
Math 676. Homework 6

1. Let A be a Dedekind domain.
(i) Prove that A is a UFD if and only if A is a PID.
(ii) For any multiplicative set S of A (with 0 6∈ S), prove that [I ] 7→ [S−1I ] is a well-defined and

surjective group map Pic(A)→ Pic(S−1A) whose kernel is generated by the ideal classes [p] of primes of A
such that p meets S. In particular, if Pic(A) is finite then so is Pic(S−1A) for any S. (Hint: reduce to the
case S = {1, a, a2, . . . } by using “denominator-chasing” to show that if S−1I is a principal fractional ideal
of S−1A then for some a ∈ S the fractional ideal I [1/a] of A[1/a] is principal).

(iii) Prove that Pic(A) is generated by the classes [p] of nonzero prime ideals of A, and if Σ = {p1, . . . , pn}
is a finite set of nonzero primes of A such that each [pi] has finite order in Pic(A) (an automatic condition
when Pic(A) is finite) then construct a nonzero a ∈ A whose prime factors are exactly the pi’s. For such an
a, prove that Pic(A[1/a]) is identified with the quotient of Pic(A) by the subgroup generated by the classes
of the primes in Σ.

(iv) Assume that Pic(A) is finitely generated. For every maximal ideal m of A, use weak approximation to
find a nonzero a ∈ A with a 6∈ m such that A[1/a] is a PID. Conclude that there exist nonzero a1, . . . , an ∈ A
generating 1 such that A[1/ai] is a PID for all i. Conversely, if A is Dedekind and A[1/a] is a PID for some
nonzero a ∈ A then deduce that Pic(A) is finitely generated.

2. Let K = Q(
√
d) with d squarefree and d ≡ 1 mod 4 (and d 6= 1). Let h(d) be the class number of OK .

(i) Prove that OK contains a principal ideal with norm 2 if and only if one of the equations X2−dY 2 = ±8
has a solution in Z.

(ii) Prove h(17) = h(33) = 1, but h(−15) = 2 (with 2 splitting in Q(
√
−15)).

(iii) Prove h(−23) = 3. (Hint: In OK , prove (2) = pp′ and (3) = qq′ with non-principal prime ideals.
Letting x = (3 +

√
−23)/2 and y = x − 1 be elements with respective norms 8 and 6, study the prime

factorizations of (x) and (y).)

3. Let K = Q(α) with α5 − α + 1 = 0. Prove disc(Z[α]/Z) = 19 · 151, so Z[α] = OK . Check that the
Minkowski constant λK is < 4, and by studying OK/(2) and OK/(3) show that there does not exist a prime
ideal p of OK with norm 2 or 3. Deduce hK = 1.

4. Let A be a Dedekind domain with fraction field F , and let F ′/F be a finite Galois extension with Galois
group G. Let A′ be the integral closure of A in F ′.

(i) Let p′ be a maximal ideal of A′ lying over a maximal ideal p of A (that is, p′ ∩A = p). Let e = e(p′|p)
and f = f(p′|p). Using Exercise 1 on Homework 4, show that the decomposition group at p′

D(p′|p) = {g ∈ G | g(p′) = p′}

has order ef and that D(g(p′)|p) = gD(p′|p)g−1 for all g ∈ G. Conclude that the conjugacy class of this
subgroup of G is intrinsic to p, and in particular if G is abelian then D(p′|p) depends only on p and not on the
prime over it in A′; in this case we call this common decomposition group at primes over p the decomposition
group at p and denote it Dp. See Exercise 5 for a worked example.

(ii) Construct a natural map of groups D(p′|p)→ Aut(κ(p′)/κ(p)); its kernel I(p′|p) is the inertia group
at p′. Prove that this is a normal subgroup of D(p′|p) and that I(g(p′)|p) = gI(p′|p)g−1 for all g ∈ G, so if
G is abelian then I(p′|p) likewise only depends on p (in which case it is called the inertia group at p and is
denoted Ip). See Exercise 5 for a worked example.

(iii) The fixed field F ′d of D(p′|p) is called the decomposition field for p′, and the fixed field F ′i of I(p′|p)
is called the inertia field for p′, so F ′d ⊆ F ′i . Let A′d and A′i denote the corresponding integral closures of A
in F ′d and F ′i , and let p′d and p′i be the associated primes under p′ (and over p).

Prove that p′ is the unique prime of A′ over p′d (so D(p′|p′d) = Gal(F ′/F ′d) = D(p′|p)) and that e(p′|p′d) = e
and f(p′|p′d) = f (hint: multiply these hypothetical equations), and deduce that p′d appears in the factoriza-
tion of pA′d with multiplicity 1 and trivial residue field degree. Prove the following maximality property of
the decomposition field: if K is any intermediate field for which the prime below p′ (in the integral closure
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of A) has trivial ramification and residue-field degrees over p then K ⊆ F ′d. Discuss how F ′d and F ′i change
as p′ varies over p.

(iv) Renaming F ′d as F and p′d as p, suppose D(p′|p) = G. Prove that p′ is the unique prime of A′ over
p, and that the inertia field F ′i is Galois over F with Galois group D(p′|p)/I(p′|p) that is identified with a
subgroup of Aut(κ(p′i)/κ(p)). Recall from field theory that if K ′/K is a finite extension then #Aut(K ′/K) ≤
[K ′ : K] with equality if and only if K ′/K is Galois. Deduce that the inclusion

Gal(F ′i /F ) ↪→ Aut(κ(p′i)/κ(p))

is an equality, so κ(p′i)/κ(p) is Galois (in particular, separable!) and

[D(p′|p) : I(p′|p)] = [κ(p′i) : κ(p)]|f(p′|p).

Conclude that p′i is unramified over p, and that the unique maximal subfield of F ′ unramified over p (why
does this exist?) is Galois over F = F ′d (use maximality!) and consequently is equal to F ′i .

(v) Continuing with the hypothesis F ′d = F , pick an element θ ∈ κ(p′) and let f ∈ κ(p)[X] be its minimal
polynomial. Choose θ ∈ A′ lifting θ and let f ∈ A[X] be its minimal polynomial over F . Prove that f
divides f mod p, and use the Galois property of F ′/F to infer that f splits over κ(p′); hence, the extension
κ(p′)/κ(p) is normal. By taking θ to be a primitive element for the (Galois!) maximal separable subextension
k, deduce that the map

Gal(F ′/F ) = D(p′|p)→ Aut(κ(p′)/κ(p)) = Gal(k/κ(p))

is surjective with kernel I(p′|p).
(vi) Using the results in (iv), deduce in general (without requiring F ′d = F ) that p′i is unramified over p

and that F ′i is maximal with respect to this property in the sense that if K ⊆ F ′ is an subextension over
F in which the prime below p′ is unramified over p (so KF ′d has the property too!) then K ⊆ F ′i . Also use
(iv) to deduce that in general κ(p′)/κ(p) is normal with κ(p′i) as its maximal separable subextension, and
that D(p′|p)→ Aut(κ(p′)/κ(p)) is surjective, so e(p′|p)|#I(p′|p) with equality if and only if the finite normal
extension κ(p′)/κ(p) is separable (and hence Galois); note that this latter condition always holds if κ(p) is
perfect (e.g., finite).

5. Let K = Q(
√

5,
√
−1) be a splitting field of (X2 − 5)(X2 + 1) over Q.

(i) Prove K/Q is Galois with Galois group Z/2Z× Z/2Z.
(ii) Let A = Z[

√
−1, (1 +

√
5)/2]. Show that A is an order in OK , and compute the nonzero discriminant

disc(A/Z[
√
−1]) ∈ Z[

√
−1] (which is well-defined up to sign, as Z[

√
−1] is a PID whose unit squares are

±1). Check that this is squarefree in the PID Z[
√
−1], and infer that OK = A.

(iii) Compute disc(OK/Z), and deduce that 2 and 5 are the primes of Z that ramify in OK , and the
associated ramification degrees e2 and e5 (for all primes of OK over 2 and 5 respectively) each equal 2.

(iv) (This uses Exercise 4.) For all p 6= 2, 5, observe that the decomposition group Dp ⊆ Gal(K/Q) is
equal to Dp/Ip since Ip is trivial. Hence, for such p we may identify Dp with the Galois group of a Galois
extension of finite residue fields, so it has a canonical Frobenius generator Frobp. (Recall that if κ′/κ is a
finite extension of finite fields, the arithmetic Frobenius generator of Gal(κ′/κ) is x 7→ x|κ|). Compute the
element Frobp ∈ Gal(K/Q) for all p 6= 2, 5, and determine the decomposition field as well. For p ∈ {2, 5}
compute the associated decomposition and inertia groups at p in Gal(K/Q), as well as the decomposition
and inertia fields Kd and Ki, and compute the Frobenius generator for Dp/Ip ' Gal(Ki/Kd) at the primes
of Kd over pZ.


