MATH 676. HOMEWORK 12

1. Let F be a field endowed with a discretely-valued non-archimedean place v, and let F_v be the completion. Let F_s and $F_{v,s}$ denote separable closures of F and F_v respectively. Let \overline{v} be a place on F_s lifting v. In Exercise 5 of Homework 11 you showed that there exists an embedding $F_s \to F_{v,s}$ over $F \to F_v$ that induces \overline{v} , and that this embedding is unique up to the action of the closed subgroup $D(\overline{v}|v) \subseteq \text{Gal}(F_s/F)$. Use this embedding to construct a continuous map of topological groups $\text{Gal}(F_{v,s}/F_v) \to D(\overline{v}|v)$ that is unique up to inner automorphism of $D(\overline{v}|v)$, and use Krasner's lemma to prove that this continuous map is an isomorphism of topological groups.

In particular, the map $\operatorname{Gal}(F_{v,s}/F_v) \to \operatorname{Gal}(F_s/F)$ that is canonical up to inner automorphism of $\operatorname{Gal}(F_s/F)$ is injective, and in fact is a topological isomorphism onto a closed subgroup of $\operatorname{Gal}(F_s/F)$.

2. Let $G = \operatorname{Gal}(\mathbf{Q}_p(\zeta_{p^n})/\mathbf{Q}_p)$ for a prime p and $n \ge 1$. Let G_i denote the *i*th ramification group (so G_0 is the inertia subgroup, and $G_i = 1$ for large i). For $i \ge 0$, use the definition of the higher ramification groups to prove that $G_i = \operatorname{Gal}(\mathbf{Q}_p(\zeta_{p^n})/\mathbf{Q}_p(\zeta_{p^j}))$ for $p^{j-1} \le i \le p^j - 1$ when $i < p^{n-1}$, and $G_i = 1$ for $i \ge p^{n-1}$.

3. Let K be a field. A \mathbf{Z}_p -extension of K is an abelian extension K'/K such that $\operatorname{Gal}(K'/K) \simeq \mathbf{Z}_p$ as topological groups.

(i) Let K'/K be any \mathbb{Z}_p -extension. Prove that for each $n \geq 1$ there exists a unique intermediate extension with degree p^n over K, and that this exhausts the set of *all* intermediate subfields not equal to K and K'. (Hint: \mathbb{Z} is topologically dense in \mathbb{Z}_p .)

(ii) Let K be a number field and let $K' = K(\mu_{p^{\infty}})$ be the extension generated by all p-power roots of unity. Prove that the natural map $\operatorname{Gal}(K'/K) \to \operatorname{Gal}(\mathbf{Q}(\mu_{p^{\infty}})/\mathbf{Q}) \simeq \mathbf{Z}_p^{\times}$ is an isomorphism onto a closed subgroup with finite index, and so conclude that it is an isomorphism onto an open subgroup. Deduce via the p-adic logarithm and the absence of non-trivial torsion in \mathbf{Z}_p that $\operatorname{Gal}(K'/K)$ has a unique quotient topologically isomorphic to \mathbf{Z}_p , and it corresponds to a subextension K_{∞} that is a \mathbf{Z}_p -extension of K and over which K' has finite degree. We call K_{∞} the cyclotomic \mathbf{Z}_p -extension of K.

(*iii*) Let K be a local field with residue characteristic not equal to p. Explain why its cyclotomic \mathbf{Z}_{p} -extension is unramified, and use Galois theory for finite fields to prove that this is the unique unramified \mathbf{Z}_{p} -extension of K. Use (*i*) above and Exercise 4(*ii*) below to prove that any \mathbf{Z}_{p} -extension must be unramified. (Hint: Show that the image of inertia must be tame, and contrast how Frobenius lifts act on tame inertia through conjugation as in Exercise 4(*ii*) and how conjugation behaves in the abelian group \mathbf{Z}_{p} .)

(*iv*) Let K'/K be a \mathbb{Z}_p -extension of a number field. Using the absence of non-trivial torsion in \mathbb{Z}_p , prove that if v is a real place on K then its extensions to K' are real. (In particular, if K is totally real then all embeddings of K' into \mathbb{C} are land in \mathbb{R} .) Use (*iii*) to prove that if v is a non-archimedean place of K with residue characteristic not equal to p then v is unramified in K'. Hence, K'/K is unramified away from the finite set of non-archimedean places of K with residue characteristic p.

4. Let F be a field that is complete with respect to a discretely-valued non-archimedean place v, and let F_s/F denote a separable closure. Let F_{un}/F denote the maximal unramified subextension (that is, the directed union of unramified finite subextensions), and let F_t/F denote the maximal tamely ramified subextension (that is, the directed union of tamely ramified finite subextensions). Endow these fields with their unique place extending that on F. The *tame quotient* I_t of the inertia group $I = \text{Gal}(F_s/F_{un})$ is $\text{Gal}(F_t/F_{un})$.

(i) Explain why F_{un} is discretely-valued with residue field k(v)' that is a separable closure of the residue field k(v) at v on F. Prove that it is not complete if $[k(v)_{sep} : k(v)]$ is infinite.

(ii) Prove that every finite subextension of F_t/F_{un} is totally tamely ramified, and use Kummer theory to construct a canonical isomorphism of topological groups $I_t \simeq \lim_{e \to e} \mu_e(k(v)')$ where the inverse limit is taken over $e \ge 1$ not divisible by char(k(v)) and the transition maps in the inverse limit are the surjective (e'/e)th-power maps $\mu_{e'} \to \mu_e$ for e|e'. By using the short exact sequence

$$1 \to I_{t} \to \operatorname{Gal}(F_{t}/F) \to \operatorname{Gal}(k(v)'/k(v)) \to 1$$

with I_t abelian, explain how there results a natural action of $\operatorname{Gal}(k(v)'/k(v))$ on I_t through conjugation in $\operatorname{Gal}(F_t/F)$, and describe this action in terms of the action of $\operatorname{Gal}(k(v)'/k(v))$ on roots of unity in k(v)' with order not divisible by $\operatorname{char}(k(v))$.

(*iii*) By choosing suitably compatible primitive roots of unity, construct a non-canonical isomorphism of topological groups $I_t \simeq \prod' \mathbf{Z}_{\ell}$, where \prod' means that ℓ ranges over primes not divisible by char(k(v)).

5. Let K be a global field. A modulus is a formal finite product $\mathfrak{m} = \prod \mathfrak{p}_v^{e_v}$ where the v's range over all places of K, $e_v \ge 0$ for all v with equality for all but finitely many $v, e_v \in \{0, 1\}$ for real v, and $e_v = 0$ for all complex v. We write $\mathfrak{m}|\mathfrak{m}'|$ if $e_v \le e'_v$ for all v.

For $a_v \in K_v^{\times}$, we say $a_v \equiv 1 \mod \mathfrak{m}_v$ for $v \nmid \infty$ if $a_v \in \mathscr{O}_v^{\times}$ when $e_v = 0$ and if $||a_v - 1||_v \leq q_v^{-e_v}$ when $e_v > 0$ (e.g., for $e_v = 1$ it says that a_v is a 1-unit). For $v \mid \infty$, the condition $a_v \equiv 1 \mod \mathfrak{m}_v$ means nothing if $e_v = 0$ and means $a_v > 0$ in K_v if $e_v > 0$ (in which case K_v is uniquely isomorphic to \mathbf{R}). For $a \in K^{\times}$, we say $a \equiv 1 \mod \mathfrak{m}$ if $a \equiv 1 \mod \mathfrak{m}_v$ for all places v. In particular, this forces a to be a v-adic unit for all non-archimedean v not in the support of \mathfrak{m} .

The generalized ideal class group $\operatorname{Cl}_{\mathfrak{m}}(K)$ with modulus \mathfrak{m} is the quotient group $I_K(\mathfrak{m})/P_K(\mathfrak{m})$ where $I_K(\mathfrak{m})$ is the free abelian group on the non-archimedean places v with $e_v = 0$ and $P_K(\mathfrak{m})$ is the subgroup of elements $\sum_v \operatorname{ord}_v(a)v$ for $a \in K^{\times}$ satisfying $a \equiv 1 \mod \mathfrak{m}_v$ for all v with $e_v \neq 0$. If K is a number field then in the special case $e_v = 0$ for all v we recover the usual ideal class group, and if $e_v > 0$ precisely for real v then we obtain the narrow ideal class group: the group of invertible fractional ideals of \mathcal{O}_K modulo the principal ideals that admit a generator $a \in K^{\times}$ that is positive in all $K_v \simeq \mathbf{R}$. (Such elements $a \in K^{\times}$ are called totally positive.)

(i) For $K = \mathbf{Q}$ and $\mathfrak{m} = N\mathbf{Z}$ for a nonzero integer N, construct an isomorphism $(\mathbf{Z}/N\mathbf{Z})^{\times}/\langle -1 \rangle \simeq \operatorname{Cl}_{\mathfrak{m}}(K)$ and an isomorphism $(\mathbf{Z}/N\mathbf{Z})^{\times} \simeq \operatorname{Cl}_{\mathfrak{m}\infty}(K)$.

(*ii*) Assume K is a number field. Use weak approximation to prove that the natural map $\operatorname{Cl}_{\mathfrak{m}}(K) \to \operatorname{Cl}(K)$ is surjective with finite kernel. Conclude that the cardinality $h_{\mathfrak{m}}$ of $\operatorname{Cl}_{\mathfrak{m}}(K)$ is finite for every modulus \mathfrak{m} when K is a number field.

(*iii*) Let $U_{\mathfrak{m}} \subseteq \mathbf{A}_{K}^{\times}$ be the open subgroup of (x_{v}) such that $x_{v} \equiv 1 \mod \mathfrak{m}_{v}$ for all v. Prove $U_{\mathfrak{m}} \subseteq U_{\mathfrak{m}'}$ if $\mathfrak{m}'|\mathfrak{m}$ (the converse can fail due to residue fields with order 2), and prove that if K is a global function field then the $U_{\mathfrak{m}}$'s are a base of open neighborhoods around the identity in \mathbf{A}_{K}^{\times} whereas if K is a number field then the $U_{\mathfrak{m}}$'s are a cofinal system of open subgroups but *not* a base of open neighborhoods around the identity in \mathbf{A}_{K}^{\times} .

Prove that for all global fields K, $K^{\times}U_{\mathfrak{m}}/K^{\times} \subseteq \mathbf{A}_{K}^{\times}/K^{\times}$ is a cofinal system of open subgroups in the *idele class group* $\mathbf{A}_{K}^{\times}/K^{\times}$, with infinite index if K is a global function field. (By (v) below, the index is *finite* when K is a number field, so all open subgroups of $\mathbf{A}_{K}^{\times}/K^{\times}$ have finite index when K is a number field.)

(*iv*) Let $\mathbf{A}_{K,\mathfrak{m}}^{\times} \subseteq \mathbf{A}_{K}^{\times}$ be the open subgroup of ideles (x_v) such that $x_v \equiv 1 \mod \mathfrak{m}_v$ for all v in the support of \mathfrak{m} , so $U_{\mathfrak{m}} \subseteq \mathbf{A}_{K,\mathfrak{m}}^{\times}$. Let $K_{\mathfrak{m}}^{\times} = K^{\times} \cap \mathbf{A}_{K,\mathfrak{m}}^{\times}$ inside of \mathbf{A}_{K}^{\times} . Prove that the map

$$\mathbf{A}_{K,\mathfrak{m}}^{\times}/K_{\mathfrak{m}}^{\times}U_{\mathfrak{m}} \to \mathrm{Cl}_{\mathfrak{m}}(K)$$

defined by sending (x_v) to the class of $\sum_{v \nmid \infty} \operatorname{ord}_v(x_v) v$ is well-defined and an isomorphism of groups.

(v) By §9 in the handout on absolute values, for any *finite* set of places S the image of K in $\prod_{v \in S} K_v$ is dense. Deduce that the natural map

$$\mathbf{A}_{K,\mathfrak{m}}^{\times}/K_{\mathfrak{m}}^{\times}U_{\mathfrak{m}} \to \mathbf{A}_{K}^{\times}/K^{\times}U_{\mathfrak{m}}$$

is an isomorphism. (It is hard to make the inverse explicit!) By using the inverse, we thereby obtain a natural isomorphism

$$\mathbf{A}_{K}^{\times}/K^{\times}U_{\mathfrak{m}}\simeq \operatorname{Cl}_{\mathfrak{m}}(K)$$

that is hard to make explicit. Check that the resulting surjections $\mathbf{A}_{K}^{\times} \twoheadrightarrow \operatorname{Cl}_{\mathfrak{m}}(K)$ (that are hard to make explicit) are compatible with the natural maps $\operatorname{Cl}_{\mathfrak{m}'}(K) \twoheadrightarrow \operatorname{Cl}_{\mathfrak{m}}(K)$ when $\mathfrak{m}|\mathfrak{m}'$. In Math 776, this will be the key to translating the classical "ideal class" formulation of class field theory into the idelic version.