Math 676. Homework 6

1. Let A be a Dedekind domain.
(i) Prove that A is a UFD if and only if A is a PID.
(ii) For any multiplicative set S of A (with $0 \notin S$), prove that $[\mathscr{I}] \mapsto\left[S^{-1} \mathscr{I}\right]$ is a well-defined and surjective group map $\operatorname{Pic}(A) \rightarrow \operatorname{Pic}\left(S^{-1} A\right)$ whose kernel is generated by the ideal classes [p] of primes of A such that \mathfrak{p} meets S. In particular, if $\operatorname{Pic}(A)$ is finite then so is $\operatorname{Pic}\left(S^{-1} A\right)$ for any S. (Hint: reduce to the case $S=\left\{1, a, a^{2}, \ldots\right\}$ by using "denominator-chasing" to show that if $S^{-1} \mathscr{I}$ is a principal fractional ideal of $S^{-1} A$ then for some $a \in S$ the fractional ideal $\mathscr{I}[1 / a]$ of $A[1 / a]$ is principal).
(iii) Prove that $\operatorname{Pic}(A)$ is generated by the classes [p] of nonzero prime ideals of A, and if $\Sigma=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is a finite set of nonzero primes of A such that each $\left[\mathfrak{p}_{i}\right]$ has finite order in $\operatorname{Pic}(A)$ (an automatic condition when $\operatorname{Pic}(A)$ is finite) then construct a nonzero $a \in A$ whose prime factors are exactly the \mathfrak{p}_{i} 's. For such an a, prove that $\operatorname{Pic}(A[1 / a])$ is identified with the quotient of $\operatorname{Pic}(A)$ by the subgroup generated by the classes of the primes in Σ.
(iv) Assume that $\operatorname{Pic}(A)$ is finitely generated. For every maximal ideal \mathfrak{m} of A, use weak approximation to find a nonzero $a \in A$ with $a \notin \mathfrak{m}$ such that $A[1 / a]$ is a PID. Conclude that there exist nonzero $a_{1}, \ldots, a_{n} \in A$ generating 1 such that $A\left[1 / a_{i}\right]$ is a PID for all i. Conversely, if A is Dedekind and $A[1 / a]$ is a PID for some nonzero $a \in A$ then deduce that $\operatorname{Pic}(A)$ is finitely generated.
2. Let $K=\mathbf{Q}(\sqrt{d})$ with d squarefree and $d \equiv 1 \bmod 4(\operatorname{and} d \neq 1)$. Let $h(d)$ be the class number of \mathscr{O}_{K}.
(i) Prove that \mathscr{O}_{K} contains a principal ideal with norm 2 if and only if one of the equations $X^{2}-d Y^{2}= \pm 8$ has a solution in \mathbf{Z}.
(ii) Prove $h(17)=h(33)=1$, but $h(-15)=2$ (with 2 splitting in $\mathbf{Q}(\sqrt{-15})$).
(iii) Prove $h(-23)=3$. (Hint: In \mathscr{O}_{K}, prove $(2)=\mathfrak{p p}^{\prime}$ and $(3)=\mathfrak{q q}^{\prime}$ with non-principal prime ideals. Letting $x=(3+\sqrt{-23}) / 2$ and $y=x-1$ be elements with respective norms 8 and 6 , study the prime factorizations of (x) and (y).)
3. Let $K=\mathbf{Q}(\alpha)$ with $\alpha^{5}-\alpha+1=0$. Prove $\operatorname{disc}(\mathbf{Z}[\alpha] / \mathbf{Z})=19 \cdot 151$, so $\mathbf{Z}[\alpha]=\mathscr{O}_{K}$. Check that the Minkowski constant λ_{K} is <4, and by studying $\mathscr{O}_{K} /(2)$ and $\mathscr{O}_{K} /(3)$ show that there does not exist a prime ideal \mathfrak{p} of \mathscr{O}_{K} with norm 2 or 3 . Deduce $h_{K}=1$.
4. Let A be a Dedekind domain with fraction field F, and let F^{\prime} / F be a finite Galois extension with Galois group G. Let A^{\prime} be the integral closure of A in F^{\prime}.
(i) Let \mathfrak{p}^{\prime} be a maximal ideal of A^{\prime} lying over a maximal ideal \mathfrak{p} of A (that is, $\mathfrak{p}^{\prime} \cap A=\mathfrak{p}$). Let $e=e\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ and $f=f\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$. Using Exercise 1 on Homework 4, show that the decomposition group at \mathfrak{p}^{\prime}

$$
D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)=\left\{g \in G \mid g\left(\mathfrak{p}^{\prime}\right)=\mathfrak{p}^{\prime}\right\}
$$

has order $e f$ and that $D\left(g\left(\mathfrak{p}^{\prime}\right) \mid \mathfrak{p}\right)=g D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) g^{-1}$ for all $g \in G$. Conclude that the conjugacy class of this subgroup of G is intrinsic to \mathfrak{p}, and in particular if G is abelian then $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ depends only on \mathfrak{p} and not on the prime over it in A^{\prime}; in this case we call this common decomposition group at primes over \mathfrak{p} the decomposition group at \mathfrak{p} and denote it $D_{\mathfrak{p}}$. See Exercise 5 for a worked example.
(ii) Construct a natural map of groups $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) \rightarrow \operatorname{Aut}\left(\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})\right)$; its kernel $I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ is the inertia group at \mathfrak{p}^{\prime}. Prove that this is a normal subgroup of $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ and that $I\left(g\left(\mathfrak{p}^{\prime}\right) \mid \mathfrak{p}\right)=g I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) g^{-1}$ for all $g \in G$, so if G is abelian then $I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ likewise only depends on \mathfrak{p} (in which case it is called the inertia group at \mathfrak{p} and is denoted $I_{\mathfrak{p}}$). See Exercise 5 for a worked example.
(iii) The fixed field F_{d}^{\prime} of $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ is called the decomposition field for \mathfrak{p}^{\prime}, and the fixed field F_{i}^{\prime} of $I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ is called the inertia field for \mathfrak{p}^{\prime}, so $F_{\mathrm{d}}^{\prime} \subseteq F_{\mathrm{i}}^{\prime}$. Let A_{d}^{\prime} and A_{i}^{\prime} denote the corresponding integral closures of A in F_{d}^{\prime} and F_{i}^{\prime}, and let $\mathfrak{p}_{\mathrm{d}}^{\prime}$ and $\mathfrak{p}_{\mathrm{i}}^{\prime}$ be the associated primes under \mathfrak{p}^{\prime} (and over \mathfrak{p}).

Prove that \mathfrak{p}^{\prime} is the unique prime of A^{\prime} over $\mathfrak{p}_{\mathrm{d}}^{\prime}\left(\right.$ so $\left.D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}_{\mathrm{d}}^{\prime}\right)=\operatorname{Gal}\left(F^{\prime} / F_{\mathrm{d}}^{\prime}\right)=D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)\right)$ and that $e\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}_{\mathrm{d}}^{\prime}\right)=e$ and $f\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}_{\mathrm{d}}^{\prime}\right)=f$ (hint: multiply these hypothetical equations), and deduce that $\mathfrak{p}_{\mathrm{d}}^{\prime}$ appears in the factorization of $\mathfrak{p} A_{\mathrm{d}}^{\prime}$ with multiplicity 1 and trivial residue field degree. Prove the following maximality property of the decomposition field: if K is any intermediate field for which the prime below \mathfrak{p}^{\prime} (in the integral closure
of A) has trivial ramification and residue-field degrees over \mathfrak{p} then $K \subseteq F_{\mathrm{d}}^{\prime}$. Discuss how F_{d}^{\prime} and F_{i}^{\prime} change as \mathfrak{p}^{\prime} varies over \mathfrak{p}.
(iv) Renaming F_{d}^{\prime} as F and $\mathfrak{p}_{\mathrm{d}}^{\prime}$ as \mathfrak{p}, suppose $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)=G$. Prove that \mathfrak{p}^{\prime} is the unique prime of A^{\prime} over \mathfrak{p}, and that the inertia field F_{i}^{\prime} is Galois over F with Galois group $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) / I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ that is identified with a subgroup of $\operatorname{Aut}\left(\kappa\left(\mathfrak{p}_{\mathfrak{i}}^{\prime}\right) / \kappa(\mathfrak{p})\right)$. Recall from field theory that if K^{\prime} / K is a finite extension then $\# \operatorname{Aut}\left(K^{\prime} / K\right) \leq$ [$K^{\prime}: K$] with equality if and only if K^{\prime} / K is Galois. Deduce that the inclusion

$$
\operatorname{Gal}\left(F_{\mathrm{i}}^{\prime} / F\right) \hookrightarrow \operatorname{Aut}\left(\kappa\left(\mathfrak{p}_{\mathrm{i}}^{\prime}\right) / \kappa(\mathfrak{p})\right)
$$

is an equality, so $\kappa\left(\mathfrak{p}_{\mathfrak{i}}^{\prime}\right) / \kappa(\mathfrak{p})$ is Galois (in particular, separable!) and

$$
\left[D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right): I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)\right]=\left[\kappa\left(\mathfrak{p}_{\mathrm{i}}^{\prime}\right): \kappa(\mathfrak{p})\right] \mid f\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) .
$$

Conclude that $\mathfrak{p}_{\mathrm{i}}^{\prime}$ is unramified over \mathfrak{p}, and that the unique maximal subfield of F^{\prime} unramified over \mathfrak{p} (why does this exist?) is Galois over $F=F_{\mathrm{d}}^{\prime}$ (use maximality!) and consequently is equal to F_{i}^{\prime}.
(v) Continuing with the hypothesis $F_{\mathrm{d}}^{\prime}=F$, pick an element $\bar{\theta} \in \kappa\left(\mathfrak{p}^{\prime}\right)$ and let $\bar{f} \in \kappa(\mathfrak{p})[X]$ be its minimal polynomial. Choose $\theta \in A^{\prime}$ lifting $\bar{\theta}$ and let $f \in A[X]$ be its minimal polynomial over F. Prove that \bar{f} divides $f \bmod \mathfrak{p}$, and use the Galois property of F^{\prime} / F to infer that \bar{f} splits over $\kappa\left(\mathfrak{p}^{\prime}\right)$; hence, the extension $\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})$ is normal. By taking $\bar{\theta}$ to be a primitive element for the (Galois!) maximal separable subextension k, deduce that the map

$$
\operatorname{Gal}\left(F^{\prime} / F\right)=D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) \rightarrow \operatorname{Aut}\left(\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})\right)=\operatorname{Gal}(k / \kappa(\mathfrak{p}))
$$

is surjective with kernel $I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$.
(vi) Using the results in (iv), deduce in general (without requiring $F_{\mathrm{d}}^{\prime}=F$) that $\mathfrak{p}_{\mathrm{i}}^{\prime}$ is unramified over \mathfrak{p} and that F_{i}^{\prime} is maximal with respect to this property in the sense that if $K \subseteq F^{\prime}$ is an subextension over F in which the prime below \mathfrak{p}^{\prime} is unramified over \mathfrak{p} (so $K F_{\mathrm{d}}^{\prime}$ has the property too!) then $K \subseteq F_{\mathrm{i}}^{\prime}$. Also use (iv) to deduce that in general $\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})$ is normal with $\kappa\left(\mathfrak{p}_{\mathfrak{i}}^{\prime}\right)$ as its maximal separable subextension, and that $D\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) \rightarrow \operatorname{Aut}\left(\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})\right)$ is surjective, so $e\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right) \mid \# I\left(\mathfrak{p}^{\prime} \mid \mathfrak{p}\right)$ with equality if and only if the finite normal extension $\kappa\left(\mathfrak{p}^{\prime}\right) / \kappa(\mathfrak{p})$ is separable (and hence Galois); note that this latter condition always holds if $\kappa(\mathfrak{p})$ is perfect (e.g., finite).
5. Let $K=\mathbf{Q}(\sqrt{5}, \sqrt{-1})$ be a splitting field of $\left(X^{2}-5\right)\left(X^{2}+1\right)$ over \mathbf{Q}.
(i) Prove K / \mathbf{Q} is Galois with Galois group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
(ii) Let $A=\mathbf{Z}[\sqrt{-1},(1+\sqrt{5}) / 2]$. Show that A is an order in \mathscr{O}_{K}, and compute the nonzero discriminant $\operatorname{disc}(A / \mathbf{Z}[\sqrt{-1}]) \in \mathbf{Z}[\sqrt{-1}]$ (which is well-defined up to sign, as $\mathbf{Z}[\sqrt{-1}]$ is a PID whose unit squares are $\pm 1)$. Check that this is squarefree in the PID $\mathbf{Z}[\sqrt{-1}]$, and infer that $\mathscr{O}_{K}=A$.
(iii) Compute $\operatorname{disc}\left(\mathscr{O}_{K} / \mathbf{Z}\right)$, and deduce that 2 and 5 are the primes of \mathbf{Z} that ramify in \mathscr{O}_{K}, and the associated ramification degrees e_{2} and e_{5} (for all primes of \mathscr{O}_{K} over 2 and 5 respectively) each equal 2 .
(iv) (This uses Exercise 4.) For all $p \neq 2,5$, observe that the decomposition group $D_{p} \subseteq \operatorname{Gal}(K / \mathbf{Q})$ is equal to D_{p} / I_{p} since I_{p} is trivial. Hence, for such p we may identify D_{p} with the Galois group of a Galois extension of finite residue fields, so it has a canonical Frobenius generator Frob ${ }_{p}$. (Recall that if κ^{\prime} / κ is a finite extension of finite fields, the arithmetic Frobenius generator of $\operatorname{Gal}\left(\kappa^{\prime} / \kappa\right)$ is $\left.x \mapsto x^{|\kappa|}\right)$. Compute the element $\operatorname{Frob}_{p} \in \operatorname{Gal}(K / \mathbf{Q})$ for all $p \neq 2,5$, and determine the decomposition field as well. For $p \in\{2,5\}$ compute the associated decomposition and inertia groups at p in $\operatorname{Gal}(K / \mathbf{Q})$, as well as the decomposition and inertia fields K_{d} and K_{i}, and compute the Frobenius generator for $D_{p} / I_{p} \simeq \operatorname{Gal}\left(K_{\mathrm{i}} / K_{\mathrm{d}}\right)$ at the primes of K_{d} over $p \mathbf{Z}$.

