
Math 676. Quadratic characters associated to quadratic fields
The aim of this handout is to describe the quadratic Dirichlet character naturally associated to a quadratic

field, and to express it in terms of quadratic residue symbols.

1. Link with cyclotomic fields

Let K be a quadratic field with discriminant D ∈ Z, so D ≡ 0, 1 mod 4 and K = Q(
√
D) = Q(

√
d)

for a unique squarefree d 6= 1 with D = 4d for even D (with d ≡ 2, 3 mod 4) and D = d for odd D (with
d ≡ 1 mod 4).

Lemma 1.1. The field K embeds as a subfield of Q(ζD).

Since D may be negative, we make the convention that Q(ζn) means Q(ζ|n|) for any nonzero integer n.
For any n < 0 we may write Xn − 1 = −X |n|(X−n − 1), so we have Gal(Q(ζn)/Q) ' (Z/nZ)× for any
nonzero n ∈ Z.

Proof. First assume D is odd, so D = d ≡ 1 mod 4. Since d 6= 1, we have d 6= ±1 and hence d = ±
∏
pi for

a non-empty finite set of pairwise distinct odd primes pi. For each i let qi = (−1|pi)pi, so qi ≡ 1 mod 4 and
D = ±

∏
qi. Since D, qi ≡ 1 mod 4, there is no sign discrepancy: D =

∏
qi. Clearly Q(ζD) contains Q(ζpi),

and by Exercise 1 in Homework 5 this latter cyclotomic field contains Q(
√
qi). Hence, each qi is a square in

Q(ζD), and so D =
∏
qi is also a square in Q(ζD). That is, K = Q(

√
D) embeds into Q(ζD).

Now assume D is even, so D = 4d with a squarefree d ≡ 2, 3 mod 4. The case d = −1 is trivial (as
Q(
√
−1) = Q(ζ4)), so we may assume d is a non-unit. Let d = ±2a ·

∏
pi be the prime factorization with

odd positive primes pi and a = 0, 1. Let qi = (−1|pi)pi as above, so d = ±2a ·
∏
qi. The field Q(ζD) contains

Q(ζpi), and hence (as above) qi is a square in Q(ζD). Also, since 4|D we see that Q(ζ4) = Q(
√
−1) is

contained in Q(ζD), so −1 is a square in Q(ζD). Hence, ±
∏
qi is a square in Q(ζD) for both signs. This

settles the case of odd d, and if d is even then 8|D and hence Q(ζD) contains Q(ζ8), so 2 is also a square in
Q(ζD) in such cases. Thus, d is a square in Q(ζD) for even d as well. �

There is a natural isomorphism Gal(Q(ζD)/Q) ' (Z/DZ)× given by σ 7→ nσ where σ(ζ) = ζnσ for all
elements ζ in the cyclic group of Dth roots of unity in Q(ζD). (Here we use that the automorphism group
of a cyclic group of order D is canonically identified with (Z/DZ)× for any positive integer D.) By the
preceding lemma, there is a natural surjection

χK : (Z/DZ)× = Gal(Q(ζD)/Q) � Gal(K/Q) = 〈±1〉,

where the final equality is the unique isomorphism between cyclic groups of order 2. The problem we want
to solve is this: explicitly describe χK .

For any nonzero integer n relatively prime to D, we shall abuse notation and write χK(n) to denote
χK(n mod D). This is a multiplicative function on the set of nonzero integers relatively prime to D. In
particular, to “know” χK it suffices to determine χK(p) for positive primes p - D and to determine χK(−1).
We first address χK(−1). For any integer n satisfying |n| > 2, the field Q(ζn) is a CM field and under the
isomorphism

Gal(Q(ζn)/Q) ' (Z/nZ)×

the intrinsic complex conjugation goes over to the element −1 mod n because ζ = ζ−1 for any root of unity
ζ in C. Thus, by the definition of χK we see that χK(−1) = 1 if and only if complex conjugation on Q(ζD)
has trivial restriction on the quadratic subfield K, which is to say that K is a real quadratic field. In other
words, χK(−1) = 1 if D > 0 and χK(−1) = −1 if D < 0. This proves:

Lemma 1.2. For any quadratic field K with discriminant D, χK(−1) = sign(D).
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2. Frobenius elements

Now we turn our attention to the computation of χK(p) for positive primes p - D. The computation of
χK(−1) rested on identifying the Galois automorphism −1 mod D on Q(ζD) with complex conjugation, and
the fact that this restricts to complex conjugation on quadratic subfields. We require an analogous interpre-
tation of p mod D as a Galois automorphism of Q(ζD) in a manner that is well-behaved with restriction to
quadratic subfields. The interpretation will rest on Frobenius elements.

Since p - D, pZ is unramified in Z[ζD]. Thus, for any p over p in Z[ζD] we get (by Exercise 5(v) in Homework
11) a canonical Frobenius element φp|pZ in Gal(Q(ζD)/Q) that generates D(p|pZ) = Gal(Q(ζD)p/Qp) and is
uniquely characterized in this decomposition group via the condition that on the residue field κ(p) it induces
the automorphism x 7→ x#κ(pZ) = xp. Recall the following general behavior of decomposition groups and
Frobenius elements with respect to conjugation:

Lemma 2.1. Let K ′/K be a Galois extension of a global field K and let v be a non-archimedean place
on K with v′ a place over v on K ′. For g ∈ Gal(K ′/K), let g(v′) be the place on K ′ over v given by
|x′|g(v′) = |g−1(x′)|v′ (so in the case that K ′/K is finite with v′ arising from a prime ideal pv′ of the integral
closure of the uncompleted discrete valuation ring OK,v, g(v′) arises from the prime ideal g(pv′)). We have

D(g(v′)|v) = gD(v′|v)g−1, I(g(v′)|v) = gI(v′|v)g−1,

and the resulting identification

D(g(v′)|v)/I(g(v′)|v) = gD(v′|v)g−1/gI(v′|v)g−1

carries φ(g(v′)|v) to gφ(v′|v)g−1.
In particular, if Gal(K ′/K) is abelian then the subgroups D(v′|v) and I(v′|v) in Gal(K ′/K) are indepen-

dent of the choice v′ over v, and the element φ(v′|v) ∈ D(v′|v)/I(v′|v) is independent of v′ over v.

Proof. This is a simple exercise in unwinding definitions, as well as using the unique characterization of the
Frobenius element via its effect on residue fields. (In particular, one uses that if q = pa with a > 0 then the
qth-power map is functorial with respect to all maps between commutative Fp-algebras.) �

The most important case of Lemma 2.1 is when v is unramified in K ′, in which case I(v′|v) = 1 and hence
φ(v′|v) is an element of Gal(K ′/K) whose conjugacy class only depends on v. Due to this lemma, in the
case of abelian extensions of a global field we usually write Dv, Iv, and φv rather than D(v′|v), I(v′|v), and
φ(v′|v), and we call these respectively the decomposition group at v, the inertia group at v, and the (relative)
Frobenius element at v in Gal(K ′/K).

Let n be a nonzero integer. For any positive prime p - n, we let Frobp denote the Frobenius element at
pZ in the abelian Galois group Gal(Q(ζn)/Q). This element fixes every prime p over pZ and induces the
pth-power automorphism on κ(p) = Z[ζn]/p because #κ(pZ) = p (since p > 0).

Lemma 2.2. For any nonzero integer n and any positive prime p - n, under the isomorphism

Gal(Q(ζn)/Q) ' (Z/nZ)×

the Frobenius element Frobp at the prime pZ goes over to p mod n.

Observe that p mod n 6= −p mod n for n > 2, so the description of the Frobenius element as a specific
residue class modulo n is sensitive to the distinction between the two generators ±p of pZ.

Proof. By the definition of the isomorphism to (Z/nZ)×, the automorphism σp giving rise to the residue
class p mod n acts on Z[ζn] via ζn 7→ ζp

n. We pick a prime p over p and we need to show that σp(p) = p
and that the automorphism induced by σp on the finite field κ(p) = Z[ζn]/p is the pth-power map. The
endomorphism induced by σp on the Fp-algebra Z[ζn]/(p) = Fp[T ]/(Φn(T )) sends T to T p, and so it must
be the pth-power map. This map fixes all idempotents, and so the bijection between prime factors of (p)
and primitive idempotents of Z[ζn]/(p) implies that σp fixes all primes p over pZ. Moreover, on the quotient
κ(p) of Z[ζn]/(p) the automorphism induced by σp must clearly be the pth-power map, so σp = φp|pZ as
desired. �
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To exploit the fact that the isomorphism Gal(Q(ζD)/Q) ' (Z/DZ)× carries Frobp to p mod D for positive
primes p - D, we need to see how Frobenius elements behave with respect to quotients of Galois groups.

Lemma 2.3. Let K ′′/K ′/K be a tower of finite extensions of global fields, with K ′′ and K ′ each Galois
over K. If v′′ on K ′′ is a non-archimedean place over places v′ on K ′ and v on K, then the quotient map
Gal(K ′′/K) � Gal(K ′/K) carries D(v′′|v) onto D(v′|v) and carries I(v′′|v) into I(v′|v), with the induced
map

D(v′′|v)/I(v′′|v) � D(v′|v)/I(v′|v)
carrying φ(v′′|v) to φ(v′|v).

In particular, if v is unramified in K ′′ then Gal(K ′′/K) � Gal(K ′/K) carries φ(v′′|v) to φ(v′|v).

Note that we do not claim that I(v′′|v) maps onto I(v′′|v); this is related to the fact that κ(v′′) may be
strictly larger than κ(v′). The final part of this lemma is sometimes referred to as the functoriality of the
Frobenius element with respect to passage to quotients.

Proof. There is an induced tower K ′′
v′′/K ′

v′/Kv of completions, and these are Galois because K ′′
v′′ = K ′′Kv

and K ′
v′ = K ′Kv (why?). Moreover, the inclusions of decomposition groups into the global Galois groups

are identified with the natural maps of Galois groups

Gal(K ′′
v′′/Kv) → Gal(K ′′/K), Gal(K ′

v′/Kv) → Gal(K ′/K),

and it is easy to check that the diagram

Gal(K ′′
v′′/Kv) //

��

Gal(K ′′/K)

��
Gal(K ′

v′/Kv) // Gal(K ′/K)

commutes. The left side is surjective by Galois theory, and so D(v′′|v) → D(v′|v) is surjective.
The natural surjective map Gal(K ′′

v′′/Kv) → Gal(K ′
v′/Kv) of Galois groups of local fields is compatible

with the induced map Aut(κ(v′′)/κ(v)) → Aut(κ(v′)/κ(v)) and so it carries I(v′′|v′) into I(v′|v) and identifies
the induced map of quotients

D(v′′|v)/I(v′′|v) � D(v′|v)/I(v′|v)
with the natural map of Galois groups

Gal(κ(v′′)/κ(v)) � Gal(κ(v′)/κ(v)).

Hence, the desired behavior with respect to Frobenius elements is a consequence of the obvious general fact
that if k′′/k′/k is a tower of finite fields with q = #k then the surjective map Gal(k′′/k) � Gal(k′/k) carries
the qth-power map to the qth-power map. �

The preceding lemma implies that the natural quotient map Gal(Q(ζD)/Q) � Gal(K/Q) carries Frobp

to the Frobenius element φK,p for the prime pZ that is unramified in K. In general, for any finite Galois
extension F ′/F of global fields and any non-archimedean place v′ of F ′ that is unramified over its restriction
v in F , the order of φ(v′|v) in Gal(F ′/F ) is the residual degree f(v′|v) because φ(v′|v) is a generator of the
cyclic group Gal(κ(v′)/κ(v)) of order f(v′|v). In particular, φ(v′|v) is trivial if and only if f(v′|v) = 1. As
a special case, if [F ′ : F ] = 2 then an non-archimedean place v of F that is unramified in F ′ is split (resp.
inert) in F ′ if and only if φv = 1 (resp. φv 6= 1). Thus, for a positive prime p - D we conclude that the
Frobenius element φK,p ∈ Gal(K/Q) is trivial (resp. non-trivial) if and only if pZ is split (resp. inert) in
OK . In view of the definition of χK : (Z/DZ)× → 〈±1〉 via Galois groups, we have proved:

Theorem 2.4. For a positive prime p - D, χK(p) = 1 if and only if pZ is split in OK , and χK(p) = −1 if
and only if pZ is inert in OK .
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3. Jacobi symbols

By Homework 3, Exercise 4(ii), if p is odd then pZ is split in OK if and only if (D|p) = 1 and pZ is inert
in OK if and only if (D|p) = −1. By the same exercise, if p = 2 (so D is odd, as p - D, so D ≡ 1 mod 4)
then 2Z is split in OK if and only if D ≡ 1 mod 8 and 2Z is inert in OK if and only if D ≡ 5 mod 8. Thus,
by Theorem 2.4 we obtain:

Corollary 3.1. For a positive odd prime p - D, χK(p mod D) = (D|p). If D is odd then χK(2 mod D) =
(−1)(D

2−1)/8.

Our earlier result that χK(−1 mod D) expresses the action of complex conjugation on K is analogous to
Corollary 3.1 in the sense that complex conjugation (relative to an embedding into C) is generally considered
to be the “Frobenius element” at a real place (since Gal(C/R) is generated by complex conjugation).

Definition 3.2. Let N be a nonzero integer. The Jacobi symbol (N |·) is the unique 〈±1〉-valued totally
multiplicative function on the set of nonzero integers relatively prime to D such that (N | − 1) = sign(N),
(N |p) is the Legendre symbol for positive odd primes p not dividing N , and (N |2) = (−1)(N

2−1)/8 if N is
odd.

By definition, clearly (NM |n) = (N |n)(M |n) for nonzero integers n,N,M with gcd(n,NM) = 1. (The
only part requiring a check is the case n = 2.) Our preceding work shows that if D is the discriminant of a
quadratic field then (D|n) = χK(n mod D) for nonzero integers n relatively prime to D because both sides
are totally multiplicative in n and they coincide for n = −1 and for n = p a positive prime not dividing
D. This yields a conceptual proof of a non-obvious fact that is often proved in elementary texts by tedious
application of quadratic reciprocity:

Theorem 3.3. Let N be a nonzero integer and write N = ν2N ′ with squarefree N ′. The Jacobi symbol
(N |n) only depends on n mod N ′ if N ≡ 1 mod 4 and on n mod 4N ′ otherwise. In particular, (N |·) is a
well-defined quadratic character on (Z/N ′Z)× if N ≡ 1 mod 4 and on (Z/4N ′Z)× otherwise.

Proof. If N ≡ 1 mod 4 then clearly N ′ ≡ 1 mod 4. By multiplicativity in N , we have (N |n) = (N ′|n) for
nonzero n relatively prime to N , so we conclude that it suffices to replace N with N ′. Hence, we may
assume that N is squarefree. Similarly, using the the isomorphism (Z/NZ)× ' (Z/N1Z)× × (Z/N2Z)× and
the equalities (N |n) = (N1|n)(N2|n) and N ′ = N ′

1N
′
2 if N = N1N2 with gcd(N1, N2) = 1, we may assume

that |N | is prime or N = ±1. The cases N = ±1 are trivial, so it remains to handle exactly one of the cases
N = p or N = −p for each positive prime p. The case N = 2 is clear by inspection, so it suffices to treat the
case N = (−1|p)p ≡ 1 mod 4 for an odd prime p. This case follows from the relationship with χK for the
quadratic field K = Q(

√
N) with discriminant N . �

We may now summarize our conclusion by means of the commutativity of the diagram:

Gal(Q(ζD)/Q) ' //

��

(Z/DZ)×

χD

��
Gal(K/Q) '

// 〈±1〉

where χD = (D|·) is a quadratic character on (Z/DZ)×. Hence, if K is a quadratic field with discriminant
D then for Re(s) > 1 there is an identity

ζK(s) = ζ(s) ·
∏
p-D

(
1− χD(p mod D)

ps

)−1

since χD(p mod D) = 1 for pZ split in OK and χD(p mod D) = −1 for pZ inert in OK . Note that p here is
always understood to denote a positive prime.
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We can express the factorization of ζK in terms that are intrinsic to Gal(K/Q) as follows. We let
ψ : Gal(K/Q) → C× be the unique non-trivial character, and we define

L(s, ψ) =
∏
p-D

(
1− ψ(FrobK,p)

ps

)−1

for Re(s) > 1, with FrobK,p ∈ Gal(K/Q) denoting the Frobenius element at p. Hence,

ζK(s) = ζQ(s)L(s, ψ)

for Re(s) > 1.
Let us conclude with an interesting refinement on the embeddability of K into Q(ζD):

Theorem 3.4. The cyclotomic field Q(ζD) is the smallest one that contains K, in the sense that a cyclotomic
field containing K must contain Q(ζD).

This theorem admits a very simple conceptual proof via local ramification considerations once the ma-
chinery of class field theory is available.

Proof. Since the intersection Q(ζn) ∩Q(ζm) inside of an algebraic closure of Q is equal to Q(ζ(n,m)) (with
n,m ∈ Z nonzero), it suffices to prove that K is not contained in any proper cyclotomic subfields of Q(ζD).
Recall that Q(ζn) = Q(ζm) inside of an algebraic closure of Q if and only if either |n| = |m|, |n| = 2|m| with
odd m, or |m| = 2|n| with odd n. Since D is either odd or a multiple of 4, it follows that a proper cyclotomic
subfield of Q(ζD) is precisely a cyclotomic field of the form Q(ζn) with n a proper (possibly negative) divisor
of D. It is therefore necessary and sufficient to show that the quadratic character (D|·) on (Z/DZ)× does
not factor through the projection (Z/DZ)× � (Z/δZ)× for a proper (possibly negative) divisor δ of D.

We write D = δδ′, and by shifting prime factors into δ we may assume δ′ is prime. First assume δ′ is odd,
so gcd(δ, δ′) = 1. We may suppose δ′ = (−1|p)p for an odd prime p, so δ′ ≡ 1 mod 4. Since (D|·) = (δ|·)(δ′|·)
as functions on the set of integers relatively prime to D, and (δ|n) only depends on n mod δ, we conclude
that for nonzero n relatively prime to D the function (δ′|n) only depends on n mod δ. However, since δ′

is an odd prime we know that (δ′|n) also only depends on n mod δ′. In other words, the homomorphism
(δ′|·) : (Z/DZ)× → 〈±1〉 factors through both projections

(Z/DZ)× � (Z/δZ)×, (Z/DZ)× � (Z/δ′Z)×.

Consideration of primary components of Z/DZ shows that the kernels of these two projections generate
(Z/DZ)× because gcd(δ, δ′) = 1, and hence it would follow that (δ′|n) = 1 for all n relatively prime to D.
Since the map (Z/DZ)× → (Z/δ′Z)× is surjective, it follows that (δ′|n) = 1 for all n relatively prime to
δ′. Since δ′ = (−1|p)p ≡ 1 mod 4 for an odd prime p, Jacobi reciprocity gives (δ′|n) = (n|δ′) for any odd
positive integer n relatively prime to δ′. We can find such n representing any nonzero residue class modulo
δ′, and so in particular by taking a non-square residue class we find such n for which (δ′|n) = −1. This gives
a contradiction.

Now it remains to consider the case when δ′ = ±2, so in particular D = 4d for a squarefree integer
d ≡ 2, 3 mod 4. We have to deduce a contradiction if (D|n) only depends on n mod 2d. By factoring D into
a product of even and odd parts, a simple argument as above with the Chinese remainder theorem implies
that if d is odd then (−4|n) only depends on n mod 2 for odd n (that is, (−4|n) = 1 for all odd n) and that
if d is even then (8|n) = (2|n) only depends on n mod 4 for odd n. Since (−4| − 1) = −1 and (2|5) = −1, we
get a contradiction in both cases. �


