
Math 676. Homework 3

1. A lattice in a finite-dimensional R-vector space V is a discrete closed subgroup Λ ⊆ V such that the
quotient V/Λ with its (Hausdorff) quotient topology is compact.

(i) Prove that if G is a Hausdorff topological group and H is subgroup whose induced topology is discrete
(we then say that H is a discrete subgroup), then H is automatically closed in G. Give a counterexample if
G is not assumed to be Hausdorff.

(ii) Prove that a subgroup Λ in a finite-dimensional R-vector space V is discrete if and only if Λ is a finite
free Z-module such that the natural map R ⊗Z Λ → V is injective, and that Λ is a lattice if and only if Λ
is a finitely generated Z-module and the natural map R ⊗Z Λ → V is an isomorphism. (That is, a Z-basis
of Λ is an R-basis of V ; in particular, the Z-rank of Λ must equal the R-rank of V .) Give an example of
subgroup of R2 that is finite free of rank 2 over Z but is not a discrete subgroup.

(iii) Let K be a number field. Prove that OK is a lattice in the Euclidean space K ⊗Q R, and draw a
picture of this lattice for K = Q(α) in the cases α2 = 2 and α2 = 5, using the canonical isomorphism of
R-algebras K ⊗Q R ' R ×R with R-factors labelled by the two embeddings of K into R (make sure to
indicate the embedding associated to your axes).

(iv) Prove that in both pictures, the projection of the lattice onto either coordinate axis is a dense subgroup
of R. For any number field K with r1 + r2 > 1 (that is, K 6= Q and K not imaginary quadratic), make a
topological conjecture concerning the image of OK in the quotient of K⊗QR modulo a primitive idempotent;
can you prove this conjecture? In the case K = Q(ζ5), how does this explain the winning strategy in the
computer game “Lucy and Lilly” on Rick Schwarz’ web site at the University of Maryland?

2. A pair of ideals I and J in a ring R are said to be coprime if I + J = A. For example, if I is a maximal
ideal and J is not contained in I then I and J are coprime.

(i) If A is a PID, prove that nonzero ideals (a) and (a′) are coprime if and only if a and a′ share no
common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: A = k[X, Y ] for a
field k.)

(ii) If I and J are coprime, prove that the inclusion IJ ⊆ I ∩ J is an equality.
(iii) If I1, . . . , Ik are ideals that are pairwise coprime with k ≥ 2, prove that I1 and

∏k
j=2 Ij are coprime,

and deduce by induction on k and (ii) that ∩Ij =
∏

Ij .
(iv) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I1, . . . , Ik are pairwise coprime

(with k ≥ 2) then the natural map of rings R/(
∏

Ij) →
∏

R/Ij is an isomorphism, and so in particular the
natural map R →

∏
R/Ij is surjective. (Hint: induction)

3. (i) Let R be a domain whose underlying set is finite. Prove that R is a field.
(ii) Let F be a field and let A be an F -algebra that is finitely generated as an F -module. Prove that A

is a domain if and only if it is a field. Can one relax module-finiteness to integrality?

4. Let d ∈ Z be a nonzero squarefree integer with d 6= 1. Let K = Q(
√

d). Let D = DK = disc(OK/Z) be
the discriminant of K (so D = 4d if d ≡ 2, 3 mod 4 and D = d otherwise, so D ≡ 0, 1 mod 4 and 2|D if and
only if d ≡ 2, 3 mod 4).

(i) Construct an isomorphism Z[X]/(X2 −DX + (D2 −D)/4) ' OK , and be sure to give a careful proof
that your map really is an isomorphism. (Hint: Prove that if R is any ring and f ∈ R[X] is monic of degree
n ≥ 1, then R[X]/(f) is a free R-module with R-basis 1, X, . . . ,Xn−1.)

(ii) Passing to the quotient modulo p, describe OK/pOK as a quotient of Fp[X], and for odd p (resp.
p = 2) deduce that pOK is a prime ideal of OK if and only if p - D and D is a nonsquare modulo p (resp.
D ≡ 5 mod 8), in which case OK/pOK is a finite field with size p2. Prove that OK/pOK ' Fp[t]/(t2) as
rings if p|D (so OK/pOK has nonzero nilpotents in this case), and that if p - D but D is a square modulo
p for odd p (resp. D ≡ 1 mod 8 for p = 2) then OK/pOK ' Fp × Fp as rings (so OK/pOK has nontrivial
idempotents in this case).

(iii) Let k be an algebraically closed field with char(k) 6= 2, and let f ∈ k[z] be a monic squarefree
polynomial with degree n. Carry out analogues of (i) and (ii) for the extension k[z] → k[t, z]/(t2 − f(z)) =
k[t][

√
f ]. Relate the three cases in (ii) to the geometry of the projection (t, z) 7→ z of the plane curve
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t2 = f(z) onto the z-axis, and in particular give a geometric interpretation of the zero locus of D. (In this
final part, assume k = C if you prefer complex analysis to algebraic geometry.)

5. Let A be a domain and let M and N be torsion-free A-modules. The purpose of this exercise is to prove
the final part, which gives some very important properties of M⊗A N when A is Dedekind. Our development
of class groups will assume that you have done this exercise!

(i) For any multiplicative set S in A, define S−1M in terms of “fractions”, give it a natural structure of
S−1A-module, and prove that if f : M → N is a map between A-modules then there is a unique S−1A-linear
map S−1f : S−1M → S−1N compatible with f and the natural maps M → S−1M and N → S−1N .
Prove also that the natural map M → S−1M is injective and uniquely factors through an S−1A-linear map
S−1A⊗A M → S−1M that moreover is an isomorphism.

In the special case S = A− p for a prime ideal p, we write Mp to denote S−1M .
(ii) Prove that a map f : M → N is surjective if and only if fm : Mm → Nm is surjective for all maximal

ideals m of A. (hint: Suppose there exists n ∈ N not in the image of M , and let I be the set of a ∈ A such
that an is in the image of f . Prove that I is an ideal and I 6= A, and for a maximal ideal m of A containing
I (Zorn!) prove that fm is not surjective.)

(iii) Prove that the A-module HomA(M,N) is torsion-free, and construct a natural map

θS,M,N : S−1HomA(M,N) → HomS−1A(S−1M,S−1N)

for any multiplicative set S in A. Assuming that A is noetherian and M and N are finitely generated, prove
that HomA(M,N) is finitely generated and that θS,M,N is an isomorphism. (Hint for second part: Treat the
case when M is finite free, and then use a right-exact sequence

A⊕n → A⊕m → M → 0

and functoriality in conjunction with exactness properties of HomA(·, N) to reduce the general case to the
case of finite free M .)

(iv) Assume that M and M ′ are finitely generated and torsion-free, and that A is noetherian. Let
π : M ′ → M be a surjective linear map. A section of π is a linear map s : M → M ′ such that π ◦ s is the
identity on M . Show that if s is a section then the natural map kerπ ⊕ s(M) → M ′ is an isomorphism (so
we may identify M with a direct summand of M ′), and that a section exists if and only if the natural map
of A-modules HomA(M,M ′) → HomA(M,M) (via composition with π) is surjective. Using (ii) and (iii),
deduce the non-obvious fact that π admits an A-linear section if and only if πm admits an Am-linear section
for every maximal ideal m of A!

(v) Finally, assume that A is a Dedekind domain. Using that Am is a PID for every maximal ideal m of A,
prove that every finitely generated torsion-free A-module M is a direct summand of a finite free A-module.
Deduce that if N is a second finitely generated torsion-free A-module then M ⊗A N is finitely generated and
torsion-free as an A-module, and that for any multiplicative set S in A there is a natural map

S−1(M ⊗A N) → S−1M ⊗S−1A S−1N

that is moreover an isomorphism.


