MATH 676. SOME VERTICAL FACTORIZATIONS

Let us recall the general result on “vertical factorization” as proved in class. We let A be a Dedekind
domain with fraction field F', and let F’/F be a finite separable extension such that the integral closure A’
of A in F’ is monogenic; that is, A’ = Ala’] for some o’ € A’. (After we study the theory of completions
later on, we will see that the monogenicity hypothesis is always satisfied when A is a discrete valuation ring.)
The minimal polynomial f of a’ over F lies in A[X], and the map of A-algebras A[X]/(f) — A’ uniquely
determined by X +— a’ is an isomorphism. Indeed, it is visibly surjective, and to check injectivity we note
that the source is a finite free A-module and so it is enough to verify injectivity after applying FF® 4 (). Such
extension of scalars gives rise to the map F[X]/(f) — F’, and this is indeed injective (even an isomorphism)
because it is a map of fields (as f is irreducible in F[X]).

The result from class was that if p is a (nonzero) prime ideal of A and the reduction f € x(p)[X] of f
has factorization f = [T, 7; for pairwise distinct monic irreducibles f, then upon choosing monic lifts
fi € A[X] of f, for all i then there is the prime factorization

pA’: i‘l...{p;g

with B; = (p, fi(a')) and k(B;) ~ k(p)[X]/(f;) over k(p) for all i. In particular, [£(B;) : k(p)] = deg f, for
all 4. In view of the fact that monogenicity always holds when A is local, and that the problem of factoring
pA’ may be worked out after first localizing throughout at the multiplicative set A — p, it follows that by
first localizing to A, the problem of vertical factorization of a prime may always be carried out by the above
procedure (provided that we can find an a’ whose existence is guaranteed by general theory; in practice, this
amounts to carrying out an instance of weak approximation).

We wish to work out some examples of this theorem with A = Z. In class, the general case of factorization
of pZ in quadratic fields K was discussed; recall that Ok is always monogenic over Z in such cases. In
Homework 4, Exercise 1, you showed that when carrying out prime factorization in a Galois extension one
has that e(B;|p) and f(P;|p) are independent of i. We will illustrate the case of a non-Galois extension of
Q as well as the general case of cyclotomic extensions of Q.

1. A NON-GALOIS EXAMPLE

Let K = Q(«) with a® + 10a + 1 = 0. The cubic polynomial f = X3 + 10X + 1 € Z[X] is irreducible
over Q because it does not have a rational root, and Z[a] is an order in 0. A direct calculation shows
disc(Z[w])/Z) = —4027, and this is prime. Hence, Ox = Z[a] is monogenic and so the preceding general
technique is applicable and the only ramified prime is 4027.

The prime p = 2 is unramified, and in fact

X34+ 10X +1= (X +1)(X*+ X +1) mod 2

is the irreducible factorization in Fo[X]. We use the obvious lifts of these monic irreducibles to Z[X], so
20k = (2,a+1)(2,a*+a+1) = P1Po with f(P1]2Z) = deg(X+1) = 1 and f(P2|2Z) = deg(X*+X+1) = 2.
Note that > e(PB:|2Z) f(B:|2Z) =1+ 2 =3 = [K : Q], as it should be.
The prime p = 4027 is ramified, and in fact one checks
X3 410X + 1 = (X +2215)%(X + 3624) mod 4027
in F4027[X]. Using the obvious lifts of these monic linear factors to Z[X], we get
4027075 = (4027, a + 2215)2(4027, o + 3624) = Q20»,

so €(Q1[4027Z) = 2 and e(Q2|4027Z) = 1 with both 9,’s having residue field degree 1 over F4927. Note that
S e(Q;]4027Z) f(Q4|4027Z) =2+ 1 =3 = [K : Q], as it should be.

2. CYCLOTOMIC FIELDS

Let K = Q(¢,) be a splitting field of X™ — 1 for a positive integer n. Letting ®,, € Z[X] denote the nth
cyclotomic polynomial, this is the minimal polynomial of (,, over Q, and Z[(,] ~ Z[X]/(®,) is an order in
Ox. We have proved earlier that Z[(,] = Ok if n is a prime power, and we will soon prove that this equality
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holds in general, with disc(K/Q) divisible by exactly the primes that divide n (so the primes of Q that
ramify in K are precisely the prime factors of n, though this latter fact can be proved by other methods once
one knows a bit more about general ramification theory). For now we will grant the equality Z[(,] = Ok, so
in particular O is monogenic over Z. We wish to work out how most primes of Z factor in k. The case
of ramified primes is a little complicated, so we just work out one ramified case and then we work out the
general unramified case.

Let us first consider the special case n = p® with e > 1 and we wish to study how p factors in Ox = Z[(pe].
(Recall that we have already proved that this is the full ring of integers in K = Q({pc).) The general procedure

e—1

for monogenic cases tells us that we should first factor ®,c in F,[X]. Since X?* —1 = @, - (X?" — 1) in
Z[X], by passing to F,[X] we get (X —1)P" = ®,(X —1)P" " in F,[X], and so ®,c = (X —1)*" @1 mod p.
Thus, pZ[Cpe] = B @1 with P = (p, (e — 1), and so e(P|pZ) = p*(p — 1) and f(P|pZ) = 1.

In fact, we can describe P more succinctly: P = ({pe — 1). That is, we claim that p already lies in

the principal ideal ((ye — 1) of Z[(pe]. To see this most easily, we just have to show that the quotient
Z[(pe]/(Cpe — 1) is killed by p. In fact, via the isomorphism Z[(pe] ~ Z[X]/(Ppe) we have

Z[Cpel/(Cpe = 1) = Z[X]/(Ppe, X — 1) = Z/(Ppe (1)) = Z/pZ

because @y (1) = p (as Bpe (X) = Bp(XP" ) with ,(T) = (TP = 1)/(T — 1) = Yo, TY).
Now we turn to the general unramified case with K = Q((,) for any n > 1. We take p to be a prime not
dividing n, so
POk =p1---Pg
with ¢(n) = [K : Q] = fg with f denoting the common residue field degree [k(p;) : Fp] over F), = k(pZ).
We need to determine f (and then we know g).
Lemma 2.1. The order of p in (Z/nZ)* equals f.

Proof. Consider the factorization ®,, = hy - - - by into monic irreducibles in F,,[X], with no extra multiplicities.
(Note that a priori ®,, mod p is separable over F, because ®,, divides X™ — 1 and p { n). We have f =
deg(h;) for any j, so we need to compute the common degree of the h;’s. By construction, the finite field
k = F,[X]/(h;) with order p/ is a quotient of Z[(,,] and so k is generated over F, by a primitive nth root of
unity ¢ (that is, an nth root of unity whose powers provide a splitting of X™ — 1 into monic linear factors).
By Galois theory for finite fields, since Gal(k/F,) is generated by the Frobenius element whose order is f
we have (P = ¢ if and only if f|i. However, since ¢ is a primitive nth root of unity in characteristic p f n we
have ¢ = ¢? if and only if a = b mod n. Hence, f|i if and only if p’ = 1 mod n. This says exactly that f is
the order of p € (Z/nZ)*. ]

Of course, in practice if we were to want to actually compute the primes over p in Z[(,] (for p 1 n) we
would have to compute the h;’s in F,,[X] and lift each h; to a monic H; € Z[X]. The ideals (p, H;({,)) of
Z[(,]) would then be the primes over pZ.



