MATH 676. QUADRATIC CHARACTERS ASSOCIATED TO QUADRATIC FIELDS

The aim of this handout is to describe the quadratic Dirichlet character naturally associated to a quadratic field, and to express it in terms of quadratic residue symbols.

1. LINK WITH CYCLOTOMIC FIELDS

Let K be a quadratic field with discriminant $D \in \mathbf{Z}$, so $D \equiv 0, 1 \mod 4$ and $K = \mathbf{Q}(\sqrt{D}) = \mathbf{Q}(\sqrt{d})$ for a unique squarefree $d \neq 1$ with D = 4d for even D (with $d \equiv 2, 3 \mod 4$) and D = d for odd D (with $d \equiv 1 \mod 4$).

Lemma 1.1. The field K embeds as a subfield of $\mathbf{Q}(\zeta_D)$.

Since D may be negative, we make the convention that $\mathbf{Q}(\zeta_n)$ means $\mathbf{Q}(\zeta_{|n|})$ for any nonzero integer n. For any n < 0 we may write $X^n - 1 = -X^{|n|}(X^{-n} - 1)$, so we have $\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q}) \simeq (\mathbf{Z}/n\mathbf{Z})^{\times}$ for any nonzero $n \in \mathbf{Z}$.

Proof. First assume D is odd, so $D = d \equiv 1 \mod 4$. Since $d \neq 1$, we have $d \neq \pm 1$ and hence $d = \pm \prod p_i$ for a non-empty finite set of pairwise distinct odd primes p_i . For each i let $q_i = (-1|p_i)p_i$, so $q_i \equiv 1 \mod 4$ and $D = \pm \prod q_i$. Since $D, q_i \equiv 1 \mod 4$, there is no sign discrepancy: $D = \prod q_i$. Clearly $\mathbf{Q}(\zeta_D)$ contains $\mathbf{Q}(\zeta_{p_i})$, and by Exercise 1 in Homework 5 this latter cyclotomic field contains $\mathbf{Q}(\sqrt{q_i})$. Hence, each q_i is a square in $\mathbf{Q}(\zeta_D)$, and so $D = \prod q_i$ is also a square in $\mathbf{Q}(\zeta_D)$. That is, $K = \mathbf{Q}(\sqrt{D})$ embeds into $\mathbf{Q}(\zeta_D)$.

Now assume D is even, so D = 4d with a squarefree $d \equiv 2, 3 \mod 4$. The case d = -1 is trivial (as $\mathbf{Q}(\sqrt{-1}) = \mathbf{Q}(\zeta_4)$), so we may assume d is a non-unit. Let $d = \pm 2^a \cdot \prod p_i$ be the prime factorization with odd positive primes p_i and a = 0, 1. Let $q_i = (-1|p_i)p_i$ as above, so $d = \pm 2^a \cdot \prod q_i$. The field $\mathbf{Q}(\zeta_D)$ contains $\mathbf{Q}(\zeta_{p_i})$, and hence (as above) q_i is a square in $\mathbf{Q}(\zeta_D)$. Also, since 4|D we see that $\mathbf{Q}(\zeta_4) = \mathbf{Q}(\sqrt{-1})$ is contained in $\mathbf{Q}(\zeta_D)$, so -1 is a square in $\mathbf{Q}(\zeta_D)$. Hence, $\pm \prod q_i$ is a square in $\mathbf{Q}(\zeta_D)$ for both signs. This settles the case of odd d, and if d is even then 8|D and hence $\mathbf{Q}(\zeta_D)$ contains $\mathbf{Q}(\zeta_8)$, so 2 is also a square in $\mathbf{Q}(\zeta_D)$ in such cases. Thus, d is a square in $\mathbf{Q}(\zeta_D)$ for even d as well.

There is a natural isomorphism $\operatorname{Gal}(\mathbf{Q}(\zeta_D)/\mathbf{Q}) \simeq (\mathbf{Z}/D\mathbf{Z})^{\times}$ given by $\sigma \mapsto n_{\sigma}$ where $\sigma(\zeta) = \zeta^{n_{\sigma}}$ for all elements ζ in the cyclic group of *D*th roots of unity in $\mathbf{Q}(\zeta_D)$. (Here we use that the automorphism group of a cyclic group of order *D* is *canonically* identified with $(\mathbf{Z}/D\mathbf{Z})^{\times}$ for any positive integer *D*.) By the preceding lemma, there is a natural surjection

$$\chi_K : (\mathbf{Z}/D\mathbf{Z})^{\times} = \operatorname{Gal}(\mathbf{Q}(\zeta_D)/\mathbf{Q}) \twoheadrightarrow \operatorname{Gal}(K/\mathbf{Q}) = \langle \pm 1 \rangle,$$

where the final equality is the unique isomorphism between cyclic groups of order 2. The problem we want to solve is this: explicitly describe χ_K .

For any nonzero integer n relatively prime to D, we shall abuse notation and write $\chi_K(n)$ to denote $\chi_K(n \mod D)$. This is a multiplicative function on the set of nonzero integers relatively prime to D. In particular, to "know" χ_K it suffices to determine $\chi_K(p)$ for positive primes $p \nmid D$ and to determine $\chi_K(-1)$. We first address $\chi_K(-1)$. For any integer n satisfying |n| > 2, the field $\mathbf{Q}(\zeta_n)$ is a CM field and under the isomorphism

$$\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q}) \simeq (\mathbf{Z}/n\mathbf{Z})^{\times}$$

the intrinsic complex conjugation goes over to the element $-1 \mod n$ because $\overline{\zeta} = \zeta^{-1}$ for any root of unity ζ in **C**. Thus, by the definition of χ_K we see that $\chi_K(-1) = 1$ if and only if complex conjugation on $\mathbf{Q}(\zeta_D)$ has trivial restriction on the quadratic subfield K, which is to say that K is a real quadratic field. In other words, $\chi_K(-1) = 1$ if D > 0 and $\chi_K(-1) = -1$ if D < 0. This proves:

Lemma 1.2. For any quadratic field K with discriminant D, $\chi_K(-1) = \operatorname{sign}(D)$.

2. Frobenius elements

Now we turn our attention to the computation of $\chi_K(p)$ for positive primes $p \nmid D$. The computation of $\chi_K(-1)$ rested on identifying the Galois automorphism $-1 \mod D$ on $\mathbf{Q}(\zeta_D)$ with complex conjugation, and the fact that this restricts to complex conjugation on quadratic subfields. We require an analogous interpretation of $p \mod D$ as a Galois automorphism of $\mathbf{Q}(\zeta_D)$ in a manner that is well-behaved with restriction to quadratic subfields. The interpretation will rest on Frobenius elements.

Since $p \nmid D$, $p\mathbf{Z}$ is unramified in $\mathbf{Z}[\zeta_D]$. Thus, for any \mathfrak{p} over p in $\mathbf{Z}[\zeta_D]$ we get (by Exercise 5(v) in Homework 11) a canonical Frobenius element $\phi_{\mathfrak{p}|p\mathbf{Z}}$ in $\operatorname{Gal}(\mathbf{Q}(\zeta_D)/\mathbf{Q})$ that generates $D(\mathfrak{p}|p\mathbf{Z}) = \operatorname{Gal}(\mathbf{Q}(\zeta_D)_{\mathfrak{p}}/\mathbf{Q}_p)$ and is uniquely characterized in this decomposition group via the condition that on the residue field $\kappa(\mathfrak{p})$ it induces the automorphism $x \mapsto x^{\#\kappa(p\mathbf{Z})} = x^p$. Recall the following general behavior of decomposition groups and Frobenius elements with respect to conjugation:

Lemma 2.1. Let K'/K be a Galois extension of a global field K and let v be a non-archimedean place on K with v' a place over v on K'. For $g \in \text{Gal}(K'/K)$, let g(v') be the place on K' over v given by $|x'|_{g(v')} = |g^{-1}(x')|_{v'}$ (so in the case that K'/K is finite with v' arising from a prime ideal $\mathfrak{p}_{v'}$ of the integral closure of the uncompleted discrete valuation ring $\mathscr{O}_{K,v}$, g(v') arises from the prime ideal $g(\mathfrak{p}_{v'})$). We have

$$D(g(v')|v) = gD(v'|v)g^{-1}, \ I(g(v')|v) = gI(v'|v)g^{-1},$$

and the resulting identification

$$D(g(v')|v)/I(g(v')|v) = gD(v'|v)g^{-1}/gI(v'|v)g^{-1}$$

carries $\phi(g(v')|v)$ to $g\phi(v'|v)g^{-1}$.

In particular, if $\operatorname{Gal}(K'/K)$ is abelian then the subgroups D(v'|v) and I(v'|v) in $\operatorname{Gal}(K'/K)$ are independent of the choice v' over v, and the element $\phi(v'|v) \in D(v'|v)/I(v'|v)$ is independent of v' over v.

Proof. This is a simple exercise in unwinding definitions, as well as using the unique characterization of the Frobenius element via its effect on residue fields. (In particular, one uses that if $q = p^a$ with a > 0 then the *q*th-power map is functorial with respect to all maps between commutative \mathbf{F}_p -algebras.)

The most important case of Lemma 2.1 is when v is unramified in K', in which case I(v'|v) = 1 and hence $\phi(v'|v)$ is an element of $\operatorname{Gal}(K'/K)$ whose conjugacy class only depends on v. Due to this lemma, in the case of abelian extensions of a global field we usually write D_v , I_v , and ϕ_v rather than D(v'|v), I(v'|v), and $\phi(v'|v)$, and we call these respectively the *decomposition group at v*, the *inertia group at v*, and the (relative) Frobenius element at v in $\operatorname{Gal}(K'/K)$.

Let *n* be a nonzero integer. For any positive prime $p \nmid n$, we let Frob_p denote the Frobenius element at $p\mathbf{Z}$ in the abelian Galois group $\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q})$. This element fixes every prime \mathfrak{p} over $p\mathbf{Z}$ and induces the *p*th-power automorphism on $\kappa(\mathfrak{p}) = \mathbf{Z}[\zeta_n]/\mathfrak{p}$ because $\#\kappa(p\mathbf{Z}) = p$ (since p > 0).

Lemma 2.2. For any nonzero integer n and any positive prime $p \nmid n$, under the isomorphism

$$\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q}) \simeq (\mathbf{Z}/n\mathbf{Z})^{\times}$$

the Frobenius element Frob_p at the prime pZ goes over to $p \mod n$.

Observe that $p \mod n \neq -p \mod n$ for n > 2, so the description of the Frobenius element as a specific residue class modulo n is sensitive to the distinction between the two generators $\pm p$ of $p\mathbf{Z}$.

Proof. By the definition of the isomorphism to $(\mathbf{Z}/n\mathbf{Z})^{\times}$, the automorphism σ_p giving rise to the residue class $p \mod n$ acts on $\mathbf{Z}[\zeta_n]$ via $\zeta_n \mapsto \zeta_n^p$. We pick a prime \mathfrak{p} over p and we need to show that $\sigma_p(\mathfrak{p}) = \mathfrak{p}$ and that the automorphism induced by σ_p on the finite field $\kappa(\mathfrak{p}) = \mathbf{Z}[\zeta_n]/\mathfrak{p}$ is the pth-power map. The endomorphism induced by σ_p on the \mathbf{F}_p -algebra $\mathbf{Z}[\zeta_n]/(p) = \mathbf{F}_p[T]/(\Phi_n(T))$ sends T to T^p , and so it must be the pth-power map. This map fixes all idempotents, and so the bijection between prime factors of (p) and primitive idempotents of $\mathbf{Z}[\zeta_n]/(p)$ implies that σ_p fixes all primes \mathfrak{p} over $p\mathbf{Z}$. Moreover, on the quotient $\kappa(\mathfrak{p})$ of $\mathbf{Z}[\zeta_n]/(p)$ the automorphism induced by σ_p must clearly be the pth-power map, so $\sigma_p = \phi_{\mathfrak{p}|p\mathbf{Z}}$ as desired.

To exploit the fact that the isomorphism $\operatorname{Gal}(\mathbf{Q}(\zeta_D)/\mathbf{Q}) \simeq (\mathbf{Z}/D\mathbf{Z})^{\times}$ carries Frob_p to $p \mod D$ for positive primes $p \nmid D$, we need to see how Frobenius elements behave with respect to quotients of Galois groups.

Lemma 2.3. Let K''/K'/K be a tower of finite extensions of global fields, with K'' and K' each Galois over K. If v'' on K'' is a non-archimedean place over places v' on K' and v on K, then the quotient map $\operatorname{Gal}(K''/K) \twoheadrightarrow \operatorname{Gal}(K'/K)$ carries D(v''|v) onto D(v'|v) and carries I(v''|v) into I(v'|v), with the induced map

$$D(v''|v)/I(v''|v) \twoheadrightarrow D(v'|v)/I(v'|v)$$

carrying $\phi(v''|v)$ to $\phi(v'|v)$.

In particular, if v is unramified in K'' then $\operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$ carries $\phi(v''|v)$ to $\phi(v'|v)$.

Note that we do not claim that I(v''|v) maps onto I(v''|v); this is related to the fact that $\kappa(v'')$ may be strictly larger than $\kappa(v')$. The final part of this lemma is sometimes referred to as the *functoriality of the Frobenius element* with respect to passage to quotients.

Proof. There is an induced tower $K''_{v''}/K_v$ of completions, and these are Galois because $K''_{v''} = K''K_v$ and $K'_{v'} = K'K_v$ (why?). Moreover, the inclusions of decomposition groups into the global Galois groups are identified with the natural maps of Galois groups

$$\operatorname{Gal}(K''_{v''}/K_v) \to \operatorname{Gal}(K''/K), \ \operatorname{Gal}(K'_{v'}/K_v) \to \operatorname{Gal}(K'/K),$$

and it is easy to check that the diagram

commutes. The left side is surjective by Galois theory, and so $D(v''|v) \to D(v'|v)$ is surjective.

The natural surjective map $\operatorname{Gal}(K''_{v''}/K_v) \to \operatorname{Gal}(K'_{v'}/K_v)$ of Galois groups of local fields is compatible with the induced map $\operatorname{Aut}(\kappa(v'')/\kappa(v)) \to \operatorname{Aut}(\kappa(v')/\kappa(v))$ and so it carries I(v''|v') into I(v'|v) and identifies the induced map of quotients

$$D(v''|v)/I(v''|v) \twoheadrightarrow D(v'|v)/I(v'|v)$$

with the natural map of Galois groups

$$\operatorname{Gal}(\kappa(v'')/\kappa(v)) \twoheadrightarrow \operatorname{Gal}(\kappa(v')/\kappa(v))$$

Hence, the desired behavior with respect to Frobenius elements is a consequence of the obvious general fact that if k''/k'/k is a tower of finite fields with q = #k then the surjective map $\operatorname{Gal}(k''/k) \twoheadrightarrow \operatorname{Gal}(k'/k)$ carries the *q*th-power map to the *q*th-power map.

The preceding lemma implies that the natural quotient map $\operatorname{Gal}(\mathbf{Q}(\zeta_D)/\mathbf{Q}) \twoheadrightarrow \operatorname{Gal}(K/\mathbf{Q})$ carries Frob_p to the Frobenius element $\phi_{K,p}$ for the prime $p\mathbf{Z}$ that is unramified in K. In general, for any finite Galois extension F'/F of global fields and any non-archimedean place v' of F' that is unramified over its restriction v in F, the order of $\phi(v'|v)$ in $\operatorname{Gal}(F'/F)$ is the residual degree f(v'|v) because $\phi(v'|v)$ is a generator of the cyclic group $\operatorname{Gal}(\kappa(v')/\kappa(v))$ of order f(v'|v). In particular, $\phi(v'|v)$ is trivial if and only if f(v'|v) = 1. As a special case, if [F':F] = 2 then an non-archimedean place v of F that is unramified in F' is split (resp. inert) in F' if and only if $\phi_v = 1$ (resp. $\phi_v \neq 1$). Thus, for a positive prime $p \nmid D$ we conclude that the Frobenius element $\phi_{K,p} \in \operatorname{Gal}(K/\mathbf{Q})$ is trivial (resp. non-trivial) if and only if $p\mathbf{Z}$ is split (resp. inert) in \mathscr{O}_K . In view of the definition of $\chi_K : (\mathbf{Z}/D\mathbf{Z})^{\times} \to \langle \pm 1 \rangle$ via Galois groups, we have proved:

Theorem 2.4. For a positive prime $p \nmid D$, $\chi_K(p) = 1$ if and only if $p\mathbf{Z}$ is split in \mathcal{O}_K , and $\chi_K(p) = -1$ if and only if $p\mathbf{Z}$ is inert in \mathcal{O}_K .

3. Jacobi symbols

By Homework 3, Exercise 4(*ii*), if p is odd then $p\mathbf{Z}$ is split in \mathscr{O}_K if and only if (D|p) = 1 and $p\mathbf{Z}$ is inert in \mathscr{O}_K if and only if (D|p) = -1. By the same exercise, if p = 2 (so D is odd, as $p \nmid D$, so $D \equiv 1 \mod 4$) then $2\mathbf{Z}$ is split in \mathscr{O}_K if and only if $D \equiv 1 \mod 8$ and $2\mathbf{Z}$ is inert in \mathscr{O}_K if and only if $D \equiv 5 \mod 8$. Thus, by Theorem 2.4 we obtain:

Corollary 3.1. For a positive odd prime $p \nmid D$, $\chi_K(p \mod D) = (D|p)$. If D is odd then $\chi_K(2 \mod D) = (-1)^{(D^2-1)/8}$.

Our earlier result that $\chi_K(-1 \mod D)$ expresses the action of complex conjugation on K is analogous to Corollary 3.1 in the sense that complex conjugation (relative to an embedding into **C**) is generally considered to be the "Frobenius element" at a real place (since $\operatorname{Gal}(\mathbf{C}/\mathbf{R})$ is generated by complex conjugation).

Definition 3.2. Let N be a nonzero integer. The Jacobi symbol $(N|\cdot)$ is the unique $\langle \pm 1 \rangle$ -valued totally multiplicative function on the set of nonzero integers relatively prime to D such that $(N|-1) = \operatorname{sign}(N)$, (N|p) is the Legendre symbol for positive odd primes p not dividing N, and $(N|2) = (-1)^{(N^2-1)/8}$ if N is odd.

By definition, clearly (NM|n) = (N|n)(M|n) for nonzero integers n, N, M with gcd(n, NM) = 1. (The only part requiring a check is the case n = 2.) Our preceding work shows that if D is the discriminant of a quadratic field then $(D|n) = \chi_K(n \mod D)$ for nonzero integers n relatively prime to D because both sides are totally multiplicative in n and they coincide for n = -1 and for n = p a positive prime not dividing D. This yields a conceptual proof of a non-obvious fact that is often proved in elementary texts by tedious application of quadratic reciprocity:

Theorem 3.3. Let N be a nonzero integer and write $N = \nu^2 N'$ with squarefree N'. The Jacobi symbol (N|n) only depends on $n \mod N'$ if $N \equiv 1 \mod 4$ and on $n \mod 4N'$ otherwise. In particular, $(N|\cdot)$ is a well-defined quadratic character on $(\mathbf{Z}/N'\mathbf{Z})^{\times}$ if $N \equiv 1 \mod 4$ and on $(\mathbf{Z}/4N'\mathbf{Z})^{\times}$ otherwise.

Proof. If $N \equiv 1 \mod 4$ then clearly $N' \equiv 1 \mod 4$. By multiplicativity in N, we have (N|n) = (N'|n) for nonzero n relatively prime to N, so we conclude that it suffices to replace N with N'. Hence, we may assume that N is squarefree. Similarly, using the the isomorphism $(\mathbf{Z}/N\mathbf{Z})^{\times} \simeq (\mathbf{Z}/N_1\mathbf{Z})^{\times} \times (\mathbf{Z}/N_2\mathbf{Z})^{\times}$ and the equalities $(N|n) = (N_1|n)(N_2|n)$ and $N' = N'_1N'_2$ if $N = N_1N_2$ with $gcd(N_1, N_2) = 1$, we may assume that |N| is prime or $N = \pm 1$. The cases $N = \pm 1$ are trivial, so it remains to handle exactly one of the cases N = p or N = -p for each positive prime p. The case N = 2 is clear by inspection, so it suffices to treat the case $N = (-1|p)p \equiv 1 \mod 4$ for an odd prime p. This case follows from the relationship with χ_K for the quadratic field $K = \mathbf{Q}(\sqrt{N})$ with discriminant N.

We may now summarize our conclusion by means of the commutativity of the diagram:

where $\chi_D = (D|\cdot)$ is a quadratic character on $(\mathbf{Z}/D\mathbf{Z})^{\times}$. Hence, if K is a quadratic field with discriminant D then for $\operatorname{Re}(s) > 1$ there is an identity

$$\zeta_K(s) = \zeta(s) \cdot \prod_{p \nmid D} \left(1 - \frac{\chi_D(p \mod D)}{p^s} \right)^{-1}$$

since $\chi_D(p \mod D) = 1$ for $p\mathbf{Z}$ split in \mathscr{O}_K and $\chi_D(p \mod D) = -1$ for $p\mathbf{Z}$ inert in \mathscr{O}_K . Note that p here is always understood to denote a *positive* prime.

We can express the factorization of ζ_K in terms that are intrinsic to $\operatorname{Gal}(K/\mathbf{Q})$ as follows. We let $\psi : \operatorname{Gal}(K/\mathbf{Q}) \to \mathbf{C}^{\times}$ be the unique non-trivial character, and we define

$$L(s,\psi) = \prod_{p \nmid D} \left(1 - \frac{\psi(\operatorname{Frob}_{K,p})}{p^s} \right)^{-1}$$

for $\operatorname{Re}(s) > 1$, with $\operatorname{Frob}_{K,p} \in \operatorname{Gal}(K/\mathbb{Q})$ denoting the Frobenius element at p. Hence,

$$\zeta_K(s) = \zeta_{\mathbf{Q}}(s)L(s,\psi)$$

for $\operatorname{Re}(s) > 1$.

Let us conclude with an interesting refinement on the embeddability of K into $\mathbf{Q}(\zeta_D)$:

Theorem 3.4. The cyclotomic field $\mathbf{Q}(\zeta_D)$ is the smallest one that contains K, in the sense that a cyclotomic field containing K must contain $\mathbf{Q}(\zeta_D)$.

This theorem admits a very simple conceptual proof via local ramification considerations once the machinery of class field theory is available.

Proof. Since the intersection $\mathbf{Q}(\zeta_n) \cap \mathbf{Q}(\zeta_m)$ inside of an algebraic closure of \mathbf{Q} is equal to $\mathbf{Q}(\zeta_{(n,m)})$ (with $n, m \in \mathbf{Z}$ nonzero), it suffices to prove that K is not contained in any proper cyclotomic subfields of $\mathbf{Q}(\zeta_D)$. Recall that $\mathbf{Q}(\zeta_n) = \mathbf{Q}(\zeta_m)$ inside of an algebraic closure of \mathbf{Q} if and only if either |n| = |m|, |n| = 2|m| with odd m, or |m| = 2|n| with odd n. Since D is either odd or a multiple of 4, it follows that a proper cyclotomic subfield of $\mathbf{Q}(\zeta_D)$ is precisely a cyclotomic field of the form $\mathbf{Q}(\zeta_n)$ with n a proper (possibly negative) divisor of D. It is therefore necessary and sufficient to show that the quadratic character $(D|\cdot)$ on $(\mathbf{Z}/D\mathbf{Z})^{\times}$ does not factor through the projection $(\mathbf{Z}/D\mathbf{Z})^{\times} \rightarrow (\mathbf{Z}/\delta\mathbf{Z})^{\times}$ for a proper (possibly negative) divisor δ of D.

We write $D = \delta \delta'$, and by shifting prime factors into δ we may assume δ' is prime. First assume δ' is odd, so $gcd(\delta, \delta') = 1$. We may suppose $\delta' = (-1|p)p$ for an odd prime p, so $\delta' \equiv 1 \mod 4$. Since $(D|\cdot) = (\delta|\cdot)(\delta'|\cdot)$ as functions on the set of integers relatively prime to D, and $(\delta|n)$ only depends on $n \mod \delta$, we conclude that for nonzero n relatively prime to D the function $(\delta'|n)$ only depends on $n \mod \delta$. However, since δ' is an odd prime we know that $(\delta'|n)$ also only depends on $n \mod \delta'$. In other words, the homomorphism $(\delta'|\cdot) : (\mathbf{Z}/D\mathbf{Z})^{\times} \to \langle \pm 1 \rangle$ factors through both projections

$$(\mathbf{Z}/D\mathbf{Z})^{\times} \twoheadrightarrow (\mathbf{Z}/\delta\mathbf{Z})^{\times}, \quad (\mathbf{Z}/D\mathbf{Z})^{\times} \twoheadrightarrow (\mathbf{Z}/\delta'\mathbf{Z})^{\times}.$$

Consideration of primary components of $\mathbf{Z}/D\mathbf{Z}$ shows that the kernels of these two projections generate $(\mathbf{Z}/D\mathbf{Z})^{\times}$ because $gcd(\delta, \delta') = 1$, and hence it would follow that $(\delta'|n) = 1$ for all n relatively prime to D. Since the map $(\mathbf{Z}/D\mathbf{Z})^{\times} \to (\mathbf{Z}/\delta'\mathbf{Z})^{\times}$ is surjective, it follows that $(\delta'|n) = 1$ for all n relatively prime to δ' . Since $\delta' = (-1|p)p \equiv 1 \mod 4$ for an odd prime p, Jacobi reciprocity gives $(\delta'|n) = (n|\delta')$ for any odd positive integer n relatively prime to δ' . We can find such n representing any nonzero residue class modulo δ' , and so in particular by taking a non-square residue class we find such n for which $(\delta'|n) = -1$. This gives a contradiction.

Now it remains to consider the case when $\delta' = \pm 2$, so in particular D = 4d for a squarefree integer $d \equiv 2, 3 \mod 4$. We have to deduce a contradiction if (D|n) only depends on $n \mod 2d$. By factoring D into a product of even and odd parts, a simple argument as above with the Chinese remainder theorem implies that if d is odd then (-4|n) only depends on $n \mod 2$ for odd n (that is, (-4|n) = 1 for all odd n) and that if d is even then (8|n) = (2|n) only depends on $n \mod 4$ for odd n. Since (-4|-1) = -1 and (2|5) = -1, we get a contradiction in both cases.