Math 676. Homework 5

1. (i) For an odd prime p, use Galois theory to prove that $\mathbf{Q}\left(\zeta_{p}\right)$ contains a unique quadratic subfield K, and use considerations with discriminants to prove that $\operatorname{disc}\left(\mathscr{O}_{K} / \mathbf{Z}\right)= \pm p$. Conclude that $K=\mathbf{Q}(\sqrt{(-1 \mid p) p})$, where $(-1 \mid p)=(-1)^{(p-1) / 2}$ is the Legendre symbol.
(ii) Use discriminants to determine all three quadratic subfields of $\mathbf{Q}\left(\zeta_{8}\right)$.
(iii) Let p and q be distinct positive odd primes, and let $\phi_{q} \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p}\right) / \mathbf{Q}\right)=(\mathbf{Z} / p \mathbf{Z})^{\times}$be the residue class of $q \bmod p$. Prove that ϕ_{q} preserves all primes \mathfrak{Q} of $\mathbf{Z}\left[\zeta_{p}\right]$ over q, and hence $\left.\phi_{q}\right|_{K}$ preserves the primes of \mathscr{O}_{K} over q for K as in (i). By studying Galois-actions on finite residue fields and on primes over $q \mathbf{Z}$ in \mathscr{O}_{K}, prove that ϕ_{q} has trivial image in $\operatorname{Gal}(K / \mathbf{Q})$ if and only if $q \mathbf{Z}$ is split in \mathscr{O}_{K}. (Hint: check that ϕ_{q} induces the q th-power automorphism on $\mathbf{Z}\left[\zeta_{p}\right] / \mathfrak{Q}$ for every prime \mathfrak{Q} over $q \mathbf{Z}$, and so $\left.\phi_{q}\right|_{K}$ does the same on $\mathscr{O}_{K} / \mathfrak{q}$ for all \mathfrak{q} over $q \mathbf{Z}$ in \mathscr{O}_{K}.) Also prove that $\left.\phi_{q}\right|_{K}=1$ if and only if q is a square modulo $p \mathbf{Z}$. Deduce quadratic reciprocity for odd primes; where does your argument use that p and q are positive?
(iv) Modify the method in (iii) by means of (ii) to prove the Legendre-symbol formula $(2 \mid p)=(-1)^{\left(p^{2}-1\right) / 8}$.
2. (i) Compute the discriminant for $\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}$ (that is, compute $\operatorname{disc}\left(\mathbf{Z}\left[\zeta_{n}\right] / \mathbf{Z}\right)$).
(ii) Choose an integer $n>2$, and show that $K=\mathbf{Q}\left(\zeta_{n}\right)$ is a CM field with maximal totally real subfield $K^{+}=\mathbf{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. Use your knowledge of \mathscr{O}_{K} to prove $\mathscr{O}_{K^{+}}=\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$. (Hint: $\left[K^{+}: \mathbf{Q}\right]=[K: \mathbf{Q}] / 2$.)
(iii) For $p=31$, explain why $\mathbf{Q}\left(\zeta_{p}\right)$ contains a unique subfield L with degree 6 over \mathbf{Q}, and by studying the action of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p}\right) / \mathbf{Q}\right)=(\mathbf{Z} / p \mathbf{Z})^{\times}$on ζ_{p}, prove that the prime $2 \mathbf{Z}$ is totally split in \mathscr{O}_{L}. (Hint: it suffices to prove triviality of a certain extension of finite residue fields, and note that $2^{\phi(p) / 6} \equiv 1 \bmod p$ for $p=31$.) Use the fact that $\mathbf{F}_{2}[X]$ does not contain 6 distinct monic linear polynomials to infer that \mathscr{O}_{L} is not monogenic over \mathbf{Z} (that is, $\mathscr{O}_{L} \neq \mathbf{Z}[\alpha]$ for all $\alpha \in \mathscr{O}_{L}$).
3. Let A be a Dedekind domain whose residue fields at all maximal ideals are finite, and let F be the fraction field of A. The Dedekind domains of most interest in number theory have this property.
(i) Prove that if F^{\prime} / F is a finite separable extension and A^{\prime} is the integral closure of A in F^{\prime} then A^{\prime} has finite residue fields at all maximal ideals. Also prove that this finiteness property is inherited by all localizations $S^{-1} A$ that are Dedekind (that is, $S^{-1} A \neq F$).
(ii) Let \mathfrak{m} be a maximal ideal of A and let $M=\mathfrak{m} A_{\mathfrak{m}}$. Recall from class that the natural map $A / \mathfrak{m}^{e} \rightarrow$ $A_{\mathfrak{m}} / M^{e}$ is an isomorphism carrying $\mathfrak{m}^{i} / \mathfrak{m}^{e}$ over onto M^{i} / M^{e} for $0 \leq i \leq e$. Deduce from the fact that $A_{\mathfrak{m}}$ is a discrete valuation ring with residue field A / \mathfrak{m} that A / \mathfrak{m}^{e} is finite with size $|A / \mathfrak{m}|^{e}$. Use the Chinese Remainder Theorem to conclude that if $I \subseteq A$ is a nonzero ideal then the quotient ring A / I is finite. We write $\mathrm{N}(I)$ to denote its cardinality, and this is called the absolute norm of I.
(iii) Prove that $\mathrm{N}(I J)=\mathrm{N}(I) \mathrm{N}(J)$ for any two nonzero ideals I and J of A, and in the setup of (i) prove that $\mathrm{N}\left(I A^{\prime}\right)=\mathrm{N}(I)^{\left[F^{\prime}: F\right]}$ for any nonzero ideal I of A^{\prime}. In the special case that $A=\mathbf{Z}$ and $A^{\prime}=\mathscr{O}_{K}$ for a number field K, prove $\mathrm{N}(I)=\left|\mathrm{N}_{K / \mathbf{Q}}(I)\right|$ for all nonzero ideals I of A^{\prime} (hint: reduce to the case when K / \mathbf{Q} is Galois). Prove an analogous relationship between absolute norm and ring-theoretic norm in the case when $A=k[X]$ for a finite field k and A^{\prime} is its integral closure in a finite separable extension of $F=\operatorname{Frac}(A)$.
4. Let A be a Dedekind domain with fraction field F, and let $A_{0} \subseteq A$ be a subring with fraction field F such that A is a finitely generated A_{0}-module. We call such an A_{0} an order in A. The purpose of this exercise and the next one is to define the concept of class group for orders and to relate them to the class group of A.
(i) Explain why the above definition of "order" recovers our earlier notion of order (as a subring with finite lattice-index) in the case when A is the ring of integers of a number field, and in general prove that all nonzero prime ideals of A_{0} are maximal and that A is the integral closure of A_{0} in F (so A is intrinsic to A_{0}). Construct a nonzero $a \in A$ such that $a A \subseteq A_{0}$, so $A_{0}[1 / a]=A[1 / a]$, and define the conductor of A_{0} to be

$$
\mathfrak{c}=\mathfrak{c}_{A / A_{0}}=\left\{a \in A \mid a A \subseteq A_{0}\right\}
$$

so $\mathfrak{c} \neq 0$. Show that \mathfrak{c} is an ideal of A that is contained in A_{0} (so it has the peculiar property of being an ideal in both A_{0} and A), and show that all ideals of A contained in A_{0} are in fact contained in $\mathfrak{c}\left(\right.$ so $\mathfrak{c}_{A / A_{0}}=A$
if and only if $A_{0}=A$). If \mathscr{O} is the order of index f in the ring of integers \mathscr{O}_{K} of a quadratic field K, prove that $\mathfrak{c}_{\mathscr{O}_{K} / \mathscr{O}}=f \mathscr{O}_{K}$.
(ii) Let S be a multiplicative set of A_{0} that is disjoint from some maximal ideal of A_{0} (that is, $S^{-1} A_{0} \neq F$), so $S^{-1} A$ is the integral closure of $S^{-1} A_{0}$ and is a finitely generated $S^{-1} A_{0}$-module (so $S^{-1} A$ is Dedekind). Show that $S^{-1} \mathfrak{c}_{A / A_{0}}=\mathfrak{c}_{S^{-1} A / S^{-1} A_{0}}$ as ideals of $S^{-1} A$ (or of $S^{-1} A_{0}$).
(iii) Prove that $\bar{A}_{0}=A_{0} / \mathfrak{c}$ is a subring of $\bar{A}=A / \mathfrak{c}$ such that \bar{A}_{0} is a finitely generated \bar{A}-module and such that no nonzero principal ideals of \bar{A} lie in \bar{A}_{0} and A_{0} is the preimage of \bar{A} under the projection $A \rightarrow \bar{A}$. Show that this observation is "universal" in the sense that for any nonzero ideal I of A and any subring \bar{R} of A / I such that \bar{R} does not contain nonzero principal ideals of A / I and such that A / I is finitely generated as an \bar{R}-module, the preimage R of \bar{R} in A is an order of A with conductor equal to I. In this sense, all orders can be "described" by ring-theoretic congruence conditions. Deduce in particular that $A_{0}^{\times}=A_{0} \cap A^{\times}$, and that if A has finite residue fields at all maximal ideals then for any nonzero ideal I of A there exist only finitely many orders A_{0} of A such that $\mathfrak{c}_{A / A_{0}} \mid I$.
5. A nonzero ideal I in a noetherian domain R is invertible if $I_{\mathfrak{m}}=I R_{\mathfrak{m}}$ is principal for all maximal ideals \mathfrak{m} of R, and a fractional ideal of R is an R-submodule \mathscr{I} of $K=\operatorname{Frac}(R)$ having the form $c I$ for $c \in K^{\times}$ and I an ordinary ideal of R. Two fractional ideals I and I^{\prime} of R are linearly equivalent if $I=c I^{\prime}$ for some $c \in K^{\times}$.
(i) Prove that if \mathscr{I} is a nonzero fractional ideal of R then $\mathscr{I}^{\prime}=\{x \in K \mid x \mathscr{I} \subseteq R\}$ is also a nonzero fractional ideal of R. We say that \mathscr{I} is invertible if $\mathscr{I} \mathscr{I}^{\prime}=R$; prove that this condition is unaffected by linear equivalence and that it recovers the initial notion of invertibility when \mathscr{I} is an ordinary ideal of R.
(ii) Prove that if \mathscr{I}_{1} and \mathscr{I}_{2} are invertible fractional ideals of R then so is $\mathscr{I}_{1} \mathscr{I}_{2}$, and that in fact $\mathscr{I}_{1} \otimes_{R} \mathscr{I}_{2}$ is a torsion-free R-module such that the natural map $\mathscr{I}_{1} \otimes_{R} \mathscr{I}_{2} \rightarrow \mathscr{I}_{1} \mathscr{I}_{2}$ is an isomorphism. Explain how the set $\operatorname{Pic}(R)$ of linear equivalence classes of invertible fractional ideals of R forms an abelian group via tensor products and dualization (over R). This is the class group of R.
(iii) In the special case when $R=A_{0}$ is an order in a Dedekind domain A, use weak approximation for A to prove that every invertible fractional ideal of A_{0} is linearly equivalent to an invertible ordinary ideal I_{0} of A_{0} that is coprime to $\mathfrak{c}_{A / A_{0}}$ in the sense that $I_{0}+\mathfrak{c}_{A / A_{0}}=A_{0}$.
(iv) Prove that $I_{0} \mapsto I_{0} A$ and $I \mapsto I \cap A_{0}$ are inverse bijections between the set of invertible ordinary ideals of A_{0} coprime to $\mathfrak{c}=\mathfrak{c}_{A / A_{0}}$ and invertible ordinary ideals of A coprime to \mathfrak{c}, and that these bijections are compatible with formation of products of such ideals. (Hint: Use gluing of ideals and (ii) to reduce to the case when A_{0} is local and A is semi-local, so A is a PID whose maximal ideals all contain \mathfrak{c} if $A_{0} \neq A$). Deduce that if \mathfrak{m}_{0} is a maximal ideal of A_{0} then the following are equivalent: \mathfrak{m}_{0} is coprime to \mathfrak{c}, \mathfrak{m}_{0} is invertible, and $\left(A_{0}\right)_{\mathfrak{m}_{0}}$ is integrally closed (and hence is a discrete valuation ring).
(v) Use the bijection with ideals of A, in conjunction with (iii), to define an exact sequence of abelian groups

$$
1 \rightarrow A^{\times} / A_{0}^{\times} \rightarrow(A / \mathfrak{c})^{\times} /\left(A_{0} / \mathfrak{c}\right)^{\times} \rightarrow \operatorname{Pic}\left(A_{0}\right) \rightarrow \operatorname{Pic}(A) \rightarrow 1
$$

and deduce that if all residue fields of A are finite and $\operatorname{Pic}(A)$ is finite then $\operatorname{Pic}\left(A_{0}\right)$ is finite for every order A_{0} of A.

