
Math 676. Some vertical factorizations

Let us recall the general result on “vertical factorization” as proved in class. We let A be a Dedekind
domain with fraction field F , and let F ′/F be a finite separable extension such that the integral closure A′

of A in F ′ is monogenic; that is, A′ = A[a′] for some a′ ∈ A′. (After we study the theory of completions
later on, we will see that the monogenicity hypothesis is always satisfied when A is a discrete valuation ring.)
The minimal polynomial f of a′ over F lies in A[X], and the map of A-algebras A[X]/(f) → A′ uniquely
determined by X 7→ a′ is an isomorphism. Indeed, it is visibly surjective, and to check injectivity we note
that the source is a finite free A-module and so it is enough to verify injectivity after applying F ⊗A (·). Such
extension of scalars gives rise to the map F [X]/(f)→ F ′, and this is indeed injective (even an isomorphism)
because it is a map of fields (as f is irreducible in F [X]).

The result from class was that if p is a (nonzero) prime ideal of A and the reduction f ∈ κ(p)[X] of f
has factorization f =

∏g
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i for pairwise distinct monic irreducibles f i then upon choosing monic lifts

fi ∈ A[X] of f i for all i then there is the prime factorization

pA′ = Pe1
1 · · ·Peg

g

with Pi = (p, fi(a′)) and κ(Pi) ' κ(p)[X]/(f i) over κ(p) for all i. In particular, [κ(Pi) : κ(p)] = deg f i for
all i. In view of the fact that monogenicity always holds when A is local, and that the problem of factoring
pA′ may be worked out after first localizing throughout at the multiplicative set A − p, it follows that by
first localizing to Ap the problem of vertical factorization of a prime may always be carried out by the above
procedure (provided that we can find an a′ whose existence is guaranteed by general theory; in practice, this
amounts to carrying out an instance of weak approximation).

We wish to work out some examples of this theorem with A = Z. In class, the general case of factorization
of pZ in quadratic fields K was discussed; recall that OK is always monogenic over Z in such cases. In
Homework 4, Exercise 1, you showed that when carrying out prime factorization in a Galois extension one
has that e(Pi|p) and f(Pi|p) are independent of i. We will illustrate the case of a non-Galois extension of
Q as well as the general case of cyclotomic extensions of Q.

1. A non-Galois example

Let K = Q(α) with α3 + 10α + 1 = 0. The cubic polynomial f = X3 + 10X + 1 ∈ Z[X] is irreducible
over Q because it does not have a rational root, and Z[α] is an order in OK . A direct calculation shows
disc(Z[α]/Z) = −4027, and this is prime. Hence, OK = Z[α] is monogenic and so the preceding general
technique is applicable and the only ramified prime is 4027.

The prime p = 2 is unramified, and in fact

X3 + 10X + 1 ≡ (X + 1)(X2 +X + 1) mod 2

is the irreducible factorization in F2[X]. We use the obvious lifts of these monic irreducibles to Z[X], so
2OK = (2, α+1)(2, α2+α+1) = P1P2 with f(P1|2Z) = deg(X+1) = 1 and f(P2|2Z) = deg(X2+X+1) = 2.
Note that

∑
e(Pi|2Z)f(Pi|2Z) = 1 + 2 = 3 = [K : Q], as it should be.

The prime p = 4027 is ramified, and in fact one checks

X3 + 10X + 1 ≡ (X + 2215)2(X + 3624) mod 4027

in F4027[X]. Using the obvious lifts of these monic linear factors to Z[X], we get

4027OK = (4027, α+ 2215)2(4027, α+ 3624) = Q2
1Q2,

so e(Q1|4027Z) = 2 and e(Q2|4027Z) = 1 with both Qi’s having residue field degree 1 over F4027. Note that∑
e(Qi|4027Z)f(Qi|4027Z) = 2 + 1 = 3 = [K : Q], as it should be.

2. Cyclotomic fields

Let K = Q(ζn) be a splitting field of Xn − 1 for a positive integer n. Letting Φn ∈ Z[X] denote the nth
cyclotomic polynomial, this is the minimal polynomial of ζn over Q, and Z[ζn] ' Z[X]/(Φn) is an order in
OK . We have proved earlier that Z[ζn] = OK if n is a prime power, and we will soon prove that this equality
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holds in general, with disc(K/Q) divisible by exactly the primes that divide n (so the primes of Q that
ramify in K are precisely the prime factors of n, though this latter fact can be proved by other methods once
one knows a bit more about general ramification theory). For now we will grant the equality Z[ζn] = OK , so
in particular OK is monogenic over Z. We wish to work out how most primes of Z factor in OK . The case
of ramified primes is a little complicated, so we just work out one ramified case and then we work out the
general unramified case.

Let us first consider the special case n = pe with e ≥ 1 and we wish to study how p factors in OK = Z[ζpe ].
(Recall that we have already proved that this is the full ring of integers inK = Q(ζpe).) The general procedure
for monogenic cases tells us that we should first factor Φpe in Fp[X]. Since Xpe − 1 = Φpe · (Xpe−1 − 1) in
Z[X], by passing to Fp[X] we get (X−1)p

e

= Φpe(X−1)p
e−1

in Fp[X], and so Φpe ≡ (X−1)p
e−1(p−1) mod p.

Thus, pZ[ζpe ] = Ppe−1(p−1) with P = (p, ζpe − 1), and so e(P|pZ) = pe−1(p− 1) and f(P|pZ) = 1.
In fact, we can describe P more succinctly: P = (ζpe − 1). That is, we claim that p already lies in

the principal ideal (ζpe − 1) of Z[ζpe ]. To see this most easily, we just have to show that the quotient
Z[ζpe ]/(ζpe − 1) is killed by p. In fact, via the isomorphism Z[ζpe ] ' Z[X]/(Φpe) we have

Z[ζpe ]/(ζpe − 1) ' Z[X]/(Φpe , X − 1) ' Z/(Φpe(1)) = Z/pZ

because Φpe(1) = p (as Φpe(X) = Φp(Xpe−1
) with Φp(T ) = (T p − 1)/(T − 1) =

∑
0≤j<p T

j).
Now we turn to the general unramified case with K = Q(ζn) for any n ≥ 1. We take p to be a prime not

dividing n, so
pOK = p1 · · · pg

with φ(n) = [K : Q] = fg with f denoting the common residue field degree [κ(pi) : Fp] over Fp = κ(pZ).
We need to determine f (and then we know g).
Lemma 2.1. The order of p in (Z/nZ)× equals f .

Proof. Consider the factorization Φn = h1 · · ·hg into monic irreducibles in Fp[X], with no extra multiplicities.
(Note that a priori Φn mod p is separable over Fp because Φn divides Xn − 1 and p - n). We have f =
deg(hj) for any j, so we need to compute the common degree of the hj ’s. By construction, the finite field
k = Fp[X]/(hj) with order pf is a quotient of Z[ζn] and so k is generated over Fp by a primitive nth root of
unity ζ (that is, an nth root of unity whose powers provide a splitting of Xn − 1 into monic linear factors).
By Galois theory for finite fields, since Gal(k/Fp) is generated by the Frobenius element whose order is f
we have ζp

i

= ζ if and only if f |i. However, since ζ is a primitive nth root of unity in characteristic p - n we
have ζa = ζb if and only if a ≡ b mod n. Hence, f |i if and only if pi ≡ 1 mod n. This says exactly that f is
the order of p ∈ (Z/nZ)×. �

Of course, in practice if we were to want to actually compute the primes over p in Z[ζn] (for p - n) we
would have to compute the hj ’s in Fp[X] and lift each hj to a monic Hj ∈ Z[X]. The ideals (p,Hj(ζn)) of
Z[ζn] would then be the primes over pZ.


