
Math 676. Homework 4

1. Let A be a Dedekind domain with fraction field F and let F ′/F be a finite separable extension. Let A′

be the integral closure of A in F ′. We assume that F ′/F is Galois with Galois group Γ.
(i) Prove that the action of Γ on F ′ carries A′ back into itself and that the Γ-invariant elements in A′ are

exactly the elements of A. Also show that for any γ ∈ Γ and maximal ideal p′ of A′, γ(p′) is a maximal ideal
of A′. (We say that the maximal ideal γ(p′) is a Γ-conjugate of p′.)

(ii) Let P1, . . . ,Pr and Q1, . . . ,Qs be two finite sets of pairwise distinct maximal ideals of A′ such that
every Γ-conjugate of a Pi is a Pi′ and every Γ-conjugate of a Qj is a Qj′ . Use weak approximation to
construct x′ ∈ A′ such that γ(x′) ∈

∏
i Pi for all γ ∈ Γ but γ(x′) 6∈ Qj for all γ ∈ Γ and for all j.

(iii) Let p be a nonzero prime ideal of A, and let {p′1, . . . , p′g} be the finite set of primes of A′ over A,
with p =

∏
p′
ei
i ; let fi = [A′/p′i : A/p] be the associated residue-field degrees. Prove that the action of Γ

on A′ permutes the set of p′i’s, and that if γ carries p′i to p′j then ei = ej and γ induces an isomorphism
A′/p′i ' A′/p′j as extensions of A/p (so fi = fj). (Hint: Suppose that the set of p′i’s is not a single Γ-orbit,
and use (ii) to construct x′ ∈ A′ such that NF ′/F (x′) =

∏
γ∈Γ γ(x′) ∈ A lies in the p′i’s from one Γ-orbit but

not in any of the p′i’s from some other Γ-orbit. Check that NF ′/F (x′) ∈ p and deduce a contradiction.)
(iv) Prove that the action of Γ on the set of p′i’s is transitive, so in fact p = (

∏
p′i)

e with a common
ramification degree e = ei for all i and a common residue field degree f = fi for all i.

2. Let K/Q be a quadratic field with discriminant D, and let p ∈ Z be a prime. Let OK be the ring of
integers of K. The following extends Exercise 4 in Homework 3.

(i) If p is odd, prove that pOK is prime (that is, pZ is inert in OK) if and only if p - D with D a nonsquare
modulo pZ, that pOK = p1p2 is a product of two distinct primes (that is, pZ is split in OK) if and only if
p - D with D a square modulo pZ, and that pOK = p2 (that is, pZ is ramified in OK) if and only if p|D.

(ii) Give analogous criteria for p = 2.
(iii) Use the method of proof of Exercise 4 in Homework 3 to explicitly factor pZ in the rings of integers

Z[
√

7] and Z[(1 +
√
−15)/2] (with respective discriminants D = 28 and −15) for all p ∈ {2, 3, 5, 7, 11},

expressing each prime ideal in the form (p, θ). Later methods will show that neither of these rings is a PID
(or you can try to directly verify that specific prime ideals are not principal).

(iv) Using quadratic reciprocity, determine all primes p that are split in Z[
√

11].

3. Let A be a Dedekind domain. If I and I ′ are ideals in A, we say I divides I ′ if I ′ = IK for an ideal K of
A (so all ideals divide (0)).

(i) If I and J are ideals in A, prove that I + J is the unique smallest ideal that divides I and J .
(ii) Using weak approximation, prove that every ideal in A admits one or two generators.

4. Let A be a Dedekind domain, with fraction field F . The following uses Exercise 5 from Homework 3.
(i) Let I and I ′ be nonzero ideals of A. Prove that the natural map I⊗A I ′ → A induced by multiplication

is an isomorphism onto II ′. (use localization and functoriality to reduce to the case of discrete valuation
rings).

(ii) Let M be a finitely generated and torsion-free A-module, and let MF = F ⊗A M . Define the dual
module to be M∨ = HomA(M,A), so this is again finitely generated and torsion-free. Prove that (M∨)F is
naturally identified with the F -dual space to MF , and use localization at maximal ideals to prove that the
natural map M ⊗AM∨ → A defined by m⊗ ` 7→ `(m) is an isomorphism if dimF MF = 1.

(iii) Let Pic(A) denote the set of isomorphism classes [M ] of finitely generated and torsion-free A-modules
M such that dimF MF = 1. Prove that every nonzero ideal I of A satisfies these conditions on M , and that
the operation of tensor product gives Pic(A) a natural structure of commutative group (called the class
group of A, or the Picard group of SpecA in the language of schemes) with identity [A] and with inversion
−[M ] = [M∨]. Prove that every element of Pic(A) has the form [I] for a nonzero ideal I of A, with [I] = [I ′]
if and only if I = cI ′ for some c ∈ F×. Deduce that the group Pic(A) is trivial if and only if A is a PID.

(iv) We define a fractional ideal of A to be a finitely generated nonzero A-submodule I of F , and two
fractional ideals I and I ′ of A are linearly equivalent if I = cI ′ for some c ∈ F×. The product of two
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fractional ideals I and I ′ of A is defined to be

I I ′ = {y ∈ F | y = x1x
′
1 + · · ·+ xnx

′
n, xi ∈ I , x′i ∈ I ′};

why is this a fractional ideal? Prove that every fractional ideal of A is linearly equivalent to a nonzero
ordinary ideal of A, that the isomorphism F ⊗F F ' F induced by multiplication induces an isomorphism
I ⊗A I ′ ' I I ′, and that

I −1 def= {x ∈ F |xI ⊆ A}
is a fractional ideal that is naturally identified with the dual module I ∨. Deduce that Pic(A) may be
described using only the classical language of fractional ideals of A (without mentioning tensor products or
dual modules): it is the monoid of fractional ideals up to linear equivalence, with group law given by the
product as above and with inversion given by I −1 as above.

5. Let I, I ′, J be nonzero ideals of A. Prove that if I ⊕ J and I ⊕ J ′ are abstractly isomorphic as A-modules
then [J ] = [J ′] in Pic(A). (Hint: Prove that the natural A-linear map I ⊗A J → ∧2(I ⊕ J) defined by
x ⊗ y 7→ (x, 0) ∧ (0, y) is an isomorphism by using localization to reduce to the case when A is a discrete
valuation ring. You must of course show that the exterior power really is torsion-free.)


