MATH 676. HOMEWORK 6

1. Let A be a Dedekind domain.

(7) Prove that A is a UFD if and only if A is a PID.

(1) For any multiplicative set S of A (with 0 ¢ S), prove that [.#] — [ST1.7] is a well-defined and
surjective group map Pic(A4) — Pic(S™1A) whose kernel is generated by the ideal classes [p] of primes of A
such that p meets S. In particular, if Pic(A) is finite then so is Pic(S™!A) for any S. (Hint: reduce to the
case S = {1,a,a?,...} by using “denominator-chasing” to show that if S~'.# is a principal fractional ideal
of S71A then for some a € S the fractional ideal .#[1/a] of A[1/a] is principal).

(#7) Prove that Pic(A) is generated by the classes [p] of nonzero prime ideals of A, and if ¥ = {p1,...,pn}
is a finite set of nonzero primes of A such that each [p;] has finite order in Pic(A4) (an automatic condition
when Pic(A) is finite) then construct a nonzero a € A whose prime factors are exactly the p;’s. For such an
a, prove that Pic(A[1/a]) is identified with the quotient of Pic(A) by the subgroup generated by the classes
of the primes in X.

(iv) Assume that Pic(A) is finitely generated. For every maximal ideal m of A, use weak approximation to
find a nonzero a € A with a ¢ m such that A[1/a] is a PID. Conclude that there exist nonzero aq,...,a, € A
generating 1 such that A[1/a;] is a PID for all i. Conversely, if A is Dedekind and A[1/a] is a PID for some
nonzero a € A then deduce that Pic(A) is finitely generated.

2. Let K = Q(v/d) with d squarefree and d = 1 mod 4 (and d # 1). Let h(d) be the class number of Ox.

(i) Prove that Ok contains a principal ideal with norm 2 if and only if one of the equations X2 —dY? = 48
has a solution in Z.

(ii) Prove h(17) = h(33) = 1, but h(—15) = 2 (with 2 splitting in Q(v/—15)).

(#i) Prove h(—23) = 3. (Hint: In Ok, prove (2) = pp’ and (3) = qq’ with non-principal prime ideals.
Letting x = (34 v/—23)/2 and y = = — 1 be elements with respective norms 8 and 6, study the prime
factorizations of (z) and (y).)

3. Let K = Q(a) with a® — a +1 = 0. Prove disc(Z[a]/Z) = 19 - 151, so Z[a] = Ok. Check that the
Minkowski constant A is < 4, and by studying O /(2) and Ok /(3) show that there does not exist a prime
ideal p of Ok with norm 2 or 3. Deduce hx = 1.

4. Let A be a Dedekind domain with fraction field F', and let F’/F be a finite Galois extension with Galois
group G. Let A’ be the integral closure of A in F’.

(i) Let p’ be a maximal ideal of A’ lying over a maximal ideal p of A (that is, p’ N A =p). Let e = e(p’|p)
and f = f(p'|p). Using Exercise 1 on Homework 4, show that the decomposition group at p’

D(y'lp) ={g€Glglp') ="}

has order ef and that D(g(p’)|p) = gD(p'|p)g~! for all g € G. Conclude that the conjugacy class of this
subgroup of G is intrinsic to p, and in particular if G is abelian then D(p’|p) depends only on p and not on the
prime over it in A’; in this case we call this common decomposition group at primes over p the decomposition
group at p and denote it D,. See Exercise 5 for a worked example.

(#) Construct a natural map of groups D(p'|p) — Aut(x(p’)/k(p)); its kernel I(p’|p) is the inertia group
at p’. Prove that this is a normal subgroup of D(p’|p) and that I(g(p')|p) = gI(p’|p)g~* for all g € G, so if
G is abelian then I(p’|p) likewise only depends on p (in which case it is called the inertia group at p and is
denoted I,). See Exercise 5 for a worked example.

(#) The fixed field F] of D(p’|p) is called the decomposition field for p’, and the fixed field F} of I(p'|p)
is called the inertia field for p’, so F; C F/. Let A}, and A] denote the corresponding integral closures of A
in F} and F}, and let p/; and p] be the associated primes under p’ (and over p).

Prove that p’ is the unique prime of A’ over p/; (so D(p'|p};) = Gal(F'/F}) = D(p’|p)) and that e(p’|p]) = e
and f(p’|p}) = f (hint: multiply these hypothetical equations), and deduce that p/; appears in the factoriza-
tion of p A/, with multiplicity 1 and trivial residue field degree. Prove the following maximality property of
the decomposition field: if K is any intermediate field for which the prime below p’ (in the integral closure
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of A) has trivial ramification and residue-field degrees over p then K C F. Discuss how F] and F} change
as p’ varies over p.

(7v) Renaming F as F and p/; as p, suppose D(p’|p) = G. Prove that p’ is the unique prime of A’ over
p, and that the inertia field FY is Galois over F with Galois group D(p’|p)/I(p’|p) that is identified with a

subgroup of Aut(k(p!)/k(p)). Recall from field theory that if K'/K is a finite extension then #Aut(K’/K) <
[K': K] with equality if and only if K’/K is Galois. Deduce that the inclusion

Gal(F{/F) — Aut(r(p)/x(p))
is an equality, so k(p!)/k(p) is Galois (in particular, separable!) and

[D(p'Ip) = I(p'Ip)] = [k (i) = 5(P)]f ('p).
Conclude that p! is unramified over p, and that the unique maximal subfield of F’ unramified over p (why
does this exist?) is Galois over F' = F) (use maximality!) and consequently is equal to F .

(v) Continuing with the hypothesis F/| = F, pick an element 6 € x(p’) and let f € x(p)[X] be its minimal
polynomial. Choose # € A’ lifting 6 and let f € A[X] be its minimal polynomial over F. Prove that f
divides f mod p, and use the Galois property of F’/F to infer that f splits over s(p’); hence, the extension
k(p’)/k(p) is normal. By taking 6 to be a primitive element for the (Galois!) maximal separable subextension
k, deduce that the map

Gal(F'/F) = D(p'[p) — Aut(k(p') /(p)) = Gal(k/r(p))
is surjective with kernel I(p’|p).

(vi) Using the results in (iv), deduce in general (without requiring Fj = F') that p{ is unramified over p
and that F! is maximal with respect to this property in the sense that if K C F” is an subextension over
F' in which the prime below p’ is unramified over p (so K'F has the property too!) then K C F/. Also use
(#v) to deduce that in general x(p’)/k(p) is normal with x(p!) as its maximal separable subextension, and
that D(p’|p) — Aut(k(p’)/k(p)) is surjective, so e(p’|p)|#I(p’|p) with equality if and only if the finite normal
extension k(p')/k(p) is separable (and hence Galois); note that this latter condition always holds if x(p) is
perfect (e.g., finite).

5. Let K = Q(v/5,v/—1) be a splitting field of (X2 —5)(X? + 1) over Q.

(i) Prove K/Q is Galois with Galois group Z/2Z x Z/2Z.

(ii) Let A = Z[\/—1, (14 +/5)/2]. Show that A is an order in O, and compute the nonzero discriminant
disc(A/Z[v/—1]) € Z[v/—1] (which is well-defined up to sign, as Z[/—1] is a PID whose unit squares are
+1). Check that this is squarefree in the PID Z[\/—1], and infer that Ok = A.

(#i) Compute disc(Ok/Z), and deduce that 2 and 5 are the primes of Z that ramify in Ok, and the
associated ramification degrees e; and es (for all primes of Ok over 2 and 5 respectively) each equal 2.

(7v) (This uses Exercise 4.) For all p # 2,5, observe that the decomposition group D, C Gal(K/Q) is
equal to D, /I, since I, is trivial. Hence, for such p we may identify D,, with the Galois group of a Galois
extension of finite residue fields, so it has a canonical Frobenius generator Frob,. (Recall that if ’/k is a
finite extension of finite fields, the arithmetic Frobenius generator of Gal(x’/k) is z + z!*l). Compute the
element Frob, € Gal(K/Q) for all p # 2,5, and determine the decomposition field as well. For p € {2,5}
compute the associated decomposition and inertia groups at p in Gal(K/Q), as well as the decomposition
and inertia fields K4 and Kj;, and compute the Frobenius generator for D, /I, ~ Gal(K;/Kq4) at the primes
of Kq4 over pZ.



