1. Introduction

Let K be a field complete with respect to a non-trivial non-archimedean absolute value $|\cdot|$. It is natural to seek a "smallest" extension of K that is both complete and algebraically closed. To this end, let \bar{K} be an algebraic closure of K, so this is endowed with a unique absolute value extending that on K. If K is discretely-valued and π is a uniformizer of the valuation ring then by Eisenstein's criterion we see that $X^{e}-\pi \in K[X]$ is an irreducible polynomial with degree e for any positive integer e, so \bar{K} has infinite degree over K. In particular, \bar{K} with its absolute value is never discretely-valued. In general if K is not algebraically closed then \bar{K} must be of infinite degree over K. Indeed, recall from field theory that if a field F is not algebraically closed but its algebraic closure is an extension of finite degree then F admits an ordering (so F has characteristic 0 and only ± 1 as roots of unity) and $F(\sqrt{-1})$ is an algebraic closure of F (see Lang's Algebra for a proof of this pretty result of Artin and Schreier). However, a field K complete with respect to a non-trivial non-archimedean absolute value cannot admit an order structure when the residue characteristic is positive (whereas there are examples of order structures on $\mathbf{R}((t))$). Indeed, this is obvious if K has positive characteristic, and otherwise K contains some \mathbf{Q}_{p} and hence it is enough to show that the fields \mathbf{Q}_{p} do not admit an order structure. For $p>3$ there are roots of unity in \mathbf{Q}_{p} other than ± 1, and for $p>2$ there are many negative integers n that satisfy $n \equiv 1 \bmod p$ and thus admit a square root in \mathbf{Q}_{3}. Similarly, any negative integer n satisfying $n \equiv 1 \bmod 8$ has a square root in \mathbf{Q}_{2}. This shows that indeed $[\bar{K}: K]$ must be infinite if the complete non-archimedean field K is not algebraically closed and its residue field has positive characteristic.

Although finite extensions of K are certainly complete with respect to their canonical absolute value (the unique one extending the absolute value on K), for infinite-degree extensions of K it seems plausible that completeness (with respect to the canonical absolute value) may break down. Indeed, it is a general fact that \bar{K} is not complete if it has infinite degree over K. See 3.4.3/1 in the book "Non-archimedean analysis" by Bosch et al. for a proof in general, and see Koblitz' introductory book on p-adic numbers for a proof of noncompleteness in the case $K=\mathbf{Q}_{p}$. We do not require these facts, but they motivate the following question: is this completion of \bar{K} algebraically closed? If not, then one may worry that iterating the operations of algebraic closure and completion may yield a never-ending tower of extensions. Fortunately, things work out well:
Theorem 1.1. The completion \mathbf{C}_{K} of \bar{K} is algebraically closed.
The field \mathbf{C}_{K} is to be considered as an analogue of the complex numbers relative to K, and for $K=\mathbf{Q}_{p}$ it is usually denoted \mathbf{C}_{p}. Observe that since $\operatorname{Aut}(\bar{K} / K)$ acts on \bar{K} by isometries, this action uniquely extends to an action on \mathbf{C}_{K} by isometries. The algebraic theory of infinite Galois theory therefore suggests the natural question of computing the fixed field for $\operatorname{Aut}(\bar{K} / K)$ on \mathbf{C}_{K}. Observe that this is not an algebraic problem, since the action on \mathbf{C}_{K} makes essential use of the topological structure on \mathbf{C}_{K}. It is a beautiful and non-trivial theorem of Tate that if $\operatorname{char}(K)=0$ and K is discretely-valued with residue field of characteristic p (for example, a local field of characteristic 0) then the subfield of $\mathrm{Gal}(\bar{K} / K)$-invariants in \mathbf{C}_{K} coincides with K. That is, "there are no transcendental invariants" in such cases. This theorem is very important at the beginnings of p-adic Hodge theory.

The purpose of this handout is to present a proof of Theorem 1.1. Note that this theorem is proved in Koblitz' book in the special case $K=\mathbf{Q}_{p}$, but his proof unfortunately is written in a way that makes it seem to use the local compactness of \mathbf{Q}_{p}. The proof we give is a more widely applicable variant on the same method, and we use the same technique to also prove a result on continuity of roots that is of independent interest.

2. Proof of Theorem 1.1

Choose $f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbf{C}_{K}[X]$ with $n>0$. Since \bar{K} is dense in \mathbf{C}_{K}, there exists polynomials

$$
f_{j}=X^{n}+a_{n-1, j} X^{n-1}+\cdots+a_{0, j} \in \bar{K}[X]
$$

with $a_{i j} \rightarrow a_{i}$ in \mathbf{C}_{K} as $j \rightarrow \infty$. If $a_{i} \neq 0$ then we may arrange that $\left|a_{i j}-a_{i}\right|<\min \left(\left|a_{i}\right|, 1 / j\right)$ for all j, so $\left|a_{i j}\right|=\left|a_{i}\right|$ for all j. If $a_{i}=0$ then we may take $a_{i j}=0$ for all j. Hence, for all $0 \leq i \leq n-1$ we have $\left|a_{i j}\right|=\left|a_{i}\right|$ and $\left|a_{i j}-a_{i}\right|<1 / j$ for all j. Of course, we have no control over the finite extensions $K\left(a_{i j}\right) \subseteq \bar{K}$ as j varies for a fixed i.

Since \bar{K} is algebraically closed, we can pick a root $r_{j} \in \bar{K}$ for f_{j} for all j. The idea is to find a subsequence of the r_{j} 's that is Cauchy, so it has a limit r in the complete field \mathbf{C}_{K}, and clearly $f(r)=\lim f_{j}\left(r_{j}\right)=0$. This gives a root of f in \mathbf{C}_{K}. Since $f_{j}\left(r_{j}\right)=0$ for all j, we have

$$
\left|r_{j}^{n}\right|=\left|-\sum_{i=0}^{n-1} a_{i j} r_{j}^{i}\right| \leq \max _{i}\left|a_{i j} \| r_{j}\right|^{i}=\max _{i}\left|a_{i}\right|\left|r_{j}\right|^{i}
$$

because $\left|a_{i j}\right|=\left|a_{i}\right|$ for all j. Hence, for each j there exists $0 \leq i(j) \leq n-1$ such that $\left|r_{j}\right|^{n} \leq\left|a_{i(j)}\right|\left|r_{j}\right|^{i(j)}$, so $\left|r_{j}\right| \leq\left|a_{i(j)}\right|^{1 /(n-i(j))}$. Thus,

$$
\left|r_{j}\right| \leq C \stackrel{\text { def }}{=} \max \left(\left|a_{0}\right|^{1 / n},\left|a_{1}\right|^{1 /(n-1)}, \ldots,\left|a_{n-1}\right|\right)
$$

for all j. Note that C only depends on the coefficients a_{i} of f.
Since f and f_{j} are monic with the same degree $n>0$, we have

$$
\left|f\left(r_{j}\right)\right|=\left|f\left(r_{j}\right)-f_{j}\left(r_{j}\right)\right|=\left|\sum_{i=0}^{n-1}\left(a_{i}-a_{i j}\right) r_{j}^{i}\right| \leq \max _{0 \leq i \leq n-1}\left|a_{i}-a_{i j}\right|\left|r_{j}\right|^{i} \leq \max _{0 \leq i \leq n-1}\left|a_{i}-a_{i j}\right| \cdot \max \left(1, C^{n-1}\right)
$$

because $\left|r_{j}\right|^{i} \leq C^{i} \leq C^{n-1}$ for all i if $C \geq 1$ and $\left|r_{j}\right|^{i} \leq C^{i} \leq 1$ for all i if $C \leq 1$. Recall that we choose $a_{i j}$ so that $\left|a_{i j}-a_{i}\right|<1 / j$ for all j, so we conclude

$$
\left|f\left(r_{j}\right)\right| \leq \frac{\max \left(1, C^{n-1}\right)}{j}
$$

for all j. Hence, $f\left(r_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$. We shall now use this fact to infer that $\left\{r_{j}\right\}$ has a Cauchy subsequence in \mathbf{C}_{K}, which in turn will complete the proof.

Let L be a finite extension of \mathbf{C}_{K} in which the monic f splits, say $f(X)=\prod_{k}\left(X-\rho_{k}\right)$. We (uniquely) extend the absolute value on the (complete) field \mathbf{C}_{K} to one on L, so we may rewrite the condition $f\left(r_{j}\right) \rightarrow 0$ as

$$
\lim _{j \rightarrow \infty} \prod_{k=1}^{n}\left(r_{j}-\rho_{k}\right)=0
$$

in L. In other words, $\prod_{k=1}^{n}\left|r_{j}-\rho_{k}\right| \rightarrow 0$ in \mathbf{R}. Hence, by the pigeonhole principle, since there are only finitely many k 's we must have that for some $1 \leq k_{0} \leq n$ the sequence $\left\{\left|r_{j}-\rho_{k_{0}}\right|\right\}_{j}$ has a subsequence converging to 0 . Some subsequence of the r_{j} 's must therefore converge to $\rho_{k_{0}}$ in L, so this subsequence is Cauchy in \mathbf{C}_{K}.

3. Continuity of roots

Let $f=\sum a_{i} X^{i} \in K[X]$ be monic of degree $n>0$, so the roots of f in \mathbf{C}_{K} lie in \bar{K}. An inspection of the proof of Theorem 1.1 shows that the argument yields the following general result:

Lemma 3.1. Let $\left\{f_{j}\right\}$ be a sequence of monic polynomials $f_{j}=\sum a_{i j} X^{j}$ of degree n in $K[X]$ such that $a_{i j} \rightarrow a_{i}$ as $j \rightarrow \infty$ for all $0 \leq i \leq n-1$. Let $r_{j} \in \bar{K}$ be a root of f_{j} for each j. There exists a subsequence of $\left\{r_{j}\right\}$ that converges to a root of f in \bar{K}.

We may now deduce the following general result that is usually called "continuity of roots" (in terms of their dependence on the coefficients of f).

Theorem 3.2. Let $r \in \bar{K}$ be a root of a degree-n monic polynomial $f=\sum a_{i} X^{i} \in K[X]$, with $\operatorname{ord}_{r}(f)=\mu>$ 0 . Fix $\varepsilon_{0}>0$ such all roots of f in \bar{K} distinct from r have distance at least ε_{0} from r. (If there are no other roots, we may use any $\varepsilon_{0}>0$.) For all $0<\varepsilon<\varepsilon_{0}$ there exists $\delta=\delta_{\varepsilon, f}>0$ such that if $g=\sum b_{i} X^{i} \in K[X]$
is monic with degree n and $\left|a_{i}-b_{i}\right|<\delta$ for all i then g has exactly μ roots (with multiplicity) in the open $\operatorname{disc} B_{\varepsilon}(r)=\{x \in \bar{K}| | x-r \mid<\varepsilon\}$.
Proof. We argue by contradiction. Fix a choice of ε. If there exists no corresponding δ, then we would get a sequence of monic polynomials $f_{j}=\sum a_{i j} X^{i} \in K[X]$ with degree n such that $a_{i j} \rightarrow a_{i}$ as $j \rightarrow \infty$ for each i and each f_{j} does not have exactly μ roots on $B_{\varepsilon}(r)$. Pick factorizations $f_{j}=\prod_{k=1}^{n}\left(X-\rho_{j k}\right)$ upon enumerating the n roots (with multiplicity) for each f_{j} in \bar{K}. By Lemma 3.1 applied to $\left\{\rho_{j 1}\right\}$, we can pass to a subsequence of the f_{j} 's so $\rho_{j 1} \rightarrow \rho_{1}$ with ρ_{1} some root of f in \bar{K}. Successively working with $\left\{\rho_{j k}\right\}_{j}$ for $k=2, \ldots, n$ and passing through successive subsequence of subsequences, etc., we may suppose that there exist limits $\rho_{j k} \rightarrow \rho_{k}$ in \bar{K} as $j \rightarrow \infty$ for each fixed $1 \leq k \leq n$.

Each ρ_{k} must be a root of f, but we claim more: every root of f arises in the form ρ_{k} for exactly as many k 's as the multiplicity of the root. Working in the finite-dimensional \bar{K}-vector space of polynomials of degree $\leq n$ (given the sup-norm with respect to an arbitrary \bar{K}-basis, the choice of which does not affect the topology), we have

$$
f_{j}=\prod_{k=1}^{n}\left(X-\rho_{j k}\right) \rightarrow \prod_{k=1}^{n}\left(X-\rho_{k}\right)
$$

yet also $f_{j} \rightarrow f$. Hence, $f=\prod_{k=1}^{n}\left(X-\rho_{k}\right)$ in $\bar{K}[X]$. That is, $\left\{\rho_{k}\right\}$ is indeed the set of roots of f in \bar{K} counted with multiplicites. Hence, $r=\rho_{k}$ for exactly μ values of k, say for $1 \leq k \leq \mu$ by relabelling.

By passing to a subsequence we may arrange that for each $1 \leq k \leq n,\left|\rho_{j k}-\rho_{k}\right|<\varepsilon$ for all j. In particular, if $1 \leq k \leq \mu$ we have $\left|\rho_{j k}-r\right|<\varepsilon$. Since all roots r^{\prime} of f distinct from r have distance $\geq \varepsilon_{0}>\varepsilon$ from r, by the non-archimedean triangle inequality we have $\left|\rho_{j k}-r^{\prime}\right|=\left|r-r^{\prime}\right| \geq \varepsilon_{0}>\varepsilon$ for all $1 \leq k \leq \mu$ and any j. However, if $k>\mu$ then ρ_{k} is such an r^{\prime}, yet $\left|\rho_{j k}-\rho_{k}\right|<\varepsilon$ for all j and all k, so for each fixed j we must have $\left|\rho_{j k}-r\right| \geq \varepsilon_{0}>\varepsilon$ for all $k>\mu$. Thus, for the j 's that remain (as we have passed to some subsequence of the original sequence), $\rho_{j 1}, \ldots, \rho_{j \mu}$ are precisely the roots of f_{j} (with multiplicity) that are within a distinct $<\varepsilon$ from the root r of f. This contradicts the assumption on the f_{j} 's.

Here is an important corollary that is widely used.
Corollary 3.3. Let $f \in K[X]$ be a separable monic polynomial with degree n. Choose $\varepsilon>0$ as in Theorem 3.2. For each monic $g \in K[X]$ with degree n and coefficients sufficiently close to those of f, g is separable and each root of g in K_{sep} is within a distance $<\varepsilon$ from a unique root of f in K_{sep}. Moreover, if f is irreducible then g is irreducible.
Proof. We apply Theorem 3.2 with $\mu=1$ to conclude that if such a g is coefficientwise sufficiently close to f then each of the n roots of g (with multiplicity) is within a distance $<\varepsilon$ from a unique root of f. In particular, g has n distinct roots and hence is separable. Thus, all roots under consideration lie in $K_{\text {sep }}$. The uniqueness aspect, together with the fact that $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ acts on $K_{\text {sep }}$ by isometries, implies that the $\operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)$-orbit of a root of g has the same size as the $\operatorname{Gal}\left(K_{\mathrm{sep}} / K\right)$-orbit of the corresponding nearest root of f. Hence, the degree-labelling of the irreducible factorization of g over K "matches" that of the separable f, and in particular if f is irreducible then g is irreducible.

