1. (i) For an odd prime p, use Galois theory to prove that $\mathbf{Q}(\zeta_p)$ contains a unique quadratic subfield K, and use considerations with discriminants to prove that $\operatorname{disc}(\mathscr{O}_K/\mathbf{Z}) = \pm p$. Conclude that $K = \mathbf{Q}(\sqrt{(-1|p)p})$, where $(-1|p) = (-1)^{(p-1)/2}$ is the Legendre symbol.

(*ii*) Use discriminants to determine all three quadratic subfields of $\mathbf{Q}(\zeta_8)$.

(*iii*) Let p and q be distinct *positive* odd primes, and let $\phi_q \in \text{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q}) = (\mathbf{Z}/p\mathbf{Z})^{\times}$ be the residue class of q mod p. Prove that ϕ_q preserves all primes \mathfrak{Q} of $\mathbf{Z}[\zeta_p]$ over q, and hence $\phi_q|_K$ preserves the primes of \mathscr{O}_K over q for K as in (*i*). By studying Galois-actions on *finite* residue fields and on primes over $q\mathbf{Z}$ in \mathscr{O}_K , prove that ϕ_q has trivial image in $\text{Gal}(K/\mathbf{Q})$ if and only if $q\mathbf{Z}$ is split in \mathscr{O}_K . (Hint: check that ϕ_q induces the qth-power automorphism on $\mathbf{Z}[\zeta_p]/\mathfrak{Q}$ for every prime \mathfrak{Q} over $q\mathbf{Z}$, and so $\phi_q|_K$ does the same on $\mathscr{O}_K/\mathfrak{q}$ for all \mathfrak{q} over $q\mathbf{Z}$ in \mathscr{O}_K .) Also prove that $\phi_q|_K = 1$ if and only if q is a square modulo $p\mathbf{Z}$. Deduce quadratic reciprocity for odd primes; where does your argument use that p and q are *positive*?

(*iv*) Modify the method in (*iii*) by means of (*ii*) to prove the Legendre-symbol formula $(2|p) = (-1)^{(p^2-1)/8}$.

2. (i) Compute the discriminant for $\mathbf{Q}(\zeta_n)/\mathbf{Q}$ (that is, compute disc $(\mathbf{Z}[\zeta_n]/\mathbf{Z})$).

(*ii*) Choose an integer n > 2, and show that $K = \mathbf{Q}(\zeta_n)$ is a CM field with maximal totally real subfield $K^+ = \mathbf{Q}(\zeta_n + \zeta_n^{-1})$. Use your knowledge of \mathcal{O}_K to prove $\mathcal{O}_{K^+} = \mathbf{Z}[\zeta_n + \zeta_n^{-1}]$. (Hint: $[K^+ : \mathbf{Q}] = [K : \mathbf{Q}]/2$.) (*iii*) For p = 31, explain why $\mathbf{Q}(\zeta_p)$ contains a unique subfield L with degree 6 over \mathbf{Q} , and by studying the action of $\operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q}) = (\mathbf{Z}/p\mathbf{Z})^{\times}$ on ζ_p , prove that the prime 2**Z** is totally split in \mathcal{O}_L . (Hint: it sufficient to prove this indicates the prime subfield L with degree 6 over \mathbf{Q} , and by studying the action of $\operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q}) = (\mathbf{Z}/p\mathbf{Z})^{\times}$ on ζ_p , prove that the prime 2**Z** is totally split in \mathcal{O}_L . (Hint: it cufficient to prove the prime super the prime sup

suffices to prove triviality of a certain extension of *finite* residue fields, and note that $2^{\phi(p)/6} \equiv 1 \mod p$ for p = 31.) Use the fact that $\mathbf{F}_2[X]$ does not contain 6 distinct monic linear polynomials to infer that \mathcal{O}_L is not monogenic over \mathbf{Z} (that is, $\mathcal{O}_L \neq \mathbf{Z}[\alpha]$ for all $\alpha \in \mathcal{O}_L$).

3. Let A be a Dedekind domain whose residue fields at all maximal ideals are *finite*, and let F be the fraction field of A. The Dedekind domains of most interest in number theory have this property.

(i) Prove that if F'/F is a finite separable extension and A' is the integral closure of A in F' then A' has finite residue fields at all maximal ideals. Also prove that this finiteness property is inherited by all localizations $S^{-1}A$ that are Dedekind (that is, $S^{-1}A \neq F$).

(*ii*) Let \mathfrak{m} be a maximal ideal of A and let $M = \mathfrak{m}A_{\mathfrak{m}}$. Recall from class that the natural map $A/\mathfrak{m}^e \to A_{\mathfrak{m}}/M^e$ is an isomorphism carrying $\mathfrak{m}^i/\mathfrak{m}^e$ over onto M^i/M^e for $0 \leq i \leq e$. Deduce from the fact that $A_{\mathfrak{m}}$ is a discrete valuation ring with residue field A/\mathfrak{m} that A/\mathfrak{m}^e is finite with size $|A/\mathfrak{m}|^e$. Use the Chinese Remainder Theorem to conclude that if $I \subseteq A$ is a nonzero ideal then the quotient ring A/I is finite. We write N(I) to denote its cardinality, and this is called the *absolute norm* of I.

(*iii*) Prove that N(IJ) = N(I)N(J) for any two nonzero ideals I and J of A, and in the setup of (*i*) prove that $N(IA') = N(I)^{[F':F]}$ for any nonzero ideal I of A'. In the special case that $A = \mathbb{Z}$ and $A' = \mathcal{O}_K$ for a number field K, prove $N(I) = |N_{K/\mathbb{Q}}(I)|$ for all nonzero ideals I of A' (hint: reduce to the case when K/\mathbb{Q} is Galois). Prove an analogous relationship between absolute norm and ring-theoretic norm in the case when A = k[X] for a finite field k and A' is its integral closure in a finite separable extension of F = Frac(A).

4. Let A be a Dedekind domain with fraction field F, and let $A_0 \subseteq A$ be a subring with fraction field F such that A is a finitely generated A_0 -module. We call such an A_0 an *order* in A. The purpose of this exercise and the next one is to define the concept of *class group* for orders and to relate them to the class group of A.

(i) Explain why the above definition of "order" recovers our earlier notion of order (as a subring with finite lattice-index) in the case when A is the ring of integers of a number field, and in general prove that all nonzero prime ideals of A_0 are maximal and that A is the integral closure of A_0 in F (so A is intrinsic to A_0). Construct a nonzero $a \in A$ such that $aA \subseteq A_0$, so $A_0[1/a] = A[1/a]$, and define the *conductor* of A_0 to be

$$\mathfrak{c} = \mathfrak{c}_{A/A_0} = \{ a \in A \mid aA \subseteq A_0 \},\$$

so $\mathfrak{c} \neq 0$. Show that \mathfrak{c} is an ideal of A that is contained in A_0 (so it has the peculiar property of being an ideal in both A_0 and A), and show that all ideals of A contained in A_0 are in fact contained in \mathfrak{c} (so $\mathfrak{c}_{A/A_0} = A$)

if and only if $A_0 = A$). If \mathscr{O} is the order of index f in the ring of integers \mathscr{O}_K of a quadratic field K, prove that $\mathfrak{c}_{\mathscr{O}_K/\mathscr{O}} = f \mathscr{O}_K$.

(*ii*) Let S be a multiplicative set of A_0 that is disjoint from some maximal ideal of A_0 (that is, $S^{-1}A_0 \neq F$), so $S^{-1}A$ is the integral closure of $S^{-1}A_0$ and is a finitely generated $S^{-1}A_0$ -module (so $S^{-1}A$ is Dedekind). Show that $S^{-1}\mathfrak{c}_{A/A_0} = \mathfrak{c}_{S^{-1}A/S^{-1}A_0}$ as ideals of $S^{-1}A$ (or of $S^{-1}A_0$).

(*iii*) Prove that $\overline{A}_0 = A_0/\mathfrak{c}$ is a subring of $\overline{A} = A/\mathfrak{c}$ such that \overline{A}_0 is a finitely generated \overline{A} -module and such that no nonzero principal ideals of \overline{A} lie in \overline{A}_0 and A_0 is the preimage of \overline{A} under the projection $A \to \overline{A}$. Show that this observation is "universal" in the sense that for any nonzero ideal I of A and any subring \overline{R} of A/I such that \overline{R} does not contain nonzero principal ideals of A/I and such that A/I is finitely generated as an \overline{R} -module, the preimage R of \overline{R} in A is an order of A with conductor equal to I. In this sense, all orders can be "described" by ring-theoretic congruence conditions. Deduce in particular that $A_0^{\times} = A_0 \cap A^{\times}$, and that if A has finite residue fields at all maximal ideals then for any nonzero ideal I of A there exist only finitely many orders A_0 of A such that $\mathfrak{c}_{A/A_0}|I$.

5. A nonzero ideal I in a noetherian domain R is *invertible* if $I_{\mathfrak{m}} = IR_{\mathfrak{m}}$ is principal for all maximal ideals \mathfrak{m} of R, and a *fractional ideal* of R is an R-submodule \mathscr{I} of $K = \operatorname{Frac}(R)$ having the form cI for $c \in K^{\times}$ and I an ordinary ideal of R. Two fractional ideals I and I' of R are *linearly equivalent* if I = cI' for some $c \in K^{\times}$.

(i) Prove that if \mathscr{I} is a nonzero fractional ideal of R then $\mathscr{I}' = \{x \in K \mid x \mathscr{I} \subseteq R\}$ is also a nonzero fractional ideal of R. We say that \mathscr{I} is *invertible* if $\mathscr{I}\mathscr{I}' = R$; prove that this condition is unaffected by linear equivalence and that it recovers the initial notion of invertibility when \mathscr{I} is an ordinary ideal of R.

(*ii*) Prove that if \mathscr{I}_1 and \mathscr{I}_2 are invertible fractional ideals of R then so is $\mathscr{I}_1\mathscr{I}_2$, and that in fact $\mathscr{I}_1 \otimes_R \mathscr{I}_2$ is a torsion-free R-module such that the natural map $\mathscr{I}_1 \otimes_R \mathscr{I}_2 \to \mathscr{I}_1 \mathscr{I}_2$ is an isomorphism. Explain how the set $\operatorname{Pic}(R)$ of linear equivalence classes of invertible fractional ideals of R forms an abelian group via tensor products and dualization (over R). This is the *class group* of R.

(*iii*) In the special case when $R = A_0$ is an order in a Dedekind domain A, use weak approximation for A to prove that every invertible fractional ideal of A_0 is linearly equivalent to an invertible ordinary ideal I_0 of A_0 that is coprime to \mathfrak{c}_{A/A_0} in the sense that $I_0 + \mathfrak{c}_{A/A_0} = A_0$.

(*iv*) Prove that $I_0 \mapsto I_0 A$ and $I \mapsto I \cap A_0$ are inverse bijections between the set of invertible ordinary ideals of A_0 coprime to $\mathfrak{c} = \mathfrak{c}_{A/A_0}$ and invertible ordinary ideals of A coprime to \mathfrak{c} , and that these bijections are compatible with formation of products of such ideals. (Hint: Use gluing of ideals and (*ii*) to reduce to the case when A_0 is local and A is semi-local, so A is a PID whose maximal ideals all contain \mathfrak{c} if $A_0 \neq A$). Deduce that if \mathfrak{m}_0 is a maximal ideal of A_0 then the following are equivalent: \mathfrak{m}_0 is coprime to \mathfrak{c} , \mathfrak{m}_0 is invertible, and $(A_0)_{\mathfrak{m}_0}$ is integrally closed (and hence is a discrete valuation ring).

(v) Use the bijection with ideals of A, in conjunction with (iii), to define an exact sequence of abelian groups

$$1 \to A^{\times}/A_0^{\times} \to (A/\mathfrak{c})^{\times}/(A_0/\mathfrak{c})^{\times} \to \operatorname{Pic}(A_0) \to \operatorname{Pic}(A) \to 1.$$

and deduce that if all residue fields of A are *finite* and Pic(A) is finite then $Pic(A_0)$ is finite for every order A_0 of A.