
Math 676. Tame ramification and composite fields

1. Review of tameness

Let F be the fraction field of a complete discrete valuation ring A with residue field k. Recall that a finite
separable extension F ′/F (with valuation ring A′ and residue field k′ that are necessarily finite free modules
over A and k respectively) is tamely ramified if k′/k is separable and char(k) - e(F ′|F ). If moreover k′ = k
then we say that F ′/F is totally tamely ramified; that is, F ′/F is totally tamely ramified if e(F ′|F ) = [F ′ : F ]
and char(k) - e(F ′|F ).

If π ∈ A is a uniformizer and e > 0 is a positive integer not divisible by char(F ) then Xe − π ∈ A[X]
is separable and moreover irreducible over F (by Gauss’ Lemma and Eisenstein’s criterion). Thus, F ′ =
F [X]/(Xe − π) is a field, typically denoted F (π1/e) (with π1/e denoting the residue class of X), and F ′/F
is separable of degree e with π1/e in the valuation ring contributing a factor of e = [F ′ : F ] in e(F ′|F ). This
forces F ′/F to be totally ramified with π1/e as a uniformizer, so via π1/e-adic expansions we see that the
valuation ring of F ′ is exactly A′ = A[π1/e] = A[X]/(Xe − π). This is a special case of the proof in class
that adjoining the root to any Eisenstein polynomial gives a uniformizer for a totally ramified extension.

If char(k) - e then F (π1/e) is a totally tamely ramified extension, and we have seen in an earlier lecture
that every totally tamely ramified extension of F arises by this construction for a suitable π. That is,
whereas we proved in general that every totally ramified extension of F is obtained by adjoining a root to
an Eisenstein polynomial over A, in the totally tame case we saw (via Hensel’s Lemma) that this Eisenstein
polynomial could be chosen to be of an especially simple form, namely Xe−π for some choice of uniformizer
π in A.

Beware that for a general tame extension F ′/F (with valuation ring A′ and residue k′, but possibly
[k′ : k] > 1), it is not usually the case that there is a uniformizer of F ′ whose e(F ′|F )th power lies in F .
The best we can say is that if Fu/F is the maximal unramified subextension then this has residue field k′

(here we use that k′/k is separable!) and F ′/Fu is totally tamely ramified (why?). Hence, F ′ = Fu(π1/e
u )

with e = e(F ′|Fu) = e(F ′|Fu)e(Fu|F ) = e(F ′|F ) and πu ∈ Fu some uniformizer, but usually πu cannot be
found inside of F . In Homework 11 there is given an explicit example of such impossibility for F = Q5 and
[F ′ : F ] = 4 with e(F ′|F ) = 2.

To summarize, there is a reasonably “concrete” description of tamely ramified extensions F ′ of F , espe-
cially when F is a local field (in which case the maximal unramified subextension Fu in F ′/F is a cyclotomic
extension F (ζqf−1) with q = #k and f = f(F ′|F ) = [k′ : k]). We would like to show that the property of
tameness is reasonably well-behaved in the sense that it is preserved under formation of composite fields.

Due to lack of technical typing skills by the author, there are no field diagrams in this handout. The reader
is strongly encouraged to draw field diagrams in order to more easily understand some of the arguments
with various field extensions in what follows.

2. Composite fields

Let F ′/F be a finite extension that is a compositum of two subextensions F ′
1 and F ′

2 over F . We shall
express this condition by writing F ′ = F ′

1F
′
2, but this is slightly abusive notation because one must always

remember that the concept of a composite of two finite extensions over a base field is generally not intrinsic
to the abstract fields unless there is a condition of linear disjointness (which is to say that F ′

1⊗F F ′
2 is local,

or equivalently is a field in the case that at least one of the F ′
i ’s is separable over F ). That is, the notation

F ′
1F

′
2 only has meaning insofar as we have given ourselves a pair of F -embeddings of the F ′

i ’s into a common
extension of F .

Let A′, A′
1, and A′

2 be the respective valuation rings of F ′, F ′
1, and F ′

2. Although F ′ is a quotient of
F ′

1 ⊗F F ′
2 by elementary field theory, it is very rare that A′ is a quotient of A′

1 ⊗A A′
2. In general all one can

say is that the A-subalgebra of A′ generated by A′
1 and A′

2 is an order in A′ (why is it at least an order?).
For this reason, it is difficult to see “by hand” how properties of the A′

i’s over A translate into properties
of A′ over A, or how properties of A′

1 over A translate into properties of A′ over A′
2. To make progress we
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have to make fuller use of the structure theory of the fraction fields (such as multiplicativity properties of
e’s and f ’s, and so forth).

We have seen in class that unramifiedness is a rather well-behaved condition in the sense that if F ′
1/F

is unramified then F ′/F ′
2 is unramified, and that consequently if F ′

1 and F ′
2 are unramified over F then

F ′ = F ′
1F

′
2 is unramified over F . Our goal is to show the same holds for the property of tameness. The main

result of this handout is:

Theorem 2.1. Let F ′/F be a compositum of subfields F ′
1 and F ′

2 of finite degree over F , with F ′
1/F tamely

ramified. The extension F ′/F ′
2 is tamely ramified. In particular, if F ′

1 and F ′
2 are both tame over F then

F ′/F is tamely ramified.

The final part of the theorem follows from the rest because of the trivial fact (from the definitions) that
if K ′′/K ′/K is a tower of finite extensions of the fraction field K of a complete discrete valuation ring then
K ′′/K is tame if and only if K ′′/K ′ and K ′/K are each tame. Thus the real problem is to show that F ′/F ′

2

is tame when F ′
1/F is tame.

Example 2.2. Beware that the theorem becomes false if we try to replace “tame” with “totally tame” or even
“totally ramified”. Indeed, it can often happen that each F ′

i/F is totally ramified (both tame, or even both
wild) yet F ′/F ′

1 and F ′/F ′
2 are each unramified! (This does not contradict Theorem 2.1 because unramified

extensions are obviously tamely ramified.)
For counterexamples in the tame and wild cases, we consider F = Qp and non-isomorphic ramified

quadratic extensions F ′
1 and F ′

2 of Qp. Such a pair of fields are linearly disjoint over F , so F ′ = F ′
1 ⊗F F ′

2 is
a quartic extension. For odd p, there are exactly two quadratic ramified extensions, namely F ′

1 = Qp(
√

p)
and F ′

2 = Qp(
√

up) for u ∈ Z×p with non-square reduction u ∈ F×
p . Hence, F = Qp(

√
p,
√

u). The residue
field k′ of F ′ contains a square root of the non-square u in Fp, so k′ contains a quadratic extension of Fp.
Hence, 2|f(F ′|F ). However, the ramified quadratic subfields F ′

i contribute a factor 2 = e(F ′
i |F ) in e(F ′|F ).

Since e(F ′|F )f(F ′|F ) = [F ′ : F ] = 4, we conclude e(F ′|F ) = 2 and f(F ′|F ) = 2. Since e(F ′
i |F ) = 2 and

e(F ′|F ′
i )e(F

′
i |F ) = e(F ′|F ) = 2, this forces e(F ′|F ′

i ) = 1; similarly, f(F ′
i |F ) = 1 forces f(F ′|F ′

i ) = 2. To
summarize, for odd p the totally tame extensions F ′

1 and F ′
2 have compositum F ′ that is quadratic unramified

over each F ′
i and in particular F ′/F is not totally ramified even though each F ′

i/F is totally ramified.
Taking p = 2, let F ′

1 = Q2(
√

2) and F ′
2 = Q2(

√
−6), so F = Q2(

√
2,
√
−3). Since (−1 +

√
−3)/2 = ζ3 is

a primitive cube root of unity, the residue field of F must contain F4. Arguing as above with the e’s and
f ’s, we again conclude that F/F ′

i is an unramified quadratic extension for each i even though each F ′
i/F is

a totally (wildly) ramified extension.
The moral is that e(F ′|F ′

2) cannot be easily predicted from knowledge of e(F ′
1|F ) and e(F ′

2|F ), and even
if F ′

1/F is wildly ramified it can happen that F ′/F ′
2 is not wildly ramified and in fact F ′/F ′

2 may have no
non-trivial ramification whatsoever (that is, F ′/F ′

2 can be unramified). Roughly speaking, F ′
2/F can “eat

up” all of the ramification in F ′/F that comes from F ′
1/F . The impossibility of formally computing e(F ′|F ′

2)
in terms of e’s and f ’s for F ′

1/F and F ′
2/F is what makes the proof of Theorem 2.1 require a bit of thought.

3. Proof of Theorem 2.1

We first wish to reduce to the case when F ′
1/F is totally tamely ramified (so that it admits a simple

description as extraction of an eth root of some uniformizer of F for some e not divisible by char(k)). Since
F ′

1/F is tame, if we let L ⊆ F ′
1 be the maximal unramified subextension over F then separability for k′1/k

implies that L has residue field k′1 and hence F ′
1/L is totally tamely ramified. If we let L′2 denote the

composite field LF ′
2 over F then L′2 = LF ′

2 is unramified over F ′
2 because L is unramified over F (this is the

“unramified” variant on Theorem 2.1 that was proved in class). Hence, by viewing the extension F ′/F ′
2 as

the tower F ′/L′2/F ′
2 with L′2/F ′

2 unramified we see that F ′/F ′
2 is tame if and only if F ′/L′2 is tame. Since

F ′ = F ′
1F

′
2 = F ′

1LF ′
2 = F ′

1L
′
2 we may therefore rename L′2 as F ′

2 and L as F without loss of generality so as
to reduce to the case when F ′

1/F is totally tamely ramified.
With F ′

1/F now totally tamely ramified, we may write F ′
1 = F (α) with αe = π for some uniformizer

π ∈ F and some e = e(F ′
1|F ) not divisible by char(k). Hence, F ′ = F ′

1F
′
2 = F ′

2(α) with αe = π a nonzero
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element in the maximal ideal of A′
2 (even in the maximal ideal of A). Note that π ∈ A′

2 can fail to be a
uniformizer (when F ′

2/F is not unramified), and this is why it is hard to detect how much ramification is
introduced on top of F ′

2 in F ′ by adjoining an eth root of π to F ′
2. Beware also that the irreducible polynomial

Xe − π ∈ F [X] may be reducible in F ′
2[X] with factors of varying degrees, in which case [F ′ : F ′

2] cannot be
predicted without further information concerning the specific irreducible factor of Xe−π in F ′

2[X] having α
is a root. That is, if ordF ′

2
(π) > 1 then Xe − π ∈ F ′

2[X] may be reducible and hence the notation F ′
2(π

1/e)
is not well-defined and so can be very dangerous!

It now suffices to prove the following general claim concerning tameness:

Lemma 3.1. Let K be the fraction field of a complete discrete valuation ring R with maximal ideal m and
residue field k = R/m. Choose c ∈ m − {0}, and let K ′/K be a finite extension satisfying K ′ = K(α) with
αe = c for a positive integer e not divisible by char(k). Any such extension K ′/K is tamely ramified with
e(K ′|K) = e/ gcd(e, ordR(c)).

Remark 3.2. The formula for e(K ′|K) forces e(K ′|K) to not be divisible by the residue characteristic (due
to the assumptions on e), but we emphasize (for those who wish to allow possibly imperfect residue fields
to be considered in the general theory) that there is an auxiliary assertion in the lemma, namely that the
residue field extension k′/k is separable. Do not forget to observe that all assertions of tameness throughout
the proof must keep track of this property as well.

Before we prove the lemma, we note that e(K ′|K) can fail to equal e, and in fact e(K ′|K) may even equal
1 (that is, K ′/K may be unramified). This is exactly the source of possibilities such as in Example 2.2.
What is going on is that we have not specified ordR(c), and if we do not know this value then we cannot rule
out the possibility that c = πeu for a uniformizer π ∈ R and a unit u ∈ R×. In such cases K ′ = K(u′) with
u′ = α/π satisfying u′

e = u ∈ R×, and such extensions (with e not divisible by the residue characteristic)
are necessarily unramified!

To see why unramifiedness is automatic in such cases, first note that Xe−u ∈ R[X] has separable reduction
(here we use the fact that e is not divisible by the residue characteristic and that u has nonzero reduction),
and so the unique irreducible monic factor h ∈ R[X] of the K-separable Xe−u with h(u′) = 0 has separable
reduction h in k[X]. Thus, the order R′ = R[X]/(h) in K ′ ' K[X]/(h) satisfies disc(R′/R) = disc(h)R = R,
and hence R′ is finite étale over R. This in turn forces R′ to be a discrete valuation ring (by the handout on
finite étale algebras) that is unramified over R; explicitly, by the definition of R′ we see R′/πR′ = k[X]/(h) =
k′ is a field, so πR′ is visibly the maximal ideal.

Remark 3.3. The preceding discussion shows that extracting an eth root of a unit gives an unramified
extension whenever e is not divisible by the residue characteristic. The example of the unramified quadratic
extension Q2(

√
−3)/Q2 shows that in some cases one can get unramified extensions by adjoining an eth root

of a unit even when e is divisible by the residue characteristic, but this is very rare. More typical is that one
gets ramification, such as in the extensions Q2(

√
−1)/Q2 and Q2(

√
3)/Q2. Explicitly, the identities

(1 +
√
−1)2 = 2

√
−1, (1 +

√
3)2 = 2(2 +

√
3)

in the valuation rings of Q2(
√
−1) and Q2(

√
3) shows that 2 is a unit multiple of a square in each case

and hence the nonzero nonunit 2 cannot be a uniformizer in these valuation rings. (Where does this sort of
calculation break down if we try it for Q2(

√
−3) ' Q2(

√
5)?)

Now we turn to the proof of Lemma 3.1. The idea of the proof is to make a series of successive modifications
to a concrete description of K ′/K (or some auxiliary fields obtained via the harmless operation of forming
composites against the unramified extensions of the base field) to eventually get to the case where we are
extracting an e′th root of a uniformizer for e′ = e/ gcd(e, ordR(c)), an extension that is totally tame by
inspection. (Since there will be interemediate reduction steps that require replacing the base field with an
unramified extension, we will lose touch with the initial residue field and so we certainly will not be able to
prove the generally false statement that K ′/K is totally ramified.)

Proof. Since c is a nonzero nonunit in R, we may write c = πiu for a unique integer i > 0 and u ∈ R×;
clearly i = ordR(c). The factor u is a bit of an annoyance when studying an eth root of c, so we want to get
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rid of it. Let L = K(u′) with u′
e = u and let L′ be a compositum of L and K ′ over K. The discussion above

Remark 3.3 shows that L/K is unramified, so L′/K ′ is unramified. Hence, K ′/K is tame if and only if L′/K
is tame. Consideration of the tower L′/L/K with L/K unramified shows that L′/K is tame if and only if
L′/L is tame. Since L′ = LK ′ = L(α) with αe = c = πiu = πiu′

e for a unit u′ in L and a uniformizer π of
L (as L/K is unramified!), we may replace K ′/K with L′/L and replace α and c with α/u′ and c/u = c/u′

e

respectively to get to the case when c = πi for some i > 0 and some uniformizer π in the base field. Since
the cyclotomic extension K(ζe)/K is unramified (as e is not divisible by the residue characteristic!), we may
pass through the same reduction steps to get to the case when K contains a primitive eth root of unity.

To sumarize, we have reduced to the case K ′ = K(α) with αe = πi for some i > 0 and some uniformizer
π of K, and with K containing a primitive eth root of unity. It may happen that d = gcd(e, i) exceeds 1.
In general, we write e = de′ and i = di′ with gcd(e′, i′) = 1 and (αe′

)d = (πi′)d, so αe′
= ζπi′ with ζd = 1.

Note that e′ is not divisible by char(k) since e′|e. Since d|e and K contains a primitive eth root of unity,
the dth root of unity ζ in K admits an (e/d)th root in K. Since e/d = e′, we can write ζ = ζ ′

e′
in K× for

some eth root of unity ζ ′. Thus, K ′ = K(α) = K(α/ζ ′) with (α/ζ ′)e′
= πi′ . We may therefore replace α

with α/ζ ′ and e and i with e′ and i′ respectively (recall that e′ is not divisible by char(k), so this step does
not ruin any basic assumptions on the exponent of root extraction). We have brought ourselves to the case
αe = πi with gcd(e, i) = 1.

Since gcd(e, i) = 1, there exist a, b ∈ Z such that ae + bi = 1. Thus,

(αbπa)e = αebπae = αebπ1−bi = π(αe/πi)b = π.

The extension K ′ = K(α) generated by a root of Xe − πi ∈ R[X] has degree at most e, yet it contains an
eth root α′ = αb/πa of a uniformizer π. The subfield K(α′) is totally tamely ramified of degree e over K, so
degree considerations over K force the inclusion K(α′) ⊆ K ′ to be an equality and thereby gives the result
that K ′ = K(α′) is a totally tamely ramified extension of K with ramification degree e. In particular, K ′/K
is tame with e(K ′|K) = e. Unwinding the reduction steps and returning to the notation at the start, we
have shown that the original extension is tamely ramified with ramification degree e/ gcd(e, ordR(c)) dividing
e. �


