MATH 676. HOMEWORK 3

1. A lattice in a finite-dimensional R-vector space V is a discrete closed subgroup A C V such that the
quotient V/A with its (Hausdorff) quotient topology is compact.

(i) Prove that if G is a Hausdorff topological group and H is subgroup whose induced topology is discrete
(we then say that H is a discrete subgroup), then H is automatically closed in G. Give a counterexample if
G is not assumed to be Hausdorff.

(ii) Prove that a subgroup A in a finite-dimensional R-vector space V' is discrete if and only if A is a finite
free Z-module such that the natural map R ®z A — V' is injective, and that A is a lattice if and only if A
is a finitely generated Z-module and the natural map R ®z A — V is an isomorphism. (That is, a Z-basis
of A is an R-basis of V; in particular, the Z-rank of A must equal the R-rank of V.) Give an example of
subgroup of R? that is finite free of rank 2 over Z but is not a discrete subgroup.

(#4) Let K be a number field. Prove that Ok is a lattice in the Euclidean space K ®q R, and draw a
picture of this lattice for K = Q(«a) in the cases a? = 2 and a? = 5, using the canonical isomorphism of
R-algebras K ®q R ~ R x R with R-factors labelled by the two embeddings of K into R (make sure to
indicate the embedding associated to your axes).

(iv) Prove that in both pictures, the projection of the lattice onto either coordinate axis is a dense subgroup
of R. For any number field K with ry 4+ ro > 1 (that is, K # Q and K not imaginary quadratic), make a
topological conjecture concerning the image of Ok in the quotient of K ®q R modulo a primitive idempotent;
can you prove this conjecture? In the case K = Q((5), how does this explain the winning strategy in the
computer game “Lucy and Lilly” on Rick Schwarz’ web site at the University of Maryland?

2. A pair of ideals I and J in a ring R are said to be coprime if I + J = A. For example, if I is a maximal
ideal and J is not contained in I then I and J are coprime.

(i) If A is a PID, prove that nonzero ideals (a) and (a’) are coprime if and only if a and a’ share no
common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: A = k[X,Y] for a

field k.)

(4) If I and J are coprime, prove that the inclusion IJ C I N J is an equality.

(éii) If Iy, ..., I) are ideals that are pairwise coprime with k > 2, prove that I; and ]_[?:2 I; are coprime,
and deduce by induction on k and (i) that NI; =[] I;.

(i) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I, ..., I} are pairwise coprime

(with k£ > 2) then the natural map of rings R/([[ ;) — [[ R/I, is an isomorphism, and so in particular the
natural map R — [[ R/I; is surjective. (Hint: induction)

3. (i) Let R be a domain whose underlying set is finite. Prove that R is a field.
(i) Let F be a field and let A be an F-algebra that is finitely generated as an F-module. Prove that A
is a domain if and only if it is a field. Can one relax module-finiteness to integrality?

4. Let d € Z be a nonzero squarefree integer with d # 1. Let K = Q(v/d). Let D = Dy = disc(Ok /Z) be
the discriminant of K (so D = 4d if d = 2,3 mod 4 and D = d otherwise, so D = 0,1 mod 4 and 2|D if and
only if d = 2,3 mod 4).

(i) Construct an isomorphism Z[X]/(X? — DX + (D? — D)/4) ~ Ok, and be sure to give a careful proof
that your map really is an isomorphism. (Hint: Prove that if R is any ring and f € R[X] is monic of degree
n > 1, then R[X]/(f) is a free R-module with R-basis 1, X,..., X" 1))

(#) Passing to the quotient modulo p, describe Ok /pOx as a quotient of F,[X], and for odd p (resp.
p = 2) deduce that pOy is a prime ideal of O if and only if p 4 D and D is a nonsquare modulo p (resp.
D = 5 mod 8), in which case Ok /pOf is a finite field with size p®. Prove that O /pOx ~ F,[t]/(t?) as
rings if p|D (so Ok /pOk has nonzero nilpotents in this case), and that if p t+ D but D is a square modulo
p for odd p (resp. D = 1mod 8 for p = 2) then Ok /pOx ~ F, x F,, as rings (so Ok /pOk has nontrivial
idempotents in this case).

(i) Let k be an algebraically closed field with char(k) # 2, and let f € k[z] be a monic squarefree
polynomial with degree n. Carry out analogues of (i) and (i) for the extension k[z] — k[t, z]/(t*> — f(2)) =
k[t][v/f]. Relate the three cases in (i) to the geometry of the projection (t,z) +— z of the plane curve
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t2 = f(2) onto the z-axis, and in particular give a geometric interpretation of the zero locus of D. (In this
final part, assume k = C if you prefer complex analysis to algebraic geometry.)

5. Let A be a domain and let M and N be torsion-free A-modules. The purpose of this exercise is to prove
the final part, which gives some very important properties of M ® 4 N when A is Dedekind. Our development
of class groups will assume that you have done this exercise!

(i) For any multiplicative set S in A, define S™'M in terms of “fractions”, give it a natural structure of
S~! A-module, and prove that if f : M — N is a map between A-modules then there is a unique S~! A-linear
map S™'f : S7'M — ST!N compatible with f and the natural maps M — S~'M and N — S~'N.
Prove also that the natural map M — S~!'M is injective and uniquely factors through an S~—!A-linear map
S™1A®4 M — S~1M that moreover is an isomorphism.

In the special case S = A — p for a prime ideal p, we write M, to denote S—!M.

(ii) Prove that a map f : M — N is surjective if and only if fy, : My — Ny, is surjective for all maximal
ideals m of A. (hint: Suppose there exists n € N not in the image of M, and let I be the set of a € A such
that an is in the image of f. Prove that I is an ideal and I # A, and for a maximal ideal m of A containing
I (Zorn!) prove that fy, is not surjective.)

(#i) Prove that the A-module Hom 4 (M, N) is torsion-free, and construct a natural map

Os.m,N S—lHomA(M, N) — HomsflA(S_lM,S_lN)

for any multiplicative set S in A. Assuming that A is noetherian and M and N are finitely generated, prove
that Hom 4 (M, N) is finitely generated and that 0 ps n is an isomorphism. (Hint for second part: Treat the
case when M is finite free, and then use a right-exact sequence

AP AP M 0

and functoriality in conjunction with exactness properties of Hom (-, V) to reduce the general case to the
case of finite free M.)

(i) Assume that M and M’ are finitely generated and torsion-free, and that A is noetherian. Let
m: M’ — M be a surjective linear map. A section of 7 is a linear map s : M — M’ such that 7 o s is the
identity on M. Show that if s is a section then the natural map ker 7 @ s(M) — M’ is an isomorphism (so
we may identify M with a direct summand of M’), and that a section exists if and only if the natural map
of A-modules Hom 4 (M, M') — Homy, (M, M) (via composition with 7) is surjective. Using (ii) and (éii),
deduce the non-obvious fact that 7 admits an A-linear section if and only if 7, admits an A,-linear section
for every maximal ideal m of A!

(v) Finally, assume that A is a Dedekind domain. Using that A, is a PID for every maximal ideal m of A,
prove that every finitely generated torsion-free A-module M is a direct summand of a finite free A-module.
Deduce that if N is a second finitely generated torsion-free A-module then M ® 4 N is finitely generated and
torsion-free as an A-module, and that for any multiplicative set .S in A there is a natural map

STH UM ®sN)—= S 'M®g14S'N

that is moreover an isomorphism.



