## Math 676. Homework 1

1. Prove that $\mathbf{Z}[\sqrt{-1}]$ and $\mathbf{Z}[\sqrt{-2}]$ are Euclidean domains, and likewise for $\mathbf{Z}[\sqrt{2}]$ (so these rings are PID's, and hence they are UFD's). In these examples, use the "absolute norm" $\mathrm{N}(x)=|x \bar{x}|$ as the measure of size for the remainder in the division algorithm.

Also, explain why $\mathbf{Z}[\sqrt{-d}]$ has unit group $\{ \pm 1\}$ for squarefree $d \in \mathbf{Z}$ with $d>1$. (This ring is not always the ring of integers of $\mathbf{Q}(\sqrt{-d})$, but this is not relevant to the determination of its unit group.)
2. (i) Prove that $\mathbf{Q}\left(\zeta_{n}\right)$ and $\mathbf{Q}\left(\zeta_{m}\right)$ are isomorphic as abstract fields if and only if $n=m, n=2 m$ with $m$ odd, or $m=2 n$ with $n$ odd. (Hint: The problem is equivalent to a literal equality as subfields of a suitable $\mathbf{Q}\left(\zeta_{N}\right)$, and equality of subfields can be studied via Galois theory.)
(ii) Find all roots of unity in $\mathbf{Q}\left(\zeta_{n}\right)$, and prove that if $K$ is a number field then $K$ contains only finitely many roots of unity; give a crude bound in terms of $[K: \mathbf{Q}]$.
3. Let $A$ be a domain.
(i) Two elements $a, a^{\prime} \in A$ are associates if one of them is a unit multiple of the other (in which case each is a unit multiple of the other). Show that $a$ and $a^{\prime}$ are associates if and only if the principal ideals $a A$ and $a^{\prime} A$ coincide.
(ii) Prove that $A$ is a UFD if and only if every nonzero principal proper ideal is a product of finitely many principal prime ideals such that the set of such primes and their multiplicities is unique up to reordering of the labels.
(iii) By Exercise 1, we know that $\mathbf{Z}[\sqrt{2}]$ is a UFD. Use your knowledge concerning Pell's equation to find all units in this ring, and then find a nonzero nonunit $a \in \mathbf{Z}[\sqrt{2}]$ that cannot be written in the form $\pm \pi_{1}^{e_{1}} \cdots \pi_{r}^{e_{r}}$ where the $\pi_{i}$ are irreducible and pairwise non-associate. Compare with (ii).
(iv) If $A$ is a UFD, prove that $A[X]$ is a UFD. For a field $k$, prove that $k[X, Y]$ is a UFD but not a PID. 4. Let $k$ be a field.
(i) Assume that $\operatorname{char}(k) \neq 2$, and let $K / k(X)$ be a quadratic extension (necessarily separable, and even Galois). Show that $K$ is the splitting field of an irreducible polynomial $T^{2}-f \in k(X)[T]$ with $f \in k[X]$ a nonzero nonsquare (possibly constant!). In terms of the irreducible factorization of $f$, compute the integral closure of $k[X]$ in $K$.
(ii) Assume that $k$ has characteristic 2. Let $K / k(X)$ be a separable quadratic extension. By Artin-Schreier theory, we know that $K$ is the splitting field of an irreducible polynomial of the form $T^{2}-T-f \in k(X)[T]$ with a nonzero $f \in k(X)$ that is unique up to replacing $f$ with $f+\left(g^{2}-g\right)$ for $g \in k(X)$. Find some obstructions to the possibility of being able to find $f \in k[X]$, and give an explicit such example for $k=\mathbf{F}_{2}$.
5. Let $K$ be a number field, and let $\mathbf{C}$ denote an algebraic closure of $\mathbf{R}$ (so $[\mathbf{C}: \mathbf{R}]=2$ and $\mathbf{C}$ is unique up to non-canonical isomorphism). We write $z \mapsto \bar{z}$ to denote the unique non-trivial automorphism of $\mathbf{C}$ over $\mathbf{R}$, and this is called complex conjugation.

Since $\mathbf{C}$ is algebraically closed, there are $[K: \mathbf{Q}]$ distinct embeddings $h: K \hookrightarrow \mathbf{C}$. For each such $h$ we write $\bar{h}$ to denote the composite of $h$ with complex conjugation, so $h(K) \subseteq \mathbf{R}$ if and only if $h=\bar{h}$. We say $h$ is real if $h(K) \subseteq \mathbf{R}$, and otherwise $h$ is non-real (so the non-real embeddings come in conjugate pairs). Let $r_{1}$ denote the number of real embeddings and let $2 r_{2}$ be the number of non-real embeddings, so $[K: \mathbf{Q}]=r_{1}+2 r_{2}$.
(i) Using the primitive element theorem for $K / \mathbf{Q}$, construct an isomorphism of $\mathbf{R}$-algebras $\mathbf{R} \otimes_{\mathbf{Q}} K \simeq$ $\mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}$ (using ring-theoretic product). Can you describe $\left(\mathbf{R} \otimes_{\mathbf{Q}} K\right)^{\times}$?
(ii) Find an intrinsic meaning (in terms of $K$ ) for the indexing set (of size $r_{1}+r_{2}$ ) that labels the factors in the target of the isomorphism in $(i)$.

