Math 676. Homework 4

1. Let A be a Dedekind domain with fraction field F and let F^{\prime} / F be a finite separable extension. Let A^{\prime} be the integral closure of A in F^{\prime}. We assume that F^{\prime} / F is Galois with Galois group Γ.
(i) Prove that the action of Γ on F^{\prime} carries A^{\prime} back into itself and that the Γ-invariant elements in A^{\prime} are exactly the elements of A. Also show that for any $\gamma \in \Gamma$ and maximal ideal \mathfrak{p}^{\prime} of $A^{\prime}, \gamma\left(\mathfrak{p}^{\prime}\right)$ is a maximal ideal of A^{\prime}. (We say that the maximal ideal $\gamma\left(\mathfrak{p}^{\prime}\right)$ is a Γ-conjugate of \mathfrak{p}^{\prime}.)
(ii) Let $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r}$ and $\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{s}$ be two finite sets of pairwise distinct maximal ideals of A^{\prime} such that every Γ-conjugate of a \mathfrak{P}_{i} is a $\mathfrak{P}_{i^{\prime}}$ and every Γ-conjugate of a \mathfrak{Q}_{j} is a $\mathfrak{Q}_{j^{\prime}}$. Use weak approximation to construct $x^{\prime} \in A^{\prime}$ such that $\gamma\left(x^{\prime}\right) \in \prod_{i} \mathfrak{P}_{i}$ for all $\gamma \in \Gamma$ but $\gamma\left(x^{\prime}\right) \notin \mathfrak{Q}_{j}$ for all $\gamma \in \Gamma$ and for all j.
(iii) Let \mathfrak{p} be a nonzero prime ideal of A, and let $\left\{\mathfrak{p}_{1}^{\prime}, \ldots, \mathfrak{p}_{g}^{\prime}\right\}$ be the finite set of primes of A^{\prime} over A, with $\mathfrak{p}=\prod \mathfrak{p}_{i}^{\prime e_{i}}$; let $f_{i}=\left[A^{\prime} / \mathfrak{p}_{i}^{\prime}: A / \mathfrak{p}\right]$ be the associated residue-field degrees. Prove that the action of Γ on A^{\prime} permutes the set of $\mathfrak{p}_{i}^{\prime}$ s, and that if γ carries $\mathfrak{p}_{i}^{\prime}$ to $\mathfrak{p}_{j}^{\prime}$ then $e_{i}=e_{j}$ and γ induces an isomorphism $A^{\prime} / \mathfrak{p}_{i}^{\prime} \simeq A^{\prime} / \mathfrak{p}_{j}^{\prime}$ as extensions of A / \mathfrak{p} (so $f_{i}=f_{j}$). (Hint: Suppose that the set of $\mathfrak{p}_{i}^{\prime}$'s is not a single Γ-orbit, and use (ii) to construct $x^{\prime} \in A^{\prime}$ such that $\mathrm{N}_{F^{\prime} / F}\left(x^{\prime}\right)=\prod_{\gamma \in \Gamma} \gamma\left(x^{\prime}\right) \in A$ lies in the $\mathfrak{p}_{i}^{\prime}$'s from one Γ-orbit but not in any of the $\mathfrak{p}_{i}^{\prime}$'s from some other Γ-orbit. Check that $\mathrm{N}_{F^{\prime} / F}\left(x^{\prime}\right) \in \mathfrak{p}$ and deduce a contradiction.)
(iv) Prove that the action of Γ on the set of $\mathfrak{p}_{i}^{\prime}$'s is transitive, so in fact $\mathfrak{p}=\left(\prod \mathfrak{p}_{i}^{\prime}\right)^{e}$ with a common ramification degree $e=e_{i}$ for all i and a common residue field degree $f=f_{i}$ for all i.
2. Let K / \mathbf{Q} be a quadratic field with discriminant D, and let $p \in \mathbf{Z}$ be a prime. Let \mathscr{O}_{K} be the ring of integers of K. The following extends Exercise 4 in Homework 3.
(i) If p is odd, prove that $p \mathscr{O}_{K}$ is prime (that is, $p \mathbf{Z}$ is inert in \mathscr{O}_{K}) if and only if $p \nmid D$ with D a nonsquare modulo $p \mathbf{Z}$, that $p \mathscr{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ is a product of two distinct primes (that is, $p \mathbf{Z}$ is split in \mathscr{O}_{K}) if and only if $p \nmid D$ with D a square modulo $p \mathbf{Z}$, and that $p \mathscr{O}_{K}=\mathfrak{p}^{2}$ (that is, $p \mathbf{Z}$ is ramified in \mathscr{O}_{K}) if and only if $p \mid D$.
(ii) Give analogous criteria for $p=2$.
(iii) Use the method of proof of Exercise 4 in Homework 3 to explicitly factor $p \mathbf{Z}$ in the rings of integers $\mathbf{Z}[\sqrt{7}]$ and $\mathbf{Z}[(1+\sqrt{-15}) / 2]$ (with respective discriminants $D=28$ and -15) for all $p \in\{2,3,5,7,11\}$, expressing each prime ideal in the form (p, θ). Later methods will show that neither of these rings is a PID (or you can try to directly verify that specific prime ideals are not principal).
(iv) Using quadratic reciprocity, determine all primes p that are split in $\mathbf{Z}[\sqrt{11}]$.
3. Let A be a Dedekind domain. If I and I^{\prime} are ideals in A, we say I divides I^{\prime} if $I^{\prime}=I K$ for an ideal K of A (so all ideals divide (0)).
(i) If I and J are ideals in A, prove that $I+J$ is the unique smallest ideal that divides I and J.
(ii) Using weak approximation, prove that every ideal in A admits one or two generators.
4. Let A be a Dedekind domain, with fraction field F. The following uses Exercise 5 from Homework 3.
(i) Let I and I^{\prime} be nonzero ideals of A. Prove that the natural map $I \otimes_{A} I^{\prime} \rightarrow A$ induced by multiplication is an isomorphism onto $I I^{\prime}$. (use localization and functoriality to reduce to the case of discrete valuation rings).
(ii) Let M be a finitely generated and torsion-free A-module, and let $M_{F}=F \otimes_{A} M$. Define the dual module to be $M^{\vee}=\operatorname{Hom}_{A}(M, A)$, so this is again finitely generated and torsion-free. Prove that $\left(M^{\vee}\right)_{F}$ is naturally identified with the F-dual space to M_{F}, and use localization at maximal ideals to prove that the natural map $M \otimes_{A} M^{\vee} \rightarrow A$ defined by $m \otimes \ell \mapsto \ell(m)$ is an isomorphism if $\operatorname{dim}_{F} M_{F}=1$.
(iii) Let $\operatorname{Pic}(A)$ denote the set of isomorphism classes $[M]$ of finitely generated and torsion-free A-modules M such that $\operatorname{dim}_{F} M_{F}=1$. Prove that every nonzero ideal I of A satisfies these conditions on M, and that the operation of tensor product gives $\operatorname{Pic}(A)$ a natural structure of commutative group (called the class group of A, or the Picard group of $\operatorname{Spec} A$ in the language of schemes) with identity $[A]$ and with inversion $-[M]=\left[M^{\vee}\right]$. Prove that every element of $\operatorname{Pic}(A)$ has the form $[I]$ for a nonzero ideal I of A, with $[I]=\left[I^{\prime}\right]$ if and only if $I=c I^{\prime}$ for some $c \in F^{\times}$. Deduce that the group $\operatorname{Pic}(A)$ is trivial if and only if A is a PID.
(iv) We define a fractional ideal of A to be a finitely generated nonzero A-submodule \mathscr{I} of F, and two fractional ideals \mathscr{I} and \mathscr{I}^{\prime} of A are linearly equivalent if $\mathscr{I}=c \mathscr{I}^{\prime}$ for some $c \in F^{\times}$. The product of two
fractional ideals \mathscr{I} and \mathscr{I}^{\prime} of A is defined to be

$$
\mathscr{I} \mathscr{I}^{\prime}=\left\{y \in F \mid y=x_{1} x_{1}^{\prime}+\cdots+x_{n} x_{n}^{\prime}, \quad x_{i} \in \mathscr{I}, x_{i}^{\prime} \in \mathscr{I}^{\prime}\right\} ;
$$

why is this a fractional ideal? Prove that every fractional ideal of A is linearly equivalent to a nonzero ordinary ideal of A, that the isomorphism $F \otimes_{F} F \simeq F$ induced by multiplication induces an isomorphism $\mathscr{I} \otimes_{A} \mathscr{I}^{\prime} \simeq \mathscr{I} \mathscr{I}^{\prime}$, and that

$$
\mathscr{I}^{-1} \stackrel{\text { def }}{=}\{x \in F \mid x \mathscr{I} \subseteq A\}
$$

is a fractional ideal that is naturally identified with the dual module \mathscr{I}^{\vee}. Deduce that $\operatorname{Pic}(A)$ may be described using only the classical language of fractional ideals of A (without mentioning tensor products or dual modules): it is the monoid of fractional ideals up to linear equivalence, with group law given by the product as above and with inversion given by \mathscr{I}^{-1} as above.
5. Let I, I^{\prime}, J be nonzero ideals of A. Prove that if $I \oplus J$ and $I \oplus J^{\prime}$ are abstractly isomorphic as A-modules then $[J]=\left[J^{\prime}\right]$ in $\operatorname{Pic}(A)$. (Hint: Prove that the natural A-linear map $I \otimes_{A} J \rightarrow \wedge^{2}(I \oplus J)$ defined by $x \otimes y \mapsto(x, 0) \wedge(0, y)$ is an isomorphism by using localization to reduce to the case when A is a discrete valuation ring. You must of course show that the exterior power really is torsion-free.)

