of A). The set of such elements is denoted A^{\times}, and is called the unit group of A; prove that it is a group with respect to multiplication. Prove that $A^{\times}=\mathrm{N}_{A / \mathbf{R}}^{-1}\left(\mathbf{R}^{\times}\right)$, and conclude that A^{\times}is open in A. Prove that with respect to the induced topology, it is a topological group; explain why the laws for multiplication and inversion are even given by rational functions with denominators given by powers of the polynomial function $\mathrm{N}_{A / \mathbf{R}}$ that is non-vanishing on A^{\times}(and so A^{\times}is thereby naturally a Lie group).
(iii) If $A \simeq A^{\prime}$ is an \mathbf{R}-algebra isomorphism between two such \mathbf{R}-algebras as above, prove that the induced isomorphism $A^{\times} \simeq A^{\prime \times}$ between unit groups is an isomorphism of topological groups (and even Lie groups, if you know the meaning of such things).
(iv) Let K be a number field. Let $\sigma_{i}: K \rightarrow \mathbf{R}\left(1 \leq i \leq r_{1}\right)$ be the real embeddings and let $\sigma_{r_{1}+j}: K \rightarrow \mathbf{C}$ ($1 \leq j \leq r_{2}$) be representatives for the conjugate pairs of (non-real) complex embeddings. Using these to define the familiar isomorphism $K \otimes_{\mathbf{Q}} \mathbf{R} \simeq \mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}$, explain why $\left(K \otimes_{\mathbf{Q}} \mathbf{R}\right)^{\times}$is open in $K \otimes_{\mathbf{Q}} \mathbf{R}$ and why the induced isomorphism of unit groups $\left(K \otimes_{\mathbf{Q}} \mathbf{R}\right)^{\times} \simeq\left(\mathbf{R}^{\times}\right)^{r_{1}} \times\left(\mathbf{C}^{\times}\right)^{r_{2}}$ is an isomorphism of topological groups (using the natural topologies on each side).
6. Let K be a field, and let $\mathbf{P}^{1}(K)$ denote the set of K-points of the projective line over K. That is, it is the quotient set $\left(K^{2}-\{(0,0)\}\right) / K^{\times}$for the action of K^{\times}on $K^{2}-\{(0,0)\}$, or more geometrically it is the set of lines in K^{2} passing through the origin. For $(x, y) \in K^{2}-\{(0,0)\}$, we write $[x, y]$ to denote the class of (x, y) in $\mathbf{P}^{1}(K)$ (the line joining $(0,0)$ and $\left.(x, y)\right)$.

There is a natural action of $\mathrm{GL}_{2}(K)$ on $\mathbf{P}^{1}(K)$ because the action of $\mathrm{GL}_{2}(K)$ on K^{2} carries lines to lines and fixes the origin. We shall assume that K is the fraction field of a Dedekind domain A.
(i) Use the fact that every fractional ideal of A admits two generators as an A-module to conclude that $[x, y] \mapsto[x A+y A] \in \operatorname{Pic}(A)$ is a well-defined map from $\mathbf{P}^{1}(K)$ onto the class group of A.
(ii) Continuing in the setup of (i), prove that two points $[x, y],\left[x^{\prime}, y^{\prime}\right] \in \mathbf{P}^{1}(K)$ map to the same ideal if and only if there are in the same orbit for the action of the subgroup $\mathrm{SL}_{2}(A) \subseteq \mathrm{GL}_{2}(K)$ on $\mathbf{P}^{1}(K)$. (Hint: To prove "only if", which is the nontrivial implication, use the fact that the inverse ideal $(x A+y A)^{-1}$ also admits two generators.)
(iii) Prove that the quotient set $\mathbf{P}^{1}(K) / \mathrm{SL}_{2}(A)$ of $\mathrm{SL}_{2}(A)$-orbits in $\mathbf{P}^{1}(K)$ is in bijection with the class group of A, and so this set of orbits is finite if the class group of A is finite; a notable example is $A=\mathscr{O}_{K}$ for K a number field, in which case this finiteness theorem is important in the study of Hilbert modular varieties over totally real number fields.

