Math 676. Homework 3

1. A lattice in a finite-dimensional \mathbf{R}-vector space V is a discrete closed subgroup $\Lambda \subseteq V$ such that the quotient V / Λ with its (Hausdorff) quotient topology is compact.
(i) Prove that if G is a Hausdorff topological group and H is subgroup whose induced topology is discrete (we then say that H is a discrete subgroup), then H is automatically closed in G. Give a counterexample if G is not assumed to be Hausdorff.
(ii) Prove that a subgroup Λ in a finite-dimensional \mathbf{R}-vector space V is discrete if and only if Λ is a finite free \mathbf{Z}-module such that the natural $\operatorname{map} \mathbf{R} \otimes_{\mathbf{Z}} \Lambda \rightarrow V$ is injective, and that Λ is a lattice if and only if Λ is a finitely generated \mathbf{Z}-module and the natural $\operatorname{map} \mathbf{R} \otimes_{\mathbf{Z}} \Lambda \rightarrow V$ is an isomorphism. (That is, a \mathbf{Z}-basis of Λ is an \mathbf{R}-basis of V; in particular, the \mathbf{Z}-rank of Λ must equal the \mathbf{R}-rank of V.) Give an example of subgroup of \mathbf{R}^{2} that is finite free of rank 2 over \mathbf{Z} but is not a discrete subgroup.
(iii) Let K be a number field. Prove that \mathscr{O}_{K} is a lattice in the Euclidean space $K \otimes_{\mathbf{Q}} \mathbf{R}$, and draw a picture of this lattice for $K=\mathbf{Q}(\alpha)$ in the cases $\alpha^{2}=2$ and $\alpha^{2}=5$, using the canonical isomorphism of \mathbf{R}-algebras $K \otimes_{\mathbf{Q}} \mathbf{R} \simeq \mathbf{R} \times \mathbf{R}$ with \mathbf{R}-factors labelled by the two embeddings of K into \mathbf{R} (make sure to indicate the embedding associated to your axes).
(iv) Prove that in both pictures, the projection of the lattice onto either coordinate axis is a dense subgroup of \mathbf{R}. For any number field K with $r_{1}+r_{2}>1$ (that is, $K \neq \mathbf{Q}$ and K not imaginary quadratic), make a topological conjecture concerning the image of \mathscr{O}_{K} in the quotient of $K \otimes_{\mathbf{Q}} \mathbf{R}$ modulo a primitive idempotent; can you prove this conjecture? In the case $K=\mathbf{Q}\left(\zeta_{5}\right)$, how does this explain the winning strategy in the computer game "Lucy and Lilly" on Rick Schwarz' web site at the University of Maryland?
2. A pair of ideals I and J in a ring R are said to be coprime if $I+J=A$. For example, if I is a maximal ideal and J is not contained in I then I and J are coprime.
(i) If A is a PID, prove that nonzero ideals (a) and $\left(a^{\prime}\right)$ are coprime if and only if a and a^{\prime} share no common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: $A=k[X, Y]$ for a field k.)
(ii) If I and J are coprime, prove that the inclusion $I J \subseteq I \cap J$ is an equality.
(iii) If I_{1}, \ldots, I_{k} are ideals that are pairwise coprime with $k \geq 2$, prove that I_{1} and $\prod_{j=2}^{k} I_{j}$ are coprime, and deduce by induction on k and (ii) that $\cap I_{j}=\prod I_{j}$.
(iv) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I_{1}, \ldots, I_{k} are pairwise coprime (with $k \geq 2$) then the natural map of rings $R /\left(\prod I_{j}\right) \rightarrow \prod R / I_{j}$ is an isomorphism, and so in particular the natural map $R \rightarrow \Pi R / I_{j}$ is surjective. (Hint: induction)
3. (i) Let R be a domain whose underlying set is finite. Prove that R is a field.
(ii) Let F be a field and let A be an F-algebra that is finitely generated as an F-module. Prove that A is a domain if and only if it is a field. Can one relax module-finiteness to integrality?
4. Let $d \in \mathbf{Z}$ be a nonzero squarefree integer with $d \neq 1$. Let $K=\mathbf{Q}(\sqrt{d})$. Let $D=D_{K}=\operatorname{disc}\left(\mathscr{O}_{K} / \mathbf{Z}\right)$ be the discriminant of K (so $D=4 d$ if $d \equiv 2,3 \bmod 4$ and $D=d$ otherwise, so $D \equiv 0,1 \bmod 4$ and $2 \mid D$ if and only if $d \equiv 2,3 \bmod 4$).
(i) Construct an isomorphism $\mathbf{Z}[X] /\left(X^{2}-D X+\left(D^{2}-D\right) / 4\right) \simeq \mathscr{O}_{K}$, and be sure to give a careful proof that your map really is an isomorphism. (Hint: Prove that if R is any ring and $f \in R[X]$ is monic of degree $n \geq 1$, then $R[X] /(f)$ is a free R-module with R-basis $1, X, \ldots, X^{n-1}$.)
(ii) Passing to the quotient modulo p, describe $\mathscr{O}_{K} / p \mathscr{O}_{K}$ as a quotient of $\mathbf{F}_{p}[X]$, and for odd p (resp. $p=2$) deduce that $p \mathscr{O}_{K}$ is a prime ideal of \mathscr{O}_{K} if and only if $p \nmid D$ and D is a nonsquare modulo p (resp. $D \equiv 5 \bmod 8)$, in which case $\mathscr{O}_{K} / p \mathscr{O}_{K}$ is a finite field with size p^{2}. Prove that $\mathscr{O}_{K} / p \mathscr{O}_{K} \simeq \mathbf{F}_{p}[t] /\left(t^{2}\right)$ as rings if $p \mid D$ (so $\mathscr{O}_{K} / p \mathscr{O}_{K}$ has nonzero nilpotents in this case), and that if $p \nmid D$ but D is a square modulo p for odd $p($ resp. $D \equiv 1 \bmod 8$ for $p=2)$ then $\mathscr{O}_{K} / p \mathscr{O}_{K} \simeq \mathbf{F}_{p} \times \mathbf{F}_{p}$ as rings (so $\mathscr{O}_{K} / p \mathscr{O}_{K}$ has nontrivial idempotents in this case).
(iii) Let k be an algebraically closed field with $\operatorname{char}(k) \neq 2$, and let $f \in k[z]$ be a monic squarefree polynomial with degree n. Carry out analogues of (i) and (ii) for the extension $k[z] \rightarrow k[t, z] /\left(t^{2}-f(z)\right)=$ $k[t][\sqrt{f}]$. Relate the three cases in $(i i)$ to the geometry of the projection $(t, z) \mapsto z$ of the plane curve
$t^{2}=f(z)$ onto the z-axis, and in particular give a geometric interpretation of the zero locus of D. (In this final part, assume $k=\mathbf{C}$ if you prefer complex analysis to algebraic geometry.)

5 . Let A be a domain and let M and N be torsion-free A-modules. The purpose of this exercise is to prove the final part, which gives some very important properties of $M \otimes_{A} N$ when A is Dedekind. Our development of class groups will assume that you have done this exercise!
(i) For any multiplicative set S in A, define $S^{-1} M$ in terms of "fractions", give it a natural structure of $S^{-1} A$-module, and prove that if $f: M \rightarrow N$ is a map between A-modules then there is a unique $S^{-1} A$-linear $\operatorname{map} S^{-1} f: S^{-1} M \rightarrow S^{-1} N$ compatible with f and the natural maps $M \rightarrow S^{-1} M$ and $N \rightarrow S^{-1} N$. Prove also that the natural map $M \rightarrow S^{-1} M$ is injective and uniquely factors through an $S^{-1} A$-linear map $S^{-1} A \otimes_{A} M \rightarrow S^{-1} M$ that moreover is an isomorphism.

In the special case $S=A-\mathfrak{p}$ for a prime ideal \mathfrak{p}, we write $M_{\mathfrak{p}}$ to denote $S^{-1} M$.
(ii) Prove that a map $f: M \rightarrow N$ is surjective if and only if $f_{\mathfrak{m}}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is surjective for all maximal ideals \mathfrak{m} of A. (hint: Suppose there exists $n \in N$ not in the image of M, and let I be the set of $a \in A$ such that $a n$ is in the image of f. Prove that I is an ideal and $I \neq A$, and for a maximal ideal \mathfrak{m} of A containing I (Zorn!) prove that $f_{\mathfrak{m}}$ is not surjective.)
(iii) Prove that the A-module $\operatorname{Hom}_{A}(M, N)$ is torsion-free, and construct a natural map

$$
\theta_{S, M, N}: S^{-1} \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} M, S^{-1} N\right)
$$

for any multiplicative set S in A. Assuming that A is noetherian and M and N are finitely generated, prove that $\operatorname{Hom}_{A}(M, N)$ is finitely generated and that $\theta_{S, M, N}$ is an isomorphism. (Hint for second part: Treat the case when M is finite free, and then use a right-exact sequence

$$
A^{\oplus n} \rightarrow A^{\oplus m} \rightarrow M \rightarrow 0
$$

and functoriality in conjunction with exactness properties of $\operatorname{Hom}_{A}(\cdot, N)$ to reduce the general case to the case of finite free M.)
(iv) Assume that M and M^{\prime} are finitely generated and torsion-free, and that A is noetherian. Let $\pi: M^{\prime} \rightarrow M$ be a surjective linear map. A section of π is a linear map $s: M \rightarrow M^{\prime}$ such that $\pi \circ s$ is the identity on M. Show that if s is a section then the natural map ker $\pi \oplus s(M) \rightarrow M^{\prime}$ is an isomorphism (so we may identify M with a direct summand of M^{\prime}, and that a section exists if and only if the natural map of A-modules $\operatorname{Hom}_{A}\left(M, M^{\prime}\right) \rightarrow \operatorname{Hom}_{A}(M, M)$ (via composition with π) is surjective. Using (ii) and (iii), deduce the non-obvious fact that π admits an A-linear section if and only if $\pi_{\mathfrak{m}}$ admits an $A_{\mathfrak{m}}$-linear section for every maximal ideal \mathfrak{m} of A !
(v) Finally, assume that A is a Dedekind domain. Using that $A_{\mathfrak{m}}$ is a PID for every maximal ideal \mathfrak{m} of A, prove that every finitely generated torsion-free A-module M is a direct summand of a finite free A-module. Deduce that if N is a second finitely generated torsion-free A-module then $M \otimes_{A} N$ is finitely generated and torsion-free as an A-module, and that for any multiplicative set S in A there is a natural map

$$
S^{-1}\left(M \otimes_{A} N\right) \rightarrow S^{-1} M \otimes_{S^{-1} A} S^{-1} N
$$

that is moreover an isomorphism.

