Math 676. Some vertical factorizations

Let us recall the general result on "vertical factorization" as proved in class. We let A be a Dedekind domain with fraction field F, and let F^{\prime} / F be a finite separable extension such that the integral closure A^{\prime} of A in F^{\prime} is monogenic; that is, $A^{\prime}=A\left[a^{\prime}\right]$ for some $a^{\prime} \in A^{\prime}$. (After we study the theory of completions later on, we will see that the monogenicity hypothesis is always satisfied when A is a discrete valuation ring.) The minimal polynomial f of a^{\prime} over F lies in $A[X]$, and the map of A-algebras $A[X] /(f) \rightarrow A^{\prime}$ uniquely determined by $X \mapsto a^{\prime}$ is an isomorphism. Indeed, it is visibly surjective, and to check injectivity we note that the source is a finite free A-module and so it is enough to verify injectivity after applying $F \otimes_{A}(\cdot)$. Such extension of scalars gives rise to the map $F[X] /(f) \rightarrow F^{\prime}$, and this is indeed injective (even an isomorphism) because it is a map of fields (as f is irreducible in $F[X]$).

The result from class was that if \mathfrak{p} is a (nonzero) prime ideal of A and the reduction $\bar{f} \in \kappa(\mathfrak{p})[X]$ of f has factorization $\bar{f}=\prod_{i=1}^{g} \bar{f}_{i}^{e_{i}}$ for pairwise distinct monic irreducibles \bar{f}_{i} then upon choosing monic lifts $f_{i} \in A[X]$ of \bar{f}_{i} for all i then there is the prime factorization

$$
\mathfrak{p} A^{\prime}=\mathfrak{P}_{1}^{e_{1}} \cdots \mathfrak{P}_{g}^{e_{g}}
$$

with $\mathfrak{P}_{i}=\left(\mathfrak{p}, f_{i}\left(a^{\prime}\right)\right)$ and $\kappa\left(\mathfrak{P}_{i}\right) \simeq \kappa(\mathfrak{p})[X] /\left(\bar{f}_{i}\right)$ over $\kappa(\mathfrak{p})$ for all i. In particular, $\left[\kappa\left(\mathfrak{P}_{i}\right): \kappa(\mathfrak{p})\right]=\operatorname{deg} \bar{f}_{i}$ for all i. In view of the fact that monogenicity always holds when A is local, and that the problem of factoring $\mathfrak{p} A^{\prime}$ may be worked out after first localizing throughout at the multiplicative set $A-\mathfrak{p}$, it follows that by first localizing to $A_{\mathfrak{p}}$ the problem of vertical factorization of a prime may always be carried out by the above procedure (provided that we can find an a^{\prime} whose existence is guaranteed by general theory; in practice, this amounts to carrying out an instance of weak approximation).

We wish to work out some examples of this theorem with $A=\mathbf{Z}$. In class, the general case of factorization of $p \mathbf{Z}$ in quadratic fields K was discussed; recall that \mathscr{O}_{K} is always monogenic over \mathbf{Z} in such cases. In Homework 4, Exercise 1, you showed that when carrying out prime factorization in a Galois extension one has that $e\left(\mathfrak{P}_{i} \mid \mathfrak{p}\right)$ and $f\left(\mathfrak{P}_{i} \mid \mathfrak{p}\right)$ are independent of i. We will illustrate the case of a non-Galois extension of \mathbf{Q} as well as the general case of cyclotomic extensions of \mathbf{Q}.

1. A non-Galois example

Let $K=\mathbf{Q}(\alpha)$ with $\alpha^{3}+10 \alpha+1=0$. The cubic polynomial $f=X^{3}+10 X+1 \in \mathbf{Z}[X]$ is irreducible over \mathbf{Q} because it does not have a rational root, and $\mathbf{Z}[\alpha]$ is an order in \mathscr{O}_{K}. A direct calculation shows $\operatorname{disc}(\mathbf{Z}[\alpha] / \mathbf{Z})=-4027$, and this is prime. Hence, $\mathscr{O}_{K}=\mathbf{Z}[\alpha]$ is monogenic and so the preceding general technique is applicable and the only ramified prime is 4027.

The prime $p=2$ is unramified, and in fact

$$
X^{3}+10 X+1 \equiv(X+1)\left(X^{2}+X+1\right) \bmod 2
$$

is the irreducible factorization in $\mathbf{F}_{2}[X]$. We use the obvious lifts of these monic irreducibles to $\mathbf{Z}[X]$, so $2 \mathscr{O}_{K}=(2, \alpha+1)\left(2, \alpha^{2}+\alpha+1\right)=\mathfrak{P}_{1} \mathfrak{P}_{2}$ with $f\left(\mathfrak{P}_{1} \mid 2 \mathbf{Z}\right)=\operatorname{deg}(X+1)=1$ and $f\left(\mathfrak{P}_{2} \mid 2 \mathbf{Z}\right)=\operatorname{deg}\left(X^{2}+X+1\right)=2$. Note that $\sum e\left(\mathfrak{P}_{i} \mid 2 \mathbf{Z}\right) f\left(\mathfrak{P}_{i} \mid 2 \mathbf{Z}\right)=1+2=3=[K: \mathbf{Q}]$, as it should be.

The prime $p=4027$ is ramified, and in fact one checks

$$
X^{3}+10 X+1 \equiv(X+2215)^{2}(X+3624) \bmod 4027
$$

in $\mathbf{F}_{4027}[X]$. Using the obvious lifts of these monic linear factors to $\mathbf{Z}[X]$, we get

$$
4027 \mathscr{O}_{K}=(4027, \alpha+2215)^{2}(4027, \alpha+3624)=\mathfrak{Q}_{1}^{2} \mathfrak{Q}_{2}
$$

so $e\left(\mathfrak{Q}_{1} \mid 4027 \mathbf{Z}\right)=2$ and $e\left(\mathfrak{Q}_{2} \mid 4027 \mathbf{Z}\right)=1$ with both \mathfrak{Q}_{i} 's having residue field degree 1 over \mathbf{F}_{4027}. Note that $\sum e\left(\mathfrak{Q}_{i} \mid 4027 \mathbf{Z}\right) f\left(\mathfrak{Q}_{i} \mid 4027 \mathbf{Z}\right)=2+1=3=[K: \mathbf{Q}]$, as it should be.

2. Cyclotomic fields

Let $K=\mathbf{Q}\left(\zeta_{n}\right)$ be a splitting field of $X^{n}-1$ for a positive integer n. Letting $\Phi_{n} \in \mathbf{Z}[X]$ denote the nth cyclotomic polynomial, this is the minimal polynomial of ζ_{n} over \mathbf{Q}, and $\mathbf{Z}\left[\zeta_{n}\right] \simeq \mathbf{Z}[X] /\left(\Phi_{n}\right)$ is an order in \mathscr{O}_{K}. We have proved earlier that $\mathbf{Z}\left[\zeta_{n}\right]=\mathscr{O}_{K}$ if n is a prime power, and we will soon prove that this equality
holds in general, with $\operatorname{disc}(K / \mathbf{Q})$ divisible by exactly the primes that divide n (so the primes of \mathbf{Q} that ramify in K are precisely the prime factors of n, though this latter fact can be proved by other methods once one knows a bit more about general ramification theory). For now we will grant the equality $\mathbf{Z}\left[\zeta_{n}\right]=\mathscr{O}_{K}$, so in particular \mathscr{O}_{K} is monogenic over \mathbf{Z}. We wish to work out how most primes of \mathbf{Z} factor in \mathscr{O}_{K}. The case of ramified primes is a little complicated, so we just work out one ramified case and then we work out the general unramified case.

Let us first consider the special case $n=p^{e}$ with $e \geq 1$ and we wish to study how p factors in $\mathscr{O}_{K}=\mathbf{Z}\left[\zeta_{p^{e}}\right]$. (Recall that we have already proved that this is the full ring of integers in $K=\mathbf{Q}\left(\zeta_{p^{e}}\right)$.) The general procedure for monogenic cases tells us that we should first factor $\Phi_{p^{e}}$ in $\mathbf{F}_{p}[X]$. Since $X^{p^{e}}-1=\Phi_{p^{e}} \cdot\left(X^{p^{e-1}}-1\right)$ in $\mathbf{Z}[X]$, by passing to $\mathbf{F}_{p}[X]$ we get $(X-1)^{p^{e}}=\Phi_{p^{e}}(X-1)^{p^{e-1}}$ in $\mathbf{F}_{p}[X]$, and so $\Phi_{p^{e}} \equiv(X-1)^{p^{e-1}(p-1)} \bmod p$. Thus, $p \mathbf{Z}\left[\zeta_{p^{e}}\right]=\mathfrak{P}^{p^{e-1}}(p-1)$ with $\mathfrak{P}=\left(p, \zeta_{p^{e}}-1\right)$, and so $e(\mathfrak{P} \mid p \mathbf{Z})=p^{e-1}(p-1)$ and $f(\mathfrak{P} \mid p \mathbf{Z})=1$.

In fact, we can describe \mathfrak{P} more succinctly: $\mathfrak{P}=\left(\zeta_{p^{e}}-1\right)$. That is, we claim that p already lies in the principal ideal $\left(\zeta_{p^{e}}-1\right)$ of $\mathbf{Z}\left[\zeta_{p^{e}}\right]$. To see this most easily, we just have to show that the quotient $\mathbf{Z}\left[\zeta_{p^{e}}\right] /\left(\zeta_{p^{e}}-1\right)$ is killed by p. In fact, via the isomorphism $\mathbf{Z}\left[\zeta_{p^{e}}\right] \simeq \mathbf{Z}[X] /\left(\Phi_{p^{e}}\right)$ we have

$$
\mathbf{Z}\left[\zeta_{p^{e}}\right] /\left(\zeta_{p^{e}}-1\right) \simeq \mathbf{Z}[X] /\left(\Phi_{p^{e}}, X-1\right) \simeq \mathbf{Z} /\left(\Phi_{p^{e}}(1)\right)=\mathbf{Z} / p \mathbf{Z}
$$

because $\Phi_{p^{e}}(1)=p\left(\right.$ as $\Phi_{p^{e}}(X)=\Phi_{p}\left(X^{p^{e-1}}\right)$ with $\left.\Phi_{p}(T)=\left(T^{p}-1\right) /(T-1)=\sum_{0 \leq j<p} T^{j}\right)$.
Now we turn to the general unramified case with $K=\mathbf{Q}\left(\zeta_{n}\right)$ for any $n \geq 1$. We take p to be a prime not dividing n, so

$$
p \mathscr{O}_{K}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{g}
$$

with $\phi(n)=[K: \mathbf{Q}]=f g$ with f denoting the common residue field degree $\left[\kappa\left(\mathfrak{p}_{i}\right): \mathbf{F}_{p}\right]$ over $\mathbf{F}_{p}=\kappa(p \mathbf{Z})$. We need to determine f (and then we know g).
Lemma 2.1. The order of p in $(\mathbf{Z} / n \mathbf{Z})^{\times}$equals f.
Proof. Consider the factorization $\Phi_{n}=h_{1} \cdots h_{g}$ into monic irreducibles in $\mathbf{F}_{p}[X]$, with no extra multiplicities. (Note that a priori $\Phi_{n} \bmod p$ is separable over \mathbf{F}_{p} because Φ_{n} divides $X^{n}-1$ and $p \nmid n$). We have $f=$ $\operatorname{deg}\left(h_{j}\right)$ for any j, so we need to compute the common degree of the h_{j} 's. By construction, the finite field $k=\mathbf{F}_{p}[X] /\left(h_{j}\right)$ with order p^{f} is a quotient of $\mathbf{Z}\left[\zeta_{n}\right]$ and so k is generated over \mathbf{F}_{p} by a primitive nth root of unity ζ (that is, an nth root of unity whose powers provide a splitting of $X^{n}-1$ into monic linear factors). By Galois theory for finite fields, since $\operatorname{Gal}\left(k / \mathbf{F}_{p}\right)$ is generated by the Frobenius element whose order is f we have $\zeta^{p^{i}}=\zeta$ if and only if $f \mid i$. However, since ζ is a primitive nth root of unity in characteristic $p \nmid n$ we have $\zeta^{a}=\zeta^{b}$ if and only if $a \equiv b \bmod n$. Hence, $f \mid i$ if and only if $p^{i} \equiv 1 \bmod n$. This says exactly that f is the order of $p \in(\mathbf{Z} / n \mathbf{Z})^{\times}$.

Of course, in practice if we were to want to actually compute the primes over p in $\mathbf{Z}\left[\zeta_{n}\right]$ (for $p \nmid n$) we would have to compute the h_{j} 's in $\mathbf{F}_{p}[X]$ and lift each h_{j} to a monic $H_{j} \in \mathbf{Z}[X]$. The ideals $\left(p, H_{j}\left(\zeta_{n}\right)\right)$ of $\mathbf{Z}\left[\zeta_{n}\right]$ would then be the primes over $p \mathbf{Z}$.

