
Math 676. Homework 10

1. Let K be a global function field; that is, a finitely generated extension of some Fp with transcendence
degree 1. Let the finite field k denote the algebraic closure of Fp in K. (This is the constant field of K.)
Since k is perfect, there exists a separating transcendence basis: an element x ∈ K× transcendental over k
such that K is finite separable over k(x).

(i) Prove that the set MK of topological equivalence classes of non-trivial absolute values on K is countable,
and that for each such equivalence class v the associated valuation ring Av is a discrete valuation ring with
fraction field K and residue field κ(v) that is finite. (Hint: Use an extension structure K/k(x) to reduce to
the case K = k(x).) For each v, we write | · |v to denote the unique representative for v whose value group is
qZ
v , where qv = #κ(v). Prove that for each f ∈ K× we have |f |v = 1 for all but finitely many v ∈ MK , and

prove that |f |v = 1 for all v ∈ MK if and only if f ∈ k×; in other words, just like for number fields, |f |v = 1
for all v if and only if f is a root of unity! (Hint: study a minimal polynomial for f over k(x))

(ii) Prove the product formula:
∏

v |f |v = 1 for all f ∈ K×. (Hint: Use an extension structure K/k(x) to
reduce to the case K = k(x), imitating the method of reduction to Q in the number field case.)

(iii) Let S be a finite non-empty set in MK . The Riemann-Roch theorem over k, applied to K/k, ensures
that there exists a separating transcendence basis x for K/k such that K/k(x) is not only finite and separable
but even has S as exactly the set of places over the infinite place on k(x).

The ring OK,S of S-integers in K is the set of f ∈ K such that f ∈ Av for all v 6∈ S. Use an x as above
to prove that OK,S is a Dedekind domain finitely generated as an k-algebra, and that its maximal ideals are
in one-to-one correspondence with the places on K outside of S. Moreover, if a maximal ideal m of OK,S

corresponds to a place v 6∈ S, then prove that the algebraic localization (OK,S)m inside of K is equal to the
valuation ring Av.

(iv) The adele ring AK ⊆
∏

v Kv is the directed union of subrings AK,S =
∏

v∈S Kv ×
∏

v 6∈S Ov. Using
the evident locally compact Hausdorff topological ring structure on the AK,S ’s, explain how to give AK a
structure of locally compact Hausdorff topological ring. Also prove that in general A×

K with its subspace
topology is not open in AK and is not a topological group. (hint: For each non-archimedean place v, let
xv ∈ AK be the adele with v-coordinate πv and v′-coordinate 1 for all v′ 6= v. Prove xv ∈ A×

K with {xv}
converging to 1 in AK (for any choice of enumeration of MK) but {x−1

v } has no limit in AK .)

2. Let K ′/K be a finite separable extension of global fields. (Separability can be dropped, but this requires
more commutative algebra than we have developed.)

(i) Define a natural continuous map AK → AK′ over K → K ′ that is a homeomorphism onto a closed
subring. (Hint: Study places of K ′ over a fixed place of K.)

(ii) Prove that the natural map of K ′-algebras K ′ ⊗K AK → AK′ is a topological isomorphism, where
the left side is given the product topology upon using any K-basis of K ′. (Why does this latter topology
not depend on the choice of K-basis of K ′?)

(iii) Use (ii) to prove that K ′ is discrete in AK′ with compact quotient for any global field K ′ by reduction
to the special cases K ′ = Q and K ′ = k(x) for a finite field k.

(iv) If R is a topological ring, show that giving R× the subspace topology from R×R via the identification
x 7→ (x, x−1) onto the subset {(x, y) ∈ R2 |xy = 1} gives R× a structure of topological group that is functorial
in R. Applying this with R = AK to give A×

K a structure of topological group (this is the only topology
ever put on A×

K), use discreteness of K in AK to infer discreteness of K× in A×
K and use openness of AK,S

in AK to infer openness of A×
K,S in A×

K . Show that each subset A×
K,S ⊆ A×

K is given a product topology,
and use this to describe a base of opens around the identity in A×

K . The topological group A×
K is the idele

group of K.

3. The purpose of this problem is to extend Galois theory to the case of infinite extensions. Recall that
if K/k is an algebraic extension of fields then it is separable if all elements of K are separable over k, or
equivalently if all intermediate fields of finite degree over k are separable over k, and it is Galois if every
irreducible f ∈ k[T ] with a root in K (so f is separable) splits over K; equivalently, every finite subextension
of K is contained in a Galois subextension. If K/k is Galois, we define Gal(K/k) to be Aut(K/k).
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(i) Let ks/k be a separable closure. Using the uniqueness of separable closure up to (non-unique) auto-
morphism, prove that K/k is Galois if and only if K/k is separable and every k-embedding K ↪→ ks has the
same image.

(ii) Assume that K/k is Galois, and let K ′ be an intermediate extension (so K ′/k is separable). Prove
that K/K ′ is Galois and that K ′ is the fixed field of Gal(K/K ′) acting on K (hint: use (i) and uniqueness of
separable closures up to isomorphism), and prove that K ′/k is Galois if and only if Gal(K/K ′) is a normal
subgroup of Gal(K/k), in which case the natural map of abstract groups Gal(K/k)/Gal(K/K ′) → Gal(K ′/k)
is an isomorphism.

(iii) Assume K/k is Galois, and let Σ denote the set of subgroups of Gal(K/k) that arise in the form
Gal(K/K ′) for intermediate extensions K ′. By (ii), K ′ 7→ Gal(K/K ′) is a bijection from the set of inter-
mediate extensions to the set Σ, with K-Galois subextensions corresponding to normal subgroups in Σ, and
that H 7→ KH is the inverse bijection.

Prove as follows that Σ is not generally the set of all subgroups of Gal(K/k). Let k be finite of size q,
with K an algebraic closure and kn the unique subfield of degree n over k. Prove that the infinite cyclic
group 〈φ〉 ⊆ Gal(K/k) generated by the qth-power map φ has fixed field k, yet this infinite cyclic group is
not all of Gal(K/k): there exists a unique k-automorphism σ of K such that σ|kn satisfies σ(x) = xqen with
en = 1! + 2! + · · ·+ (n− 1)! for all n ≥ 1, and σ 6∈ 〈φ〉.

(iv) We define the Krull topology on G = Gal(K/k) as follows: a base of opens around σ is given by the
subsets UF (σ) = {g ∈ G |σ|F = g|F } for subextensions F of finite degree over k. (That is, an element is
“close” to σ if it agrees with σ on a large finite set of elements of K.) Prove that the subsets UF (σ) satisfy
the axioms to be a base of opens for a topology on G, called the Krull topology, and that this induces exactly
the subspace topology on G via the inclusion G ⊆

∏
F Gal(F/k) as F ranges over the k-finite subextensions

that are Galois over k and each finite group Gal(F/k) is given the discrete topology. (For example, if [K : k]
is finite then this gives the discrete topology to Gal(K/k).) Also prove that if k1 → k2 is a map of fields and
K1 → K2 is a map of Galois extensions over k1 → k2 then the induced map Gal(K2/k2) → Gal(K1/k1) is
continuous; in particular, the Krull topology is functorial.

(v) Prove that G = Gal(K/k) with its Krull topology is a topological group, and prove that G is closed in∏
F Gal(F/k). (hint: Prove G is the set of tuples (gF )F satisfying the collection of conditions gF1 |F2 = gF2 for

all pairs F1 and F2 with F2 ⊆ F1.) Conclude that the Krull topology makes G compact and Hausdorff, and
use this to prove that if K ′ is an intermediate extension then the natural injection Gal(K/K ′) → Gal(K/k)
is a homeomorphism onto a closed subgroup and for K ′/k Galois the natural map Gal(K/k)/Gal(K/K ′) →
Gal(K ′/k) is an isomorphism of topological groups (using the quotient topology on the source).

(vi) Prove that the closure of a subgroup H of a topological group G is also a subgroup (hint: for h ∈ H,
prove h ·H = H = H ·h, so H ·h ⊆ H and h ·H ⊆ H for all h ∈ H), and that if H ⊆ Gal(K/k) is a subgroup
then Gal(K/KH) is the closure of H with respect to the Krull topology. (hint: Use finite Galois theory to
show that H surjects onto Gal(K ′/KH) for all subextensions K ′ that are finite Galois over KH !) Deduce
that the set Σ in (iii) is exactly the set of closed subgroups with respect to the Krull topology, so the Galois
correspondence is rescued if we restrict attention to closed subgroups of G.


