Math 676. Quadratic characters associated to quadratic fields

The aim of this handout is to describe the quadratic Dirichlet character naturally associated to a quadratic field, and to express it in terms of quadratic residue symbols.

1. Link with cyclotomic fields

Let K be a quadratic field with discriminant $D \in \mathbf{Z}$, so $D \equiv 0,1 \bmod 4$ and $K=\mathbf{Q}(\sqrt{D})=\mathbf{Q}(\sqrt{d})$ for a unique squarefree $d \neq 1$ with $D=4 d$ for even $D($ with $d \equiv 2,3 \bmod 4)$ and $D=d$ for odd D (with $d \equiv 1 \bmod 4$) .

Lemma 1.1. The field K embeds as a subfield of $\mathbf{Q}\left(\zeta_{D}\right)$.
Since D may be negative, we make the convention that $\mathbf{Q}\left(\zeta_{n}\right)$ means $\mathbf{Q}\left(\zeta_{|n|}\right)$ for any nonzero integer n. For any $n<0$ we may write $X^{n}-1=-X^{|n|}\left(X^{-n}-1\right)$, so we have $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / n \mathbf{Z})^{\times}$for any nonzero $n \in \mathbf{Z}$.

Proof. First assume D is odd, so $D=d \equiv 1 \bmod 4$. Since $d \neq 1$, we have $d \neq \pm 1$ and hence $d= \pm \prod p_{i}$ for a non-empty finite set of pairwise distinct odd primes p_{i}. For each i let $q_{i}=\left(-1 \mid p_{i}\right) p_{i}$, so $q_{i} \equiv 1$ mod 4 and $D= \pm \prod q_{i}$. Since $D, q_{i} \equiv 1 \bmod 4$, there is no sign discrepancy: $D=\prod q_{i}$. Clearly $\mathbf{Q}\left(\zeta_{D}\right)$ contains $\mathbf{Q}\left(\zeta_{p_{i}}\right)$, and by Exercise 1 in Homework 5 this latter cyclotomic field contains $\mathbf{Q}\left(\sqrt{q_{i}}\right)$. Hence, each q_{i} is a square in $\mathbf{Q}\left(\zeta_{D}\right)$, and so $D=\prod q_{i}$ is also a square in $\mathbf{Q}\left(\zeta_{D}\right)$. That is, $K=\mathbf{Q}(\sqrt{D})$ embeds into $\mathbf{Q}\left(\zeta_{D}\right)$.

Now assume D is even, so $D=4 d$ with a squarefree $d \equiv 2,3 \bmod 4$. The case $d=-1$ is trivial (as $\left.\mathbf{Q}(\sqrt{-1})=\mathbf{Q}\left(\zeta_{4}\right)\right)$, so we may assume d is a non-unit. Let $d= \pm 2^{a} \cdot \prod p_{i}$ be the prime factorization with odd positive primes p_{i} and $a=0,1$. Let $q_{i}=\left(-1 \mid p_{i}\right) p_{i}$ as above, so $d= \pm 2^{a} \cdot \prod q_{i}$. The field $\mathbf{Q}\left(\zeta_{D}\right)$ contains $\mathbf{Q}\left(\zeta_{p_{i}}\right)$, and hence (as above) q_{i} is a square in $\mathbf{Q}\left(\zeta_{D}\right)$. Also, since $4 \mid D$ we see that $\mathbf{Q}\left(\zeta_{4}\right)=\mathbf{Q}(\sqrt{-1})$ is contained in $\mathbf{Q}\left(\zeta_{D}\right)$, so -1 is a square in $\mathbf{Q}\left(\zeta_{D}\right)$. Hence, $\pm \prod q_{i}$ is a square in $\mathbf{Q}\left(\zeta_{D}\right)$ for both signs. This settles the case of odd d, and if d is even then $8 \mid D$ and hence $\mathbf{Q}\left(\zeta_{D}\right)$ contains $\mathbf{Q}\left(\zeta_{8}\right)$, so 2 is also a square in $\mathbf{Q}\left(\zeta_{D}\right)$ in such cases. Thus, d is a square in $\mathbf{Q}\left(\zeta_{D}\right)$ for even d as well.

There is a natural isomorphism $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / D \mathbf{Z})^{\times}$given by $\sigma \mapsto n_{\sigma}$ where $\sigma(\zeta)=\zeta^{n_{\sigma}}$ for all elements ζ in the cyclic group of D th roots of unity in $\mathbf{Q}\left(\zeta_{D}\right)$. (Here we use that the automorphism group of a cyclic group of order D is canonically identified with $(\mathbf{Z} / D \mathbf{Z})^{\times}$for any positive integer D.) By the preceding lemma, there is a natural surjection

$$
\chi_{K}:(\mathbf{Z} / D \mathbf{Z})^{\times}=\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right) / \mathbf{Q}\right) \rightarrow \operatorname{Gal}(K / \mathbf{Q})=\langle \pm 1\rangle
$$

where the final equality is the unique isomorphism between cyclic groups of order 2 . The problem we want to solve is this: explicitly describe χ_{K}.

For any nonzero integer n relatively prime to D, we shall abuse notation and write $\chi_{K}(n)$ to denote $\chi_{K}(n \bmod D)$. This is a multiplicative function on the set of nonzero integers relatively prime to D. In particular, to "know" χ_{K} it suffices to determine $\chi_{K}(p)$ for positive primes $p \nmid D$ and to determine $\chi_{K}(-1)$. We first address $\chi_{K}(-1)$. For any integer n satisfying $|n|>2$, the field $\mathbf{Q}\left(\zeta_{n}\right)$ is a CM field and under the isomorphism

$$
\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / n \mathbf{Z})^{\times}
$$

the intrinsic complex conjugation goes over to the element $-1 \bmod n$ because $\bar{\zeta}=\zeta^{-1}$ for any root of unity ζ in \mathbf{C}. Thus, by the definition of χ_{K} we see that $\chi_{K}(-1)=1$ if and only if complex conjugation on $\mathbf{Q}\left(\zeta_{D}\right)$ has trivial restriction on the quadratic subfield K, which is to say that K is a real quadratic field. In other words, $\chi_{K}(-1)=1$ if $D>0$ and $\chi_{K}(-1)=-1$ if $D<0$. This proves:

Lemma 1.2. For any quadratic field K with discriminant $D, \chi_{K}(-1)=\operatorname{sign}(D)$.

2. Frobenius elements

Now we turn our attention to the computation of $\chi_{K}(p)$ for positive primes $p \nmid D$. The computation of $\chi_{K}(-1)$ rested on identifying the Galois automorphism $-1 \bmod D$ on $\mathbf{Q}\left(\zeta_{D}\right)$ with complex conjugation, and the fact that this restricts to complex conjugation on quadratic subfields. We require an analogous interpretation of $p \bmod D$ as a Galois automorphism of $\mathbf{Q}\left(\zeta_{D}\right)$ in a manner that is well-behaved with restriction to quadratic subfields. The interpretation will rest on Frobenius elements.

Since $p \nmid D, p \mathbf{Z}$ is unramified in $\mathbf{Z}\left[\zeta_{D}\right]$. Thus, for any \mathfrak{p} over p in $\mathbf{Z}\left[\zeta_{D}\right]$ we get (by Exercise $5(v)$ in Homework 11) a canonical Frobenius element $\phi_{\mathfrak{p} \mid p \mathbf{Z}}$ in $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right) / \mathbf{Q}\right)$ that generates $D(\mathfrak{p} \mid p \mathbf{Z})=\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right)_{\mathfrak{p}} / \mathbf{Q}_{p}\right)$ and is uniquely characterized in this decomposition group via the condition that on the residue field $\kappa(\mathfrak{p})$ it induces the automorphism $x \mapsto x^{\# \kappa(p \mathbf{Z})}=x^{p}$. Recall the following general behavior of decomposition groups and Frobenius elements with respect to conjugation:
Lemma 2.1. Let K^{\prime} / K be a Galois extension of a global field K and let v be a non-archimedean place on K with v^{\prime} a place over v on K^{\prime}. For $g \in \operatorname{Gal}\left(K^{\prime} / K\right)$, let $g\left(v^{\prime}\right)$ be the place on K^{\prime} over v given by $\left|x^{\prime}\right|_{g\left(v^{\prime}\right)}=\left|g^{-1}\left(x^{\prime}\right)\right|_{v^{\prime}}$ (so in the case that K^{\prime} / K is finite with v^{\prime} arising from a prime ideal $\mathfrak{p}_{v^{\prime}}$ of the integral closure of the uncompleted discrete valuation ring $\mathscr{O}_{K, v}, g\left(v^{\prime}\right)$ arises from the prime ideal $g\left(\mathfrak{p}_{v^{\prime}}\right)$). We have

$$
D\left(g\left(v^{\prime}\right) \mid v\right)=g D\left(v^{\prime} \mid v\right) g^{-1}, \quad I\left(g\left(v^{\prime}\right) \mid v\right)=g I\left(v^{\prime} \mid v\right) g^{-1}
$$

and the resulting identification

$$
D\left(g\left(v^{\prime}\right) \mid v\right) / I\left(g\left(v^{\prime}\right) \mid v\right)=g D\left(v^{\prime} \mid v\right) g^{-1} / g I\left(v^{\prime} \mid v\right) g^{-1}
$$

carries $\phi\left(g\left(v^{\prime}\right) \mid v\right)$ to $g \phi\left(v^{\prime} \mid v\right) g^{-1}$.
In particular, if $\operatorname{Gal}\left(K^{\prime} / K\right)$ is abelian then the subgroups $D\left(v^{\prime} \mid v\right)$ and $I\left(v^{\prime} \mid v\right)$ in $\operatorname{Gal}\left(K^{\prime} / K\right)$ are independent of the choice v^{\prime} over v, and the element $\phi\left(v^{\prime} \mid v\right) \in D\left(v^{\prime} \mid v\right) / I\left(v^{\prime} \mid v\right)$ is independent of v^{\prime} over v.

Proof. This is a simple exercise in unwinding definitions, as well as using the unique characterization of the Frobenius element via its effect on residue fields. (In particular, one uses that if $q=p^{a}$ with $a>0$ then the q th-power map is functorial with respect to all maps between commutative \mathbf{F}_{p}-algebras.)

The most important case of Lemma 2.1 is when v is unramified in K^{\prime}, in which case $I\left(v^{\prime} \mid v\right)=1$ and hence $\phi\left(v^{\prime} \mid v\right)$ is an element of $\operatorname{Gal}\left(K^{\prime} / K\right)$ whose conjugacy class only depends on v. Due to this lemma, in the case of abelian extensions of a global field we usually write D_{v}, I_{v}, and ϕ_{v} rather than $D\left(v^{\prime} \mid v\right), I\left(v^{\prime} \mid v\right)$, and $\phi\left(v^{\prime} \mid v\right)$, and we call these respectively the decomposition group at v, the inertia group at v, and the (relative) Frobenius element at v in $\operatorname{Gal}\left(K^{\prime} / K\right)$.

Let n be a nonzero integer. For any positive prime $p \nmid n$, we let Frob $_{p}$ denote the Frobenius element at $p \mathbf{Z}$ in the abelian Galois group $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right)$. This element fixes every prime \mathfrak{p} over $p \mathbf{Z}$ and induces the p th-power automorphism on $\kappa(\mathfrak{p})=\mathbf{Z}\left[\zeta_{n}\right] / \mathfrak{p}$ because $\# \kappa(p \mathbf{Z})=p$ (since $\left.p>0\right)$.

Lemma 2.2. For any nonzero integer n and any positive prime $p \nmid n$, under the isomorphism

$$
\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / n \mathbf{Z})^{\times}
$$

the Frobenius element Frob_{p} at the prime $p \mathbf{Z}$ goes over to $p \bmod n$.
Observe that $p \bmod n \neq-p \bmod n$ for $n>2$, so the description of the Frobenius element as a specific residue class modulo n is sensitive to the distinction between the two generators $\pm p$ of $p \mathbf{Z}$.

Proof. By the definition of the isomorphism to $(\mathbf{Z} / n \mathbf{Z})^{\times}$, the automorphism σ_{p} giving rise to the residue class $p \bmod n$ acts on $\mathbf{Z}\left[\zeta_{n}\right]$ via $\zeta_{n} \mapsto \zeta_{n}^{p}$. We pick a prime \mathfrak{p} over p and we need to show that $\sigma_{p}(\mathfrak{p})=\mathfrak{p}$ and that the automorphism induced by σ_{p} on the finite field $\kappa(\mathfrak{p})=\mathbf{Z}\left[\zeta_{n}\right] / \mathfrak{p}$ is the p th-power map. The endomorphism induced by σ_{p} on the \mathbf{F}_{p}-algebra $\mathbf{Z}\left[\zeta_{n}\right] /(p)=\mathbf{F}_{p}[T] /\left(\Phi_{n}(T)\right)$ sends T to T^{p}, and so it must be the p th-power map. This map fixes all idempotents, and so the bijection between prime factors of (p) and primitive idempotents of $\mathbf{Z}\left[\zeta_{n}\right] /(p)$ implies that σ_{p} fixes all primes \mathfrak{p} over $p \mathbf{Z}$. Moreover, on the quotient $\kappa(\mathfrak{p})$ of $\mathbf{Z}\left[\zeta_{n}\right] /(p)$ the automorphism induced by σ_{p} must clearly be the p th-power map, so $\sigma_{p}=\phi_{\mathfrak{p} \mid p \mathbf{Z}}$ as desired.

To exploit the fact that the isomorphism $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / D \mathbf{Z})^{\times}$carries Frob ${ }_{p}$ to p mod D for positive primes $p \nmid D$, we need to see how Frobenius elements behave with respect to quotients of Galois groups.

Lemma 2.3. Let $K^{\prime \prime} / K^{\prime} / K$ be a tower of finite extensions of global fields, with $K^{\prime \prime}$ and K^{\prime} each Galois over K. If $v^{\prime \prime}$ on $K^{\prime \prime}$ is a non-archimedean place over places v^{\prime} on K^{\prime} and v on K, then the quotient map $\operatorname{Gal}\left(K^{\prime \prime} / K\right) \rightarrow \operatorname{Gal}\left(K^{\prime} / K\right)$ carries $D\left(v^{\prime \prime} \mid v\right)$ onto $D\left(v^{\prime} \mid v\right)$ and carries $I\left(v^{\prime \prime} \mid v\right)$ into $I\left(v^{\prime} \mid v\right)$, with the induced map

$$
D\left(v^{\prime \prime} \mid v\right) / I\left(v^{\prime \prime} \mid v\right) \rightarrow D\left(v^{\prime} \mid v\right) / I\left(v^{\prime} \mid v\right)
$$

carrying $\phi\left(v^{\prime \prime} \mid v\right)$ to $\phi\left(v^{\prime} \mid v\right)$.
In particular, if v is unramified in $K^{\prime \prime}$ then $\operatorname{Gal}\left(K^{\prime \prime} / K\right) \rightarrow \operatorname{Gal}\left(K^{\prime} / K\right)$ carries $\phi\left(v^{\prime \prime} \mid v\right)$ to $\phi\left(v^{\prime} \mid v\right)$.
Note that we do not claim that $I\left(v^{\prime \prime} \mid v\right)$ maps onto $I\left(v^{\prime \prime} \mid v\right)$; this is related to the fact that $\kappa\left(v^{\prime \prime}\right)$ may be strictly larger than $\kappa\left(v^{\prime}\right)$. The final part of this lemma is sometimes referred to as the functoriality of the Frobenius element with respect to passage to quotients.

Proof. There is an induced tower $K_{v^{\prime \prime}}^{\prime \prime} / K_{v^{\prime}}^{\prime} / K_{v}$ of completions, and these are Galois because $K_{v^{\prime \prime}}^{\prime \prime}=K^{\prime \prime} K_{v}$ and $K_{v^{\prime}}^{\prime}=K^{\prime} K_{v}$ (why?). Moreover, the inclusions of decomposition groups into the global Galois groups are identified with the natural maps of Galois groups

$$
\operatorname{Gal}\left(K_{v^{\prime \prime}}^{\prime \prime} / K_{v}\right) \rightarrow \operatorname{Gal}\left(K^{\prime \prime} / K\right), \quad \operatorname{Gal}\left(K_{v^{\prime}}^{\prime} / K_{v}\right) \rightarrow \operatorname{Gal}\left(K^{\prime} / K\right)
$$

and it is easy to check that the diagram

commutes. The left side is surjective by Galois theory, and so $D\left(v^{\prime \prime} \mid v\right) \rightarrow D\left(v^{\prime} \mid v\right)$ is surjective.
The natural surjective map $\operatorname{Gal}\left(K_{v^{\prime \prime}}^{\prime \prime} / K_{v}\right) \rightarrow \operatorname{Gal}\left(K_{v^{\prime}}^{\prime} / K_{v}\right)$ of Galois groups of local fields is compatible with the induced map $\operatorname{Aut}\left(\kappa\left(v^{\prime \prime}\right) / \kappa(v)\right) \rightarrow \operatorname{Aut}\left(\kappa\left(v^{\prime}\right) / \kappa(v)\right)$ and so it carries $I\left(v^{\prime \prime} \mid v^{\prime}\right)$ into $I\left(v^{\prime} \mid v\right)$ and identifies the induced map of quotients

$$
D\left(v^{\prime \prime} \mid v\right) / I\left(v^{\prime \prime} \mid v\right) \rightarrow D\left(v^{\prime} \mid v\right) / I\left(v^{\prime} \mid v\right)
$$

with the natural map of Galois groups

$$
\operatorname{Gal}\left(\kappa\left(v^{\prime \prime}\right) / \kappa(v)\right) \rightarrow \operatorname{Gal}\left(\kappa\left(v^{\prime}\right) / \kappa(v)\right)
$$

Hence, the desired behavior with respect to Frobenius elements is a consequence of the obvious general fact that if $k^{\prime \prime} / k^{\prime} / k$ is a tower of finite fields with $q=\# k$ then the surjective map $\operatorname{Gal}\left(k^{\prime \prime} / k\right) \rightarrow \operatorname{Gal}\left(k^{\prime} / k\right)$ carries the q th-power map to the q th-power map.

The preceding lemma implies that the natural quotient map $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{D}\right) / \mathbf{Q}\right) \rightarrow \operatorname{Gal}(K / \mathbf{Q})$ carries Frob_{p} to the Frobenius element $\phi_{K, p}$ for the prime $p \mathbf{Z}$ that is unramified in K. In general, for any finite Galois extension F^{\prime} / F of global fields and any non-archimedean place v^{\prime} of F^{\prime} that is unramified over its restriction v in F, the order of $\phi\left(v^{\prime} \mid v\right)$ in $\operatorname{Gal}\left(F^{\prime} / F\right)$ is the residual degree $f\left(v^{\prime} \mid v\right)$ because $\phi\left(v^{\prime} \mid v\right)$ is a generator of the cyclic group $\operatorname{Gal}\left(\kappa\left(v^{\prime}\right) / \kappa(v)\right)$ of order $f\left(v^{\prime} \mid v\right)$. In particular, $\phi\left(v^{\prime} \mid v\right)$ is trivial if and only if $f\left(v^{\prime} \mid v\right)=1$. As a special case, if $\left[F^{\prime}: F\right]=2$ then an non-archimedean place v of F that is unramified in F^{\prime} is split (resp. inert) in F^{\prime} if and only if $\phi_{v}=1$ (resp. $\phi_{v} \neq 1$). Thus, for a positive prime $p \nmid D$ we conclude that the Frobenius element $\phi_{K, p} \in \operatorname{Gal}(K / \mathbf{Q})$ is trivial (resp. non-trivial) if and only if $p \mathbf{Z}$ is split (resp. inert) in \mathscr{O}_{K}. In view of the definition of $\chi_{K}:(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow\langle \pm 1\rangle$ via Galois groups, we have proved:

Theorem 2.4. For a positive prime $p \nmid D, \chi_{K}(p)=1$ if and only if $p \mathbf{Z}$ is split in \mathscr{O}_{K}, and $\chi_{K}(p)=-1$ if and only if $p \mathbf{Z}$ is inert in \mathscr{O}_{K}.

3. Jacobi Symbols

By Homework 3, Exercise $4(i i)$, if p is odd then $p \mathbf{Z}$ is split in \mathscr{O}_{K} if and only if $(D \mid p)=1$ and $p \mathbf{Z}$ is inert in \mathscr{O}_{K} if and only if $(D \mid p)=-1$. By the same exercise, if $p=2$ (so D is odd, as $p \nmid D$, so $D \equiv 1 \bmod 4$) then $2 \mathbf{Z}$ is split in \mathscr{O}_{K} if and only if $D \equiv 1 \bmod 8$ and $2 \mathbf{Z}$ is inert in \mathscr{O}_{K} if and only if $D \equiv 5 \bmod 8$. Thus, by Theorem 2.4 we obtain:

Corollary 3.1. For a positive odd prime $p \nmid D, \chi_{K}(p \bmod D)=(D \mid p)$. If D is odd then $\chi_{K}(2 \bmod D)=$ $(-1)^{\left(D^{2}-1\right) / 8}$.

Our earlier result that $\chi_{K}(-1 \bmod D)$ expresses the action of complex conjugation on K is analogous to Corollary 3.1 in the sense that complex conjugation (relative to an embedding into \mathbf{C}) is generally considered to be the "Frobenius element" at a real place (since $\operatorname{Gal}(\mathbf{C} / \mathbf{R})$ is generated by complex conjugation).

Definition 3.2. Let N be a nonzero integer. The Jacobi symbol $(N \mid \cdot)$ is the unique $\langle \pm 1\rangle$-valued totally multiplicative function on the set of nonzero integers relatively prime to D such that $(N \mid-1)=\operatorname{sign}(N)$, $(N \mid p)$ is the Legendre symbol for positive odd primes p not dividing N, and $(N \mid 2)=(-1)^{\left(N^{2}-1\right) / 8}$ if N is odd.

By definition, clearly $(N M \mid n)=(N \mid n)(M \mid n)$ for nonzero integers n, N, M with $\operatorname{gcd}(n, N M)=1$. (The only part requiring a check is the case $n=2$.) Our preceding work shows that if D is the discriminant of a quadratic field then $(D \mid n)=\chi_{K}(n \bmod D)$ for nonzero integers n relatively prime to D because both sides are totally multiplicative in n and they coincide for $n=-1$ and for $n=p$ a positive prime not dividing D. This yields a conceptual proof of a non-obvious fact that is often proved in elementary texts by tedious application of quadratic reciprocity:

Theorem 3.3. Let N be a nonzero integer and write $N=\nu^{2} N^{\prime}$ with squarefree N^{\prime}. The Jacobi symbol $(N \mid n)$ only depends on $n \bmod N^{\prime}$ if $N \equiv 1 \bmod 4$ and on $n \bmod 4 N^{\prime}$ otherwise. In particular, $(N \mid \cdot)$ is a well-defined quadratic character on $\left(\mathbf{Z} / N^{\prime} \mathbf{Z}\right)^{\times}$if $N \equiv 1 \bmod 4$ and on $\left(\mathbf{Z} / 4 N^{\prime} \mathbf{Z}\right)^{\times}$otherwise.

Proof. If $N \equiv 1 \bmod 4$ then clearly $N^{\prime} \equiv 1 \bmod 4$. By multiplicativity in N, we have $(N \mid n)=\left(N^{\prime} \mid n\right)$ for nonzero n relatively prime to N, so we conclude that it suffices to replace N with N^{\prime}. Hence, we may assume that N is squarefree. Similarly, using the the isomorphism $(\mathbf{Z} / N \mathbf{Z})^{\times} \simeq\left(\mathbf{Z} / N_{1} \mathbf{Z}\right)^{\times} \times\left(\mathbf{Z} / N_{2} \mathbf{Z}\right)^{\times}$and the equalities $(N \mid n)=\left(N_{1} \mid n\right)\left(N_{2} \mid n\right)$ and $N^{\prime}=N_{1}^{\prime} N_{2}^{\prime}$ if $N=N_{1} N_{2}$ with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$, we may assume that $|N|$ is prime or $N= \pm 1$. The cases $N= \pm 1$ are trivial, so it remains to handle exactly one of the cases $N=p$ or $N=-p$ for each positive prime p. The case $N=2$ is clear by inspection, so it suffices to treat the case $N=(-1 \mid p) p \equiv 1 \bmod 4$ for an odd prime p. This case follows from the relationship with χ_{K} for the quadratic field $K=\mathbf{Q}(\sqrt{N})$ with discriminant N.

We may now summarize our conclusion by means of the commutativity of the diagram:

where $\chi_{D}=(D \mid \cdot)$ is a quadratic character on $(\mathbf{Z} / D \mathbf{Z})^{\times}$. Hence, if K is a quadratic field with discriminant D then for $\operatorname{Re}(s)>1$ there is an identity

$$
\zeta_{K}(s)=\zeta(s) \cdot \prod_{p \nmid D}\left(1-\frac{\chi_{D}(p \bmod D)}{p^{s}}\right)^{-1}
$$

since $\chi_{D}(p \bmod D)=1$ for $p \mathbf{Z}$ split in \mathscr{O}_{K} and $\chi_{D}(p \bmod D)=-1$ for $p \mathbf{Z}$ inert in \mathscr{O}_{K}. Note that p here is always understood to denote a positive prime.

We can express the factorization of ζ_{K} in terms that are intrinsic to $\operatorname{Gal}(K / \mathbf{Q})$ as follows. We let $\psi: \operatorname{Gal}(K / \mathbf{Q}) \rightarrow \mathbf{C}^{\times}$be the unique non-trivial character, and we define

$$
L(s, \psi)=\prod_{p \nmid D}\left(1-\frac{\psi\left(\operatorname{Frob}_{K, p}\right)}{p^{s}}\right)^{-1}
$$

for $\operatorname{Re}(s)>1$, with $\operatorname{Frob}_{K, p} \in \operatorname{Gal}(K / \mathbf{Q})$ denoting the Frobenius element at p. Hence,

$$
\zeta_{K}(s)=\zeta_{\mathbf{Q}}(s) L(s, \psi)
$$

for $\operatorname{Re}(s)>1$.
Let us conclude with an interesting refinement on the embeddability of K into $\mathbf{Q}\left(\zeta_{D}\right)$:
Theorem 3.4. The cyclotomic field $\mathbf{Q}\left(\zeta_{D}\right)$ is the smallest one that contains K, in the sense that a cyclotomic field containing K must contain $\mathbf{Q}\left(\zeta_{D}\right)$.

This theorem admits a very simple conceptual proof via local ramification considerations once the machinery of class field theory is available.

Proof. Since the intersection $\mathbf{Q}\left(\zeta_{n}\right) \cap \mathbf{Q}\left(\zeta_{m}\right)$ inside of an algebraic closure of \mathbf{Q} is equal to $\mathbf{Q}\left(\zeta_{(n, m)}\right)$ (with $n, m \in \mathbf{Z}$ nonzero), it suffices to prove that K is not contained in any proper cyclotomic subfields of $\mathbf{Q}\left(\zeta_{D}\right)$. Recall that $\mathbf{Q}\left(\zeta_{n}\right)=\mathbf{Q}\left(\zeta_{m}\right)$ inside of an algebraic closure of \mathbf{Q} if and only if either $|n|=|m|,|n|=2|m|$ with odd m, or $|m|=2|n|$ with odd n. Since D is either odd or a multiple of 4 , it follows that a proper cyclotomic subfield of $\mathbf{Q}\left(\zeta_{D}\right)$ is precisely a cyclotomic field of the form $\mathbf{Q}\left(\zeta_{n}\right)$ with n a proper (possibly negative) divisor of D. It is therefore necessary and sufficient to show that the quadratic character $(D \mid \cdot)$ on $(\mathbf{Z} / D \mathbf{Z})^{\times}$does not factor through the projection $(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow(\mathbf{Z} / \delta \mathbf{Z})^{\times}$for a proper (possibly negative) divisor δ of D.

We write $D=\delta \delta^{\prime}$, and by shifting prime factors into δ we may assume δ^{\prime} is prime. First assume δ^{\prime} is odd, so $\operatorname{gcd}\left(\delta, \delta^{\prime}\right)=1$. We may suppose $\delta^{\prime}=(-1 \mid p) p$ for an odd prime p, so $\delta^{\prime} \equiv 1 \bmod 4$. Since $(D \mid \cdot)=(\delta \mid \cdot)\left(\delta^{\prime} \mid \cdot\right)$ as functions on the set of integers relatively prime to D, and $(\delta \mid n)$ only depends on $n \bmod \delta$, we conclude that for nonzero n relatively prime to D the function $\left(\delta^{\prime} \mid n\right)$ only depends on $n \bmod \delta$. However, since δ^{\prime} is an odd prime we know that $\left(\delta^{\prime} \mid n\right)$ also only depends on $n \bmod \delta^{\prime}$. In other words, the homomorphism $\left(\delta^{\prime} \mid \cdot\right):(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow\langle \pm 1\rangle$ factors through both projections

$$
(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow(\mathbf{Z} / \delta \mathbf{Z})^{\times}, \quad(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow\left(\mathbf{Z} / \delta^{\prime} \mathbf{Z}\right)^{\times}
$$

Consideration of primary components of $\mathbf{Z} / D \mathbf{Z}$ shows that the kernels of these two projections generate $(\mathbf{Z} / D \mathbf{Z})^{\times}$because $\operatorname{gcd}\left(\delta, \delta^{\prime}\right)=1$, and hence it would follow that $\left(\delta^{\prime} \mid n\right)=1$ for all n relatively prime to D. Since the map $(\mathbf{Z} / D \mathbf{Z})^{\times} \rightarrow\left(\mathbf{Z} / \delta^{\prime} \mathbf{Z}\right)^{\times}$is surjective, it follows that $\left(\delta^{\prime} \mid n\right)=1$ for all n relatively prime to δ^{\prime}. Since $\delta^{\prime}=(-1 \mid p) p \equiv 1 \bmod 4$ for an odd prime p, Jacobi reciprocity gives $\left(\delta^{\prime} \mid n\right)=\left(n \mid \delta^{\prime}\right)$ for any odd positive integer n relatively prime to δ^{\prime}. We can find such n representing any nonzero residue class modulo δ^{\prime}, and so in particular by taking a non-square residue class we find such n for which $\left(\delta^{\prime} \mid n\right)=-1$. This gives a contradiction.

Now it remains to consider the case when $\delta^{\prime}= \pm 2$, so in particular $D=4 d$ for a squarefree integer $d \equiv 2,3 \bmod 4$. We have to deduce a contradiction if $(D \mid n)$ only depends on $n \bmod 2 d$. By factoring D into a product of even and odd parts, a simple argument as above with the Chinese remainder theorem implies that if d is odd then $(-4 \mid n)$ only depends on $n \bmod 2$ for odd n (that is, $(-4 \mid n)=1$ for all odd $n)$ and that if d is even then $(8 \mid n)=(2 \mid n)$ only depends on $n \bmod 4$ for odd n. Since $(-4 \mid-1)=-1$ and $(2 \mid 5)=-1$, we get a contradiction in both cases.

