
Math 676. Discriminants and étale algebras
Let A be a noetherian domain with fraction field F . Let B be an A-algebra that is finitely generated and

torsion-free as an A-module with B also locally free as an A-module (that is, Bm is a free Am-module for
every maximal ideal m of A). Since localization at a prime p of A may be achieved by first localizing at a
maximal m containing p and then localizing at the prime pAm of Am, we see that the Ap-algebra Bp is a
finite free Ap-module for every prime ideal p of A.

As we saw in the handout on existence of discriminant ideals, the S−1A-algebra S−1B satisfies the same
hypotheses for any multiplicative set S of A with 0 6∈ S, and that under these assumptions on B there
is a unique ideal dB/A of A such that dB/AAm = disc(Bm/Am) for every maximal ideal m of A (and even
for every prime ideal p of A). This is the discriminant ideal of B over A, and in that handout we worked
out several properties of the discriminant ideal (such as behavior with respect to localization, extension of
scalars to another noetherian domain, and tensor product of two such A-algebras). In this handout we will
be particularly interested in studying the case when the discriminant ideal is equal to A, as this provides a
powerful technique for proving that certain abstractly constructed A-algebras enjoy good properties.

Here is a question: if a number field L is a compositum of two subfields K and K ′, when does it happen
that OL = OKOK′? That is, when is OL spanned over Z by products xx′ with x ∈ OK and x′ ∈ OK′? With
our later work in ramification theory it will become obvious that if K and K ′ are non-isomorphic quadratic
fields over Q with a common ramified prime p then frequently [OKK′ : OKOK′ ] is divisible by p (and so this
lattice index cannot equal 1). In general the relation between OKK′ and OKOK′ is subtle, but the theory of
the discriminant will provide a powerful tool to understand the situation in some cases.

1. Étale algebras

We work with A and B as above. The A-algebra B (satisfying the preceding module hypotheses!) is said
to be finite étale if dB/A = A.

Lemma 1.1. Let B be a finite étale A-algebra. If A→ A′ is a map to another noetherian domain, then the
A′-algebra B′ = A′ ⊗A B is finite étale over A′. Also, if S is any multiplicative set of A with 0 6∈ S then
S−1B is a finite étale S−1A-algebra.

In the previous handout it was shown that B′ is a finitely generated and torsion-free A′-module that is
moreover locally free. Hence, dB′/A′ makes sense.

Proof. These are immediate from the identities dB/AA
′ = dB′/A′ and S−1dB/A = dS−1B/S−1A. �

Lemma 1.2. Let A1 and A2 be two A-algebras that are finitely generated and torsion-free as A-modules,
and assume that each is locally free as an A-module. The A-algebra A1 ×A2 is finite étale if and only if A1

and A2 are each finite étale over A, and the A-algebra A1 ⊗A A2 is finite étale over A if and only if A1 and
A2 are finite étale over A.

In the previous handout it was shown that A1⊗AA2 is finitely generated and torsion-free as an A-module,
and that it is locally free as such.

Proof. By the previous handout, dA1×A2/A = dA1/AdA2/A and dA1⊗AA2/A = dn2
A1/Adn1

A2/A where ni ≥ 1 is the
A-rank of Ai (the common rank of the free Ap-module (Ai)p for all primes p of A). Hence, the “if” directions
are obvious, and for the converses we just have to prove that if I and J are two ideals in a domain A such
that IJ = A then I = J = A. This is obvious, since IJ ⊆ I and IJ ⊆ J . �

Now we finally come to the point of these efforts. Let B be as above, and assume that A is integrally
closed in its fraction field F . Localizing B at A − {0} gives F ⊗A B, so this is finite étale over the field
F and it contains B as a subring. As was explained in lecture, a finite étale algebra over a field is the
same thing as a finite product of finite separable field extensions! Hence, F ⊗A B = F1 × · · · × Fn with
the Fi’s finite separable field extensions of F (and, as we saw in lecture, such a product decomposition of
the F -finite commutative ring F ⊗A B is unique up to ordering of the factors;the Fi’s are the quotients of
F ⊗A B by the principal ideals (1 − ε) for the finitely many primitive idempotents ε in the ring F ⊗A B).
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Thus, the integral closure Ai of A in Fi is a finitely generated (and torsion-free) A-module. It is not a
priori clear if the Ai’s are locally free as A-modules (though this is obvious if A is Dedekind). Since B is an
A-algebra that is finitely generated as an A-module, by the “determinant trick” every element of B satisfies
a monic polynomial equation with coefficients in A. Hence, the image of B in each factor Fi of F ⊗A B is
an A-subalgebra of Fi whose elements are integral over A. That is, the image of B in each Fi lies in Ai, and
hence we get a containment

B ⊆ A1 × · · · ×An

inside of F ⊗A B =
∏
Fi. Here is the wonderful fact:

Theorem 1.3. If B is a finite étale A-algebra and A is Dedekind, then B =
∏
Ai. In particular, if a domain

B is a finite étale A-algebra and A is Dedekind then B is Dedekind.

The first part of this theorem is true without a Dedekind restriction on A, and the second part is true
with “integrally closed” replacing “Dedekind,” but the proof in such generality requires stronger methods in
commutative algebra.

Proof. We want to prove that the inclusion B ⊆
∏
Ai of finitely generated and torsion-free A-modules is an

equality, so it suffices to check this after localizing at maximal ideals of A. This localization process preserves
the hypotheses on B, and is compatible with the formation of the Ai’s, so we may now assume that A is
local. Hence, B is free as an A-module. Since A is now a discrete valuation ring, the Ai’s are also free as
A-modules. The inclusion B ⊆

∏
Ai becomes an equality upon extending scalars by A→ F , so if we choose

an A-basis {er} for B and {e′r} for
∏
Ai then the matrix M whose columns give the A-coordinates for each

er in terms of the e′s’s is an invertible matrix if and only if B =
∏
Ai. It is clear from matrix considerations

with the trace forms on B and
∏
Ai relative to A that

disc(B/A) = disc((A1 × · · · ×An)/A) · det(M)2A.

By hypothesis, disc(B/A) = A. Hence, det(M)A = A, so det(M) ∈ A×. �

We immediately get a nice corollary:

Corollary 1.4. Let K be a number field, and O ⊆ OK an order. If d = disc(O/Z) then O[1/d] = OK [1/d].
In particular, O[1/d] is Dedekind and the only prime factors of [OK : O] are primes that divide d.

Thus, if we compute some specific order then as long as we wish to study primes away from the divisors
of the discriminant of the order then the ring behaves “as if” it were the ring of integers.

Proof. The discriminant is compatible with localization, so disc(O[1/d]/Z[1/d]) = dZ[1/d] = Z[1/d], so the
domain O[1/d] is a finite étale Z[1/d]-algebra. �

To give a further corollary of much significance in practice, let A be Dedekind with field of fractions
F , and let L and L′ be finite separable extensions of F . The F -algebra L ⊗F L′ is a product of finitely
many finite separable extensions of F (either because it is a finite étale F -algebra, being a tensor product
of two such, or “by hand”: we write L = F [T ]/(h) for an irreducible separable h ∈ F [T ] and then have
L⊗F L

′ = L′[T ]/(h) and h ∈ L′[T ] may be reducible but it is still separable). Thus, we have a finite product
decomposition L⊗F L′ =

∏
Fi with Fi/F a finite separable extension. An element in

∏
Fi is integral over

A if and only if each of its components is integral over A (why?), and so the integral closure of A in
∏
Fi is∏

Ai with Ai equal to the integral closure of Ai in Fi (so each Ai is a Dedekind domain finite over A).

Corollary 1.5. Assume A is Dedekind. Let B be the integral closure of A in L and let B′ be the integral
closure of A in L′, so B and B′ are finitely generated torsion-free A-modules that are locally free as such.
Also, F⊗AB = L and F⊗AB

′ = L′, so F⊗A(B⊗AB
′) ' L⊗FL

′; that is, the natural map B⊗AB
′ → L⊗FL

′

is injective. We use this to identify B ⊗A B′ with an A-subalgebra of L⊗F L′.
If the nonzero ideals dB/A and dB′/A of A are relatively prime then B ⊗A B

′ =
∏
Ai inside of L⊗F L

′ =∏
Fi. In particular, if L⊗F L′ is a field and dB/A is coprime to dB′/A then B ⊗A B′ is the integral closure

of A in the field L⊗F L′.
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Before we prove the corollary, we note that it is a very powerful result: as an example, if K and K ′ are
number fields such that K ⊗Q K ′ is a field (to be denoted KK ′) and such that disc(K/Q) and disc(K ′/Q)
are relatively prime (where, as usual, we abuse notation and write disc(K/Q) to denote disc(OK/Z), and
likewise for k′), then OKK′ = OK⊗Z OK′ . In particular, in such cases OKK′ is the subring of KK ′ generated
by OK and OK′ , and moreover disc(KK ′/Q) = disc(K/Q)[K

′:Q]disc(K ′/Q)[K:Q]. In the next section we
will take up such examples in more detail.

Proof. As in the setup preceding Theorem 1.3, we have the inclusion B⊗AB
′ ⊆

∏
Ai inside of L⊗FL

′ =
∏
Fi

because the image of B ⊗A B
′ in each Fi is an A-subalgebra that is finitely generated as an A-module (and

hence is contained in Ai). Our task is therefore to prove that this inclusion is an equality. As usual, we may
work locally on A since the formation of everything in sight is compatible with such localization. Hence,
we can assume that A is local. In particular, one of the ideals dB/A or dB′/A is equal to A since they are
coprime ideals in the local ring A. By renaming, we may suppose dB/A = A. This says that B is a finite étale
A-algebra. Hence, by Lemma 1.1, B ⊗A B′ is a finite étale B′-algebra. Since B′ is Dedekind, by Theorem
1.3 it follows that B ⊗A B′ is the integral closure of B′ in the finite étale L′-algebra L ⊗F L′. Integrality
over B′ is equivalent to integrality over A since B′ is integral (and even module-finite) over A, so B ⊗A B′

is the integral closure of A in L⊗F L′. �

Let us conclude this section with an example. Let n1 and n2 be relatively prime positive integers, and let
n = n1n2. The splitting field K = Q(ζn) for Xn − 1 over Q contains subfields Q(ζn1) and Q(ζn2) that are
intrinsically described (without the artifice of the ζ’s) as the splitting fields for Xn1 − 1 and Xn2 − 1 over Q
inside of K. The inclusions of these subfields into K define a natural map of Q-algebras

Q(ζn1)⊗Q Q(ζn2) → Q(ζn)

and this is surjective because a primitive nth root of unity may be obtained as a suitable product of powers
of any primitive n1th root of unity and primitive n2th root of unity (here we use that gcd(n1, n2) = 1).
However, the two sides of this surjection have respective Q-vector space dimensions φ(n1)φ(n2) and φ(n),
so by the multiplicativity of Euler’s function we conclude that this is an isomorphism! Hence:

Corollary 1.6. The ring of integers of Q(ζn) is Z[ζn], and the prime factors of its discriminant are precisely
the prime factors of n.

Proof. The case when n is a prime power is known, and so we induct on the prime factorization of n. In
view of Corollary 1.5 and the preceding calculations with cyclotomic fields, it remains to observe that the
natural map

Z[ζn1 ]⊗Z Z[ζn2 ] → Z[ζn]

is an isomorphism for n = n1n2 with relatively prime positive integers n1 and n2 (and we may then use
the formula for the discriminant of a tensor-product algebra to read off the discriminant of Z[ζn], and more
specifically its prime factors). To prove that this map is an isomorphism, the surjectivity goes as in the field
case and for the injectivity we may use torsion-freeness to reduce to injectivity after extensing scalars to Q.
This latter situation recovers exactly the analogous map on the level of cyclotomic fields that we have shown
to be injective for dimension reasons. �

2. Linear disjointness

In view of the preceding section, it is an interesting condition on a pair of finite extensions L and L′ over
a field F to require that L⊗F L′ is again a field.

Definition 2.1. A pair of finite extensions L and L′ over a field F are linearly disjoint over F if L⊗F L
′ is

a field.

As an example, if A is a Dedekind domain with fraction field F and L and L′ are a pair of linearly disjoint
finite separable extensions of F with B and B′ denoting the integral closure of A in L and L′ respectively,
then the integral closure of A in the field L⊗F L′ is B ⊗A B′ if dB/A + dB′/A = A.
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The concept of linear disjointness can be defined for general pairs of field extensions (one requires that
L⊗F L

′ is a domain), but the uses of this generality are a bit more technical and the discussion that follows
does not carry over. The reason that linear disjointness is especially interesting for us is due to:

Lemma 2.2. Suppose that L and L′ are linearly disjoint over a field F . If i : L→M and i′ : L′ →M are
F -embeddings into an extension M of F , then the F -isomorphism class of the compositum i(L)i′(L′) ⊆ M
is independent of i and i′.

Proof. Consider the map of F -algebras L⊗F L
′ →M given by x⊗ x′ 7→ i(x)i′(x′). The image is i(L)i′(L′),

and since L ⊗F L′ is a field the kernel must be 0. Hence, i(L)i′(L′) is F -isomorphic to the abstract field
L⊗F L′ that has nothing to do with i or i′. �

The conclusion of Lemma 2.2 is often false without a linear disjointness condition. For example, if L = L′

is a non-Galois separable finite extension of F and M is a Galois closure, then L and L′ are certainly not
linearly disjoint over F (as L⊗F L

′ admits a nonzero quotient L with nonzero kernel) and we can take i = i′

or we can take i′ so that i′(L′) is not contained in i(L). The two resulting composites do not even have the
same degree over F , so they are certainly not F -isomorphic. If [L : F ] is prime then in the second case the
two subfields i(L) and i′(L′) inside of M have “trivial” intersection F for degree reasons, so we see that such
a property is usually much weaker than linear disjointness.

Intuitively, linear disjointness ensures that the formation of the compositum of the two fields over F is
an intrinsic operation that does not depend (up to non-unique isomorphism!) on how the two fields are put
into a common extension field over F .

Here is a convenient criterion for linear disjointness.

Theorem 2.3. Let M/F be an extension of fields and let L and L′ be subextensions with finite degree over
F . If L and L′ are linearly disjoint over F then L ∩ L′ = F . If one of L or L′ is Galois over F then the
condition L ∩ L′ = F is also sufficient for L and L′ to be linearly disjoint over F .

Proof. First assume linear disjointness holds, so the map L ⊗F L′ → M is an isomorphism onto LL′. Pick
x ∈ L ∩ L′, so 1⊗ x and x⊗ 1 have the same image in M and hence coincide in L⊗F L′. We may identify
L⊗F L′ with an F -subspace of M ⊗F M , so to prove x ∈ F we are reduced to the problem of proving that
if F is a field and A is an F -algebra then a ⊗ 1 = 1 ⊗ a in A ⊗F A for a ∈ A if and only if a ∈ F . The
“if” direction is trivial (and is not the implication we need), and for the converse we consider the expansion
a =

∑
ciei with respect to an F -basis {ei} of A such that some ei0 is equal to 1. Thus, the vectors 1 ⊗ 1,

ei ⊗ 1 (i 6= i0), and 1 ⊗ ei (i 6= i0) are F -linearly independent in A ⊗F A, so upon expanding the two sides
of the identity a⊗ 1 = 1⊗ a we conclude that ci = 0 for all i 6= i0. Hence, a = ci0ei0 = ci0 ∈ F .

Now we drop the linear disjointness assumption but we assume that one of L or L′ is Galois over F and
that L ∩ L′ = F inside of M . We wish to prove that L ⊗F L′ is a field. By relabelling, assume L is Galois
over F . By the primitive element theorem, L = F (α) for α with minimal separable polynomial f ∈ F [T ],
so L ' F [T ]/(f) over F . Thus, L ⊗F L′ ' L′[T ]/(f). We need to prove that f is irreducible over L′. Let
h ∈ L′[T ] be a monic factor of f with positive degree. Since f ∈ M [T ] splits with all roots in L, the same
holds for h. In particular, all coefficients of h ∈M [T ] lie in L. However, h ∈ L′[T ]. Hence, since L∩L′ = F
we conclude that h ∈ F [T ], so by irreducibility of f ∈ F [T ] we must have h = f . �

In general, if L and L′ are finite extensions of F and are linearly disjoint over F , we shall write LL′ to
denote L⊗F L′. This is not too dangerous, in view of the preceding results.

Theorem 2.4. If L and L′ are finite Galois over F and are linearly disjoint over F , then LL′ is Galois
over F and the natural map

ψ : Gal(LL′/F ) → Gal(L/F )×Gal(L′/F )

is an isomorphism.

Proof. Since LL′ is a field that is a compositum of subfields that are Galois over F , it is Galois over F . If
σ ∈ Gal(L′/F ) and σ′ ∈ Gal(L′/F ) are two elements, then σ⊗σ′ is an automorphism of LL′ = L⊗F L

′ over
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F , and it is composite of commuting automorphisms σ ⊗ 1 and 1⊗ σ′. Hence, this defines a map of groups

ψ̃ : Gal(L/F )×Gal(L′/F ) → Gal(LL′/F ).

This is clearly an inverse to ψ. �


