MATH 676. HOMEWORK 4

1. Let A be a Dedekind domain with fraction field F' and let F'/F be a finite separable extension. Let A’
be the integral closure of A in F’. We assume that F’/F is Galois with Galois group T

(7) Prove that the action of ' on F” carries A’ back into itself and that the I'-invariant elements in A" are
exactly the elements of A. Also show that for any v € T' and maximal ideal p’ of A’, v(p’) is a maximal ideal
of A’. (We say that the maximal ideal y(p’) is a I'-conjugate of p’.)

(ii) Let PBy,..., P, and Oy, ..., 9, be two finite sets of pairwise distinct maximal ideals of A’ such that
every I'-conjugate of a B; is a P and every I'-conjugate of a 9, is a Q;,. Use weak approximation to
construct 2’ € A’ such that y(2’) € [], B; for all v € T but y(z’) € Q; for all v € " and for all j.

(#i7) Let p be a nonzero prime ideal of A, and let {p7,...,p;} be the finite set of primes of A’ over A,
with p = [[p's"; let f; = [A'/pl : A/p] be the associated residue-field degrees. Prove that the action of T
on A’ permutes the set of p;’s, and that if v carries p; to p} then e; = e; and v induces an isomorphism
A'[p; =~ A’/p’; as extensions of A/p (so fi = f;). (Hint: Suppose that the set of p}’s is not a single I'-orbit,
and use (4i) to construct 2’ € A’ such that Np//p(2) = [[,cp 7(2) € A lies in the p;’s from one I-orbit but
not in any of the p}’s from some other I'-orbit. Check that Nz ,p(2’) € p and deduce a contradiction.)

(i) Prove that the action of T' on the set of p}’s is transitive, so in fact p = ([[p})¢ with a common
ramification degree e = ¢; for all + and a common residue field degree f = f; for all i.

2. Let K/Q be a quadratic field with discriminant D, and let p € Z be a prime. Let Ok be the ring of
integers of K. The following extends Exercise 4 in Homework 3.

(4) If p is odd, prove that pO is prime (that is, pZ is inert in k) if and only if p t D with D a nonsquare
modulo pZ, that p&x = p1ps is a product of two distinct primes (that is, pZ is split in Ok) if and only if
p1 D with D a square modulo pZ, and that pOx = p? (that is, pZ is ramified in k) if and only if p|D.

(#) Give analogous criteria for p = 2.

(iéi1) Use the method of proof of Exercise 4 in Homework 3 to explicitly factor pZ in the rings of integers
Z[V7) and Z[(1 + /—15)/2] (with respective discriminants D = 28 and —15) for all p € {2,3,5,7,11},
expressing each prime ideal in the form (p,#). Later methods will show that neither of these rings is a PID
(or you can try to directly verify that specific prime ideals are not principal).

(i) Using quadratic reciprocity, determine all primes p that are split in Z[v/11].

3. Let A be a Dedekind domain. If T and I’ are ideals in A, we say I divides I' if I’ = IK for an ideal K of
A (so all ideals divide (0)).

(4) If I and J are ideals in A, prove that I + J is the unique smallest ideal that divides I and .J.

(ii) Using weak approximation, prove that every ideal in A admits one or two generators.

4. Let A be a Dedekind domain, with fraction field F. The following uses Exercise 5 from Homework 3.

(i) Let I and I’ be nonzero ideals of A. Prove that the natural map I® 4 I’ — A induced by multiplication
is an isomorphism onto IT’. (use localization and functoriality to reduce to the case of discrete valuation
rings).

(#) Let M be a finitely generated and torsion-free A-module, and let Mp = F ® 4 M. Define the dual
module to be MV = Hom (M, A), so this is again finitely generated and torsion-free. Prove that (M"Y)p is
naturally identified with the F-dual space to M, and use localization at maximal ideals to prove that the
natural map M ® 4 MY — A defined by m ® £ +— £(m) is an isomorphism if dimp Mp = 1.

(#i) Let Pic(A) denote the set of isomorphism classes [M] of finitely generated and torsion-free A-modules
M such that dimp Mp = 1. Prove that every nonzero ideal I of A satisfies these conditions on M, and that
the operation of tensor product gives Pic(A) a natural structure of commutative group (called the class
group of A, or the Picard group of Spec A in the language of schemes) with identity [A] and with inversion
—[M] = [MV]. Prove that every element of Pic(A4) has the form [I] for a nonzero ideal I of A, with [I] = [I]
if and only if T = ¢I’ for some ¢ € F*. Deduce that the group Pic(A) is trivial if and only if A is a PID.

(i) We define a fractional ideal of A to be a finitely generated nonzero A-submodule .# of F, and two
fractional ideals .# and ¢’ of A are linearly equivalent if . = c.#’ for some ¢ € F*. The product of two
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fractional ideals .# and .#’ of A is defined to be
II' ={yeFly=mai+ - +zpx,, v;€ S xS

why is this a fractional ideal? Prove that every fractional ideal of A is linearly equivalent to a nonzero
ordinary ideal of A, that the isomorphism F' ®p F' ~ F induced by multiplication induces an isomorphism
I Q4 I ~ 79, and that
I e Flas C A)

is a fractional ideal that is naturally identified with the dual module .#V. Deduce that Pic(A) may be
described using only the classical language of fractional ideals of A (without mentioning tensor products or
dual modules): it is the monoid of fractional ideals up to linear equivalence, with group law given by the
product as above and with inversion given by .# ! as above.

5. Let I,I',J be nonzero ideals of A. Prove that if I @ .J and I & J’ are abstractly isomorphic as A-modules
then [J] = [J'] in Pic(A). (Hint: Prove that the natural A-linear map I ®4 J — A?(I & J) defined by
x®y +— (2,0) A (0,y) is an isomorphism by using localization to reduce to the case when A is a discrete
valuation ring. You must of course show that the exterior power really is torsion-free.)



