- 1. (This question is not terribly important for our purposes, but you should be aware of its assertions.) Let K/k be a finitely generated extension of fields.
 - (i) Prove that every intermediate extension is finitely generated over k.
 - (ii) Give a finitely generated k-algebra containing a k-subalgebra that is not finitely generated.
- (iii) Prove that if K/k admits a separating transcendence basis, then $K \otimes_k k'$ is a domain (and hence a field) for any purely inseparable algebraic extension k'/k. Deduce that if $k = \mathbf{F}_p(X,Y)$ and K is the fraction field of $k[U,V]/(U^p XV^p Y)$ (why is this a domain?), then K/k does not admit a separating transcendence basis (extra credit: Show that k is algebraically closed in K in this example, so the example is "geometric.")
- 2. Let p be a positive prime in \mathbf{Z} .
 - (i) Prove that if $p \equiv 3 \mod 4$ then p remains prime in $\mathbf{Z}[i]$.
- (ii) Assume $p \equiv 1 \mod 4$. Using cyclicity of \mathbf{F}_p^{\times} , deduce that -1 is a square in \mathbf{F}_p^{\times} and hence $p|(x^2+1)$ in \mathbf{Z} for some $x \in \mathbf{Z}$.
- (iii) For any nonzero $n \in \mathbf{Z}$, show that the elements $n+i, n-i \in \mathbf{Z}[i]$ are not divisible (in $\mathbf{Z}[i]$) by an element of \mathbf{Z} not in \mathbf{Z}^{\times} . Conclude via (ii) and the UFD property of $\mathbf{Z}[i]$ that if $p \equiv 1 \mod 4$ then p cannot be irreducible in $\mathbf{Z}[i]$.
- (iv) Assume $p \equiv 1 \mod 4$. Use norms and (iii) to prove that $p = \pi \overline{\pi}$ for an irreducible $\pi \in \mathbf{Z}[i]$ (with $\pi \notin \mathbf{Z}$) that must have norm p, and infer that $p = a^2 + b^2$ for nonzero integers $a, b \in \mathbf{Z}$ that are unique up to ordering and signs.
- (v) Extra credit: Prove that $\mathbf{Z}[(1+\sqrt{-3})/2]$ is Euclidean, and use arithmetic in this ring to study representatibility of primes in the form $a^2 ab + b^2$, including uniqueness aspects.
- 3. Let $d \in \mathbf{Z}$ be a nonzero squarefree integer with d > 1. Let $K = \mathbf{Q}(\sqrt{d})$ and let \mathscr{O} be its ring of integers. Let us grant Dirichlet's unit theorem, so $\mathscr{O}^{\times}/\langle \pm 1 \rangle$ is infinite cyclic. A fundamental unit of K is a unit $\varepsilon \in \mathscr{O}^{\times}$ such that it reduces to a generator in $\mathscr{O}^{\times}/\langle \pm 1 \rangle$ (so the fundamental units are $\pm \varepsilon$ and $\pm 1/\varepsilon$). If an embedding $K \hookrightarrow \mathbf{R}$ is chosen, then the unique fundamental unit > 1 is often called "the" fundamental unit (relative to the chosen embedding). There is a close relationship between Pell's equation and fundamental units, as you will work out below, but some care is required because a fundamental unit may have norm -1 and (if $d \equiv 1 \mod 4$) may not even lie in $\mathbf{Z}[\sqrt{d}]$.
- (i) Find a quadratic field for which the ring of integers is $\mathbb{Z}[\sqrt{d}]$ and there is a unit with norm -1 (so the fundamental unit has norm -1, whatever it may be). Note that no such example is possible if $d \equiv 3 \mod 4$, or more generally if -1 is not a square modulo d. Explain the relationship between fundamental units and Pell's equation when $d \equiv 2, 3 \mod 4$; in particular, derive the classical structure of the solution set to Pell's equation by using the unit theorem. Upon embedding K into \mathbb{R} , prove that "the" fundamental unit (or its square when the fundamental unit has norm -1) corresponds to the solution (x,y) to Pell's equation with small y-coordinate. (As best I can tell, for $d \equiv 2 \mod 4$ the only way to determine if there exists a fundamental unit with norm -1 is to grind out the continued fraction of \sqrt{d} in accordance with (iii) below.)
- (ii) Find $d \equiv 1 \mod 4$ such that the fundamental unit in $\mathscr{O}_K = \mathbf{Z}[(1+\sqrt{d})/2]$ does not lie in $\mathbf{Z}[\sqrt{d}]$, and prove in general that if $\alpha \in \mathscr{O}_K$ does not lie in $\mathbf{Z}[\sqrt{d}]$ then $\alpha^2 \notin \mathbf{Z}[\sqrt{d}]!$ However, this is about as bad as it gets. Construct an isomorphism

$$\mathcal{O}_K \simeq \mathbf{Z}[X]/(X^2 - X + (1 - d)/4)$$

and use this to infer that $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbf{F}_4$ (resp. $\mathcal{O}_K/2\mathcal{O}_K \simeq \mathbf{F}_2 \times \mathbf{F}_2$) when $d \equiv 5 \mod 8$ (resp. $d \equiv 1 \mod 8$). Since $\mathbf{Z}[\sqrt{d}] = \mathbf{Z} + 2\mathcal{O}_K$, conclude via inspecting the structure of $(\mathcal{O}_K/2\mathcal{O}_K)^{\times}$ that if $d \equiv 1 \mod 8$ then a fundamental unit of \mathcal{O}_K must lie in $\mathbf{Z}[\sqrt{d}]$, and that if $d \equiv 5 \mod 8$ then the cube of any unit must lie in $\mathbf{Z}[\sqrt{d}]$. Upon embedding K into \mathbf{R} , use the unit theorem to deduce the classical structure of the solution set to Pell's equation for $d \equiv 1 \mod 4$, and relate "the" fundamental unit (or its square or cube or sixth power) to the "minimal" solution to Pell's equation.

1

- (iii) Formulate variants of Pell's equation (of the form $x^2 dy^2 = k$) whose solvability in **Z** (with $y \neq 0$) is equivalent to the fundamental unit having norm -1, or not lying in $\mathbf{Z}[\sqrt{d}]$ (for $d \equiv 1 \mod 4$), or both.
- 4. A number field K is totally real if all embeddings of K into \mathbf{C} have image contained in \mathbf{R} , and K is totally imaginary if K has no embeddings into \mathbf{R} . The field K is a CM field if it is a totally imaginary extension of a totally real subfield K_0 with $[K:K_0]=2$. (CM fields first arose in the study of abelian varieties with "complex multiplication," hence the terminology.)
- (i) Give necessary and sufficient conditions for K to be totally real (resp. totally imaginary) in terms of the structure of the \mathbf{R} -algebra $K \otimes_{\mathbf{Q}} \mathbf{R}$.
- (ii) If K is a CM field, prove that for all embeddings $\iota: K \hookrightarrow \mathbf{C}$, the action of complex conjugation preserves $\iota(K)$ and hence induces an involution on K. Prove that this involution is independent of ι , and so K admits an *intrinsic* "complex conjugation". Also conclude that the totally real subfield K_0 in the definition of the CM condition is in fact *unique* inside of K (and $\iota(K_0) = \iota(K) \cap \mathbf{R}$ for any ι).
- (iii) Conversely, let K be a number field such that for all embeddings $\iota: K \hookrightarrow \mathbf{C}$, the subfield $\iota(K)$ is stable under complex conjugation and the automorphism $x \mapsto \iota^{-1}(\overline{\iota(x)})$ of K with order ≤ 2 is independent of ι and is non-trivial. Prove that K is a CM field.
- (iv) Prove that any finite abelian extension of \mathbf{Q} is either totally real or CM, and that a compositum of CM fields is CM. Also prove that if $f \in \mathbf{Q}[X]$ is an irreducible cubic that is not split over \mathbf{R} then a splitting field for f over \mathbf{Q} is an even-degree extension of \mathbf{Q} that is neither totally real nor CM.
- 5. Let $K = \mathbf{Q}(\sqrt{3}, \sqrt{5})$ be a splitting field for $(X^2 3)(X^2 5)$ over \mathbf{Q} . Prove that $\alpha = \sqrt{3} + \sqrt{5}$ is a primitive element, and compute the discriminant of the order $\mathscr{O} = \mathbf{Z}[\alpha]$ over \mathbf{Z} in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to "write down" the conjugates of α over \mathbf{Q}) use the formula $(-1)^{n(n-1)/2} \prod_{\sigma \neq \tau} (\sigma(\alpha) \tau(\alpha))$ (with $n = [K : \mathbf{Q}] = 4$ here). Do you get the same answer by both methods? I hope so!