
Math 676. Homework 5

1. (i) For an odd prime p, use Galois theory to prove that Q(ζp) contains a unique quadratic subfield K, and
use considerations with discriminants to prove that disc(OK/Z) = ±p. Conclude that K = Q(

√
(−1|p)p),

where (−1|p) = (−1)(p−1)/2 is the Legendre symbol.
(ii) Use discriminants to determine all three quadratic subfields of Q(ζ8).
(iii) Let p and q be distinct positive odd primes, and let φq ∈ Gal(Q(ζp)/Q) = (Z/pZ)× be the residue

class of q mod p. Prove that φq preserves all primes Q of Z[ζp] over q, and hence φq|K preserves the primes
of OK over q for K as in (i). By studying Galois-actions on finite residue fields and on primes over qZ in
OK , prove that φq has trivial image in Gal(K/Q) if and only if qZ is split in OK . (Hint: check that φq

induces the qth-power automorphism on Z[ζp]/Q for every prime Q over qZ, and so φq|K does the same on
OK/q for all q over qZ in OK .) Also prove that φq|K = 1 if and only if q is a square modulo pZ. Deduce
quadratic reciprocity for odd primes; where does your argument use that p and q are positive?

(iv) Modify the method in (iii) by means of (ii) to prove the Legendre-symbol formula (2|p) = (−1)(p
2−1)/8.

2. (i) Compute the discriminant for Q(ζn)/Q (that is, compute disc(Z[ζn]/Z)).
(ii) Choose an integer n > 2, and show that K = Q(ζn) is a CM field with maximal totally real subfield

K+ = Q(ζn + ζ−1
n ). Use your knowledge of OK to prove OK+ = Z[ζn + ζ−1

n ]. (Hint: [K+ : Q] = [K : Q]/2.)
(iii) For p = 31, explain why Q(ζp) contains a unique subfield L with degree 6 over Q, and by studying

the action of Gal(Q(ζp)/Q) = (Z/pZ)× on ζp, prove that the prime 2Z is totally split in OL. (Hint: it
suffices to prove triviality of a certain extension of finite residue fields, and note that 2φ(p)/6 ≡ 1 mod p for
p = 31.) Use the fact that F2[X] does not contain 6 distinct monic linear polynomials to infer that OL is
not monogenic over Z (that is, OL 6= Z[α] for all α ∈ OL).

3. Let A be a Dedekind domain whose residue fields at all maximal ideals are finite, and let F be the fraction
field of A. The Dedekind domains of most interest in number theory have this property.

(i) Prove that if F ′/F is a finite separable extension and A′ is the integral closure of A in F ′ then A′

has finite residue fields at all maximal ideals. Also prove that this finiteness property is inherited by all
localizations S−1A that are Dedekind (that is, S−1A 6= F ).

(ii) Let m be a maximal ideal of A and let M = mAm. Recall from class that the natural map A/me →
Am/Me is an isomorphism carrying mi/me over onto M i/Me for 0 ≤ i ≤ e. Deduce from the fact that Am

is a discrete valuation ring with residue field A/m that A/me is finite with size |A/m|e. Use the Chinese
Remainder Theorem to conclude that if I ⊆ A is a nonzero ideal then the quotient ring A/I is finite. We
write N(I) to denote its cardinality, and this is called the absolute norm of I.

(iii) Prove that N(IJ) = N(I)N(J) for any two nonzero ideals I and J of A, and in the setup of (i) prove
that N(IA′) = N(I)[F

′:F ] for any nonzero ideal I of A′. In the special case that A = Z and A′ = OK for a
number field K, prove N(I) = |NK/Q(I)| for all nonzero ideals I of A′ (hint: reduce to the case when K/Q
is Galois). Prove an analogous relationship between absolute norm and ring-theoretic norm in the case when
A = k[X] for a finite field k and A′ is its integral closure in a finite separable extension of F = Frac(A).

4. Let A be a Dedekind domain with fraction field F , and let A0 ⊆ A be a subring with fraction field F such
that A is a finitely generated A0-module. We call such an A0 an order in A. The purpose of this exercise
and the next one is to define the concept of class group for orders and to relate them to the class group of A.

(i) Explain why the above definition of “order” recovers our earlier notion of order (as a subring with
finite lattice-index) in the case when A is the ring of integers of a number field, and in general prove that
all nonzero prime ideals of A0 are maximal and that A is the integral closure of A0 in F (so A is intrinsic to
A0). Construct a nonzero a ∈ A such that aA ⊆ A0, so A0[1/a] = A[1/a], and define the conductor of A0 to
be

c = cA/A0 = {a ∈ A | aA ⊆ A0},
so c 6= 0. Show that c is an ideal of A that is contained in A0 (so it has the peculiar property of being an ideal
in both A0 and A), and show that all ideals of A contained in A0 are in fact contained in c (so cA/A0 = A
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if and only if A0 = A). If O is the order of index f in the ring of integers OK of a quadratic field K, prove
that cOK/O = fOK .

(ii) Let S be a multiplicative set of A0 that is disjoint from some maximal ideal of A0 (that is, S−1A0 6= F ),
so S−1A is the integral closure of S−1A0 and is a finitely generated S−1A0-module (so S−1A is Dedekind).
Show that S−1cA/A0 = cS−1A/S−1A0 as ideals of S−1A (or of S−1A0).

(iii) Prove that A0 = A0/c is a subring of A = A/c such that A0 is a finitely generated A-module and
such that no nonzero principal ideals of A lie in A0 and A0 is the preimage of A under the projection A → A.
Show that this observation is “universal” in the sense that for any nonzero ideal I of A and any subring R of
A/I such that R does not contain nonzero principal ideals of A/I and such that A/I is finitely generated as
an R-module, the preimage R of R in A is an order of A with conductor equal to I. In this sense, all orders
can be “described” by ring-theoretic congruence conditions. Deduce in particular that A×

0 = A0 ∩ A×, and
that if A has finite residue fields at all maximal ideals then for any nonzero ideal I of A there exist only
finitely many orders A0 of A such that cA/A0 |I.

5. A nonzero ideal I in a noetherian domain R is invertible if Im = IRm is principal for all maximal ideals
m of R, and a fractional ideal of R is an R-submodule I of K = Frac(R) having the form cI for c ∈ K×

and I an ordinary ideal of R. Two fractional ideals I and I ′ of R are linearly equivalent if I = cI ′ for some
c ∈ K×.

(i) Prove that if I is a nonzero fractional ideal of R then I ′ = {x ∈ K |xI ⊆ R} is also a nonzero
fractional ideal of R. We say that I is invertible if I I ′ = R; prove that this condition is unaffected by
linear equivalence and that it recovers the initial notion of invertibility when I is an ordinary ideal of R.

(ii) Prove that if I1 and I2 are invertible fractional ideals of R then so is I1I2, and that in fact I1⊗RI2

is a torsion-free R-module such that the natural map I1 ⊗R I2 → I1I2 is an isomorphism. Explain how
the set Pic(R) of linear equivalence classes of invertible fractional ideals of R forms an abelian group via
tensor products and dualization (over R). This is the class group of R.

(iii) In the special case when R = A0 is an order in a Dedekind domain A, use weak approximation for A
to prove that every invertible fractional ideal of A0 is linearly equivalent to an invertible ordinary ideal I0

of A0 that is coprime to cA/A0 in the sense that I0 + cA/A0 = A0.
(iv) Prove that I0 7→ I0A and I 7→ I ∩ A0 are inverse bijections between the set of invertible ordinary

ideals of A0 coprime to c = cA/A0 and invertible ordinary ideals of A coprime to c, and that these bijections
are compatible with formation of products of such ideals. (Hint: Use gluing of ideals and (ii) to reduce to
the case when A0 is local and A is semi-local, so A is a PID whose maximal ideals all contain c if A0 6= A).
Deduce that if m0 is a maximal ideal of A0 then the following are equivalent: m0 is coprime to c, m0 is
invertible, and (A0)m0 is integrally closed (and hence is a discrete valuation ring).

(v) Use the bijection with ideals of A, in conjunction with (iii), to define an exact sequence of abelian
groups

1 → A×/A×
0 → (A/c)×/(A0/c)× → Pic(A0) → Pic(A) → 1,

and deduce that if all residue fields of A are finite and Pic(A) is finite then Pic(A0) is finite for every order
A0 of A.


