MATH 676. HOMEWORK 4

1. Let A be a Dedekind domain with fraction field F and let F'/F be a finite separable extension. Let A' be the integral closure of A in F'. We assume that F'/F is Galois with Galois group Γ .

(i) Prove that the action of Γ on F' carries A' back into itself and that the Γ -invariant elements in A' are exactly the elements of A. Also show that for any $\gamma \in \Gamma$ and maximal ideal \mathfrak{p}' of A', $\gamma(\mathfrak{p}')$ is a maximal ideal of A'. (We say that the maximal ideal $\gamma(\mathfrak{p}')$ is a Γ -conjugate of \mathfrak{p}' .)

(*ii*) Let $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ and $\mathfrak{Q}_1, \ldots, \mathfrak{Q}_s$ be two finite sets of pairwise distinct maximal ideals of A' such that every Γ -conjugate of a \mathfrak{P}_i is a $\mathfrak{P}_{i'}$ and every Γ -conjugate of a \mathfrak{Q}_j is a $\mathfrak{Q}_{j'}$. Use weak approximation to construct $x' \in A'$ such that $\gamma(x') \in \prod_i \mathfrak{P}_i$ for all $\gamma \in \Gamma$ but $\gamma(x') \notin \mathfrak{Q}_j$ for all $\gamma \in \Gamma$ and for all j.

(*iii*) Let \mathfrak{p} be a nonzero prime ideal of A, and let $\{\mathfrak{p}'_1, \ldots, \mathfrak{p}'_g\}$ be the finite set of primes of A' over A, with $\mathfrak{p} = \prod \mathfrak{p}'_i^{e_i}$; let $f_i = [A'/\mathfrak{p}'_i : A/\mathfrak{p}]$ be the associated residue-field degrees. Prove that the action of Γ on A' permutes the set of \mathfrak{p}'_i 's, and that if γ carries \mathfrak{p}'_i to \mathfrak{p}'_j then $e_i = e_j$ and γ induces an isomorphism $A'/\mathfrak{p}'_i \simeq A'/\mathfrak{p}'_j$ as extensions of A/\mathfrak{p} (so $f_i = f_j$). (Hint: Suppose that the set of \mathfrak{p}'_i 's is not a single Γ -orbit, and use (*ii*) to construct $x' \in A'$ such that $N_{F'/F}(x') = \prod_{\gamma \in \Gamma} \gamma(x') \in A$ lies in the \mathfrak{p}'_i 's from one Γ -orbit but not in any of the \mathfrak{p}'_i 's from some other Γ -orbit. Check that $N_{F'/F}(x') \in \mathfrak{p}$ and deduce a contradiction.)

(*iv*) Prove that the action of Γ on the set of \mathfrak{p}'_i 's is *transitive*, so in fact $\mathfrak{p} = (\prod \mathfrak{p}'_i)^e$ with a common ramification degree $e = e_i$ for all i and a common residue field degree $f = f_i$ for all i.

2. Let K/\mathbf{Q} be a quadratic field with discriminant D, and let $p \in \mathbf{Z}$ be a prime. Let \mathcal{O}_K be the ring of integers of K. The following extends Exercise 4 in Homework 3.

(i) If p is odd, prove that $p\mathcal{O}_K$ is prime (that is, $p\mathbf{Z}$ is inert in \mathcal{O}_K) if and only if $p \nmid D$ with D a nonsquare modulo $p\mathbf{Z}$, that $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2$ is a product of two distinct primes (that is, $p\mathbf{Z}$ is split in \mathcal{O}_K) if and only if $p \nmid D$ with D a square modulo $p\mathbf{Z}$, and that $p\mathcal{O}_K = \mathfrak{p}^2$ (that is, $p\mathbf{Z}$ is ramified in \mathcal{O}_K) if and only if $p \mid D$.

(*ii*) Give analogous criteria for p = 2.

(*iii*) Use the method of proof of Exercise 4 in Homework 3 to explicitly factor $p\mathbf{Z}$ in the rings of integers $\mathbf{Z}[\sqrt{7}]$ and $\mathbf{Z}[(1 + \sqrt{-15})/2]$ (with respective discriminants D = 28 and -15) for all $p \in \{2, 3, 5, 7, 11\}$, expressing each prime ideal in the form (p, θ) . Later methods will show that neither of these rings is a PID (or you can try to directly verify that specific prime ideals are not principal).

(iv) Using quadratic reciprocity, determine all primes p that are split in $\mathbb{Z}[\sqrt{11}]$.

3. Let A be a Dedekind domain. If I and I' are ideals in A, we say I divides I' if I' = IK for an ideal K of A (so all ideals divide (0)).

(i) If I and J are ideals in A, prove that I + J is the unique smallest ideal that divides I and J.

(ii) Using weak approximation, prove that every ideal in A admits one or two generators.

4. Let A be a Dedekind domain, with fraction field F. The following uses Exercise 5 from Homework 3.

(i) Let I and I' be nonzero ideals of A. Prove that the natural map $I \otimes_A I' \to A$ induced by multiplication is an isomorphism onto II'. (use localization and functoriality to reduce to the case of discrete valuation rings).

(ii) Let M be a finitely generated and torsion-free A-module, and let $M_F = F \otimes_A M$. Define the dual module to be $M^{\vee} = \operatorname{Hom}_A(M, A)$, so this is again finitely generated and torsion-free. Prove that $(M^{\vee})_F$ is naturally identified with the F-dual space to M_F , and use localization at maximal ideals to prove that the natural map $M \otimes_A M^{\vee} \to A$ defined by $m \otimes \ell \mapsto \ell(m)$ is an isomorphism if $\dim_F M_F = 1$.

(*iii*) Let Pic(A) denote the set of isomorphism classes [M] of finitely generated and torsion-free A-modules M such that $\dim_F M_F = 1$. Prove that every nonzero ideal I of A satisfies these conditions on M, and that the operation of tensor product gives Pic(A) a natural structure of commutative group (called the *class group* of A, or the *Picard group* of Spec A in the language of schemes) with identity [A] and with inversion $-[M] = [M^{\vee}]$. Prove that every element of Pic(A) has the form [I] for a nonzero ideal I of A, with [I] = [I'] if and only if I = cI' for some $c \in F^{\times}$. Deduce that the group Pic(A) is trivial if and only if A is a PID.

(iv) We define a fractional ideal of A to be a finitely generated nonzero A-submodule \mathscr{I} of F, and two fractional ideals \mathscr{I} and \mathscr{I}' of A are linearly equivalent if $\mathscr{I} = c\mathscr{I}'$ for some $c \in F^{\times}$. The product of two

fractional ideals \mathscr{I} and \mathscr{I}' of A is defined to be

$$\mathscr{I}\mathscr{I}' = \{ y \in F \mid y = x_1 x_1' + \dots + x_n x_n', \ x_i \in \mathscr{I}, x_i' \in \mathscr{I}' \};$$

why is this a fractional ideal? Prove that every fractional ideal of A is linearly equivalent to a nonzero ordinary ideal of A, that the isomorphism $F \otimes_F F \simeq F$ induced by multiplication induces an isomorphism $\mathscr{I} \otimes_A \mathscr{I}' \simeq \mathscr{I} \mathscr{I}'$, and that

$$\mathscr{I}^{-1} \stackrel{\text{def}}{=} \{ x \in F \, | \, x \mathscr{I} \subseteq A \}$$

is a fractional ideal that is naturally identified with the dual module \mathscr{I}^{\vee} . Deduce that $\operatorname{Pic}(A)$ may be described using only the classical language of fractional ideals of A (without mentioning tensor products or dual modules): it is the monoid of fractional ideals up to linear equivalence, with group law given by the product as above and with inversion given by \mathscr{I}^{-1} as above.

5. Let I, I', J be nonzero ideals of A. Prove that if $I \oplus J$ and $I \oplus J'$ are abstractly isomorphic as A-modules then [J] = [J'] in Pic(A). (Hint: Prove that the natural A-linear map $I \otimes_A J \to \wedge^2(I \oplus J)$ defined by $x \otimes y \mapsto (x, 0) \land (0, y)$ is an isomorphism by using localization to reduce to the case when A is a discrete valuation ring. You must of course show that the exterior power really is torsion-free.)