MATH 676. COMPLETION OF ALGEBRAIC CLOSURE

1. INTRODUCTION

Let K be a field complete with respect to a non-trivial non-archimedean absolute value | - |. It is natural
to seek a “smallest” extension of K that is both complete and algebraically closed. To this end, let K
be an algebraic closure of K, so this is endowed with a unique absolute value extending that on K. If K
is discretely-valued and 7 is a uniformizer of the valuation ring then by Eisenstein’s criterion we see that
X¢ — 1 € K[X] is an irreducible polynomial with degree e for any positive integer e, so K has infinite
degree over K. In particular, K with its absolute value is never discretely-valued. In general if K is not
algebraically closed then K must be of infinite degree over K. Indeed, recall from field theory that if a
field F' is not algebraically closed but its algebraic closure is an extension of finite degree then F' admits an
ordering (so F' has characteristic 0 and only 41 as roots of unity) and F(y/—1) is an algebraic closure of F'
(see Lang’s Algebra for a proof of this pretty result of Artin and Schreier). However, a field K complete with
respect to a non-trivial non-archimedean absolute value cannot admit an order structure when the residue
characteristic is positive (whereas there are examples of order structures on R((t))). Indeed, this is obvious
if K has positive characteristic, and otherwise K contains some Q, and hence it is enough to show that the
fields Q, do not admit an order structure. For p > 3 there are roots of unity in Q, other than +1, and
for p > 2 there are many negative integers n that satisfy n = 1 mod p and thus admit a square root in Qs.
Similarly, any negative integer n satisfying n = 1 mod 8 has a square root in Qg. This shows that indeed
[K : K] must be infinite if the complete non-archimedean field K is not algebraically closed and its residue
field has positive characteristic.

Although finite extensions of K are certainly complete with respect to their canonical absolute value (the
unique one extending the absolute value on K), for infinite-degree extensions of K it seems plausible that
completeness (with respect to the canonical absolute value) may break down. Indeed, it is a general fact that
K is not complete if it has infinite degree over K. See 3.4.3/1 in the book “Non-archimedean analysis” by
Bosch et al. for a proof in general, and see Koblitz’ introductory book on p-adic numbers for a proof of non-
completeness in the case K = Q,. We do not require these facts, but they motivate the following question:
is this completion of K algebraically closed? If not, then one may worry that iterating the operations of
algebraic closure and completion may yield a never-ending tower of extensions. Fortunately, things work out
well:

Theorem 1.1. The completion Ck of K is algebraically closed.

The field C is to be considered as an analogue of the complex numbers relative to K, and for K = Q, it
is usually denoted C,. Observe that since Aut(K/K) acts on K by isometries, this action uniquely extends
to an action on Cg by isometries. The algebraic theory of infinite Galois theory therefore suggests the
natural question of computing the fixed field for Aut(K/K) on Cg. Observe that this is not an algebraic
problem, since the action on C g makes essential use of the topological structure on Cg. It is a beautiful and
non-trivial theorem of Tate that if char(K) = 0 and K is discretely-valued with residue field of characteristic
p (for example, a local field of characteristic 0) then the subfield of Gal(K /K )-invariants in Cx coincides
with K. That is, “there are no transcendental invariants” in such cases. This theorem is very important at
the beginnings of p-adic Hodge theory.

The purpose of this handout is to present a proof of Theorem 1.1. Note that this theorem is proved in
Koblitz’ book in the special case K = Q,, but his proof unfortunately is written in a way that makes it
seem to use the local compactness of Q,. The proof we give is a more widely applicable variant on the same
method, and we use the same technique to also prove a result on continuity of roots that is of independent
interest.

2. PROOF OF THEOREM 1.1

Choose f = X" + ap 1 X" 1+ .-~ + a9 € Cg[X] with n > 0. Since K is dense in Cg, there exists
polynomials o
fi= X"+ ap_1; X"+ +ag; € K[X]
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with a;; — a; in Cx as j — oo. If a; # 0 then we may arrange that |a;; — a;| < min(|a;|,1/j) for all j,
80 |ai;| = |a;| for all j. If a; = 0 then we may take a;; = 0 for all j. Hence, for all 0 < i < n — 1 we have
lai;| = |a;| and |a;; —a;| < 1/j for all j. Of course, we have no control over the finite extensions K (a;;) C K
as j varies for a fixed .

Since K is algebraically closed, we can pick a root r; € K for fj for all j. The idea is to find a subsequence
of the r;’s that is Cauchy, so it has a limit r in the complete field Cg, and clearly f(r) = lim f;(r;) = 0.
This gives a root of f in Cg. Since f;(r;) = 0 for all j, we have

n—1
| = ‘— z; aijry| < max|ai|[r;[" = max |a;||r;|
1=
because |a;;| = |a;] for all j. Hence, for each j there exists 0 < i(j) < n — 1 such that |r;|" < \ai(j)||rj\i(j),
so |r;] < |ai(;) Y "=10). Thus,
def _
75| < € = max(jao|"/™, Jar| Y, fan )

for all j. Note that C only depends on the coefficients a; of f.
Since f and f; are monic with the same degree n > 0, we have

n—1
j ; -1
Lfri)l = 1f(r;) = fi(r)] = Zo(ai —ay)rj| < max fa; —agllry|" < max Ja; — ai;| - max(1,C")
1=

because |rj\i <C*<Cmlforalliif C>1 and |rj|i < C" <1 foralliif C <1. Recall that we choose aij
so that |a;; — a;| < 1/j for all j, so we conclude
max(1,C"~ 1)

[f(rs)] < ;

for all j. Hence, f(r;) — 0 as j — co. We shall now use this fact to infer that {r;} has a Cauchy subsequence
in Ck, which in turn will complete the proof.

Let L be a finite extension of Cg in which the monic f splits, say f(X) = [[,(X — pr). We (uniquely)
extend the absolute value on the (complete) field Cx to one on L, so we may rewrite the condition f(r;) — 0

as
n

lim | | (rj = pr) =0

in L. In other words, [[,_, |r; — px| — 0 in R. Hence, by the pigeonhole principle, since there are only
finitely many k’s we must have that for some 1 < kg < n the sequence {|r; — pi,|}; has a subsequence
converging to 0. Some subsequence of the r;’s must therefore converge to py, in L, so this subsequence is
Cauchy in Cg.

3. CONTINUITY OF ROOTS

Let f = Y a; X" € K[X] be monic of degree n > 0, so the roots of f in Cg lie in K. An inspection of
the proof of Theorem 1.1 shows that the argument yields the following general result:

Lemma 3.1. Let {f;} be a sequence of monic polynomials f; = > a;; X7 of degree n in K[X]| such that
ai; —a; asj — o0 forall0 <i<n—1. Letr; € K be a root of fj for each j. There exists a subsequence
of {r;j} that converges to a root of f in K.

We may now deduce the following general result that is usually called “continuity of roots” (in terms of
their dependence on the coefficients of f).

Theorem 3.2. Letr € K be a root of a degree-n monic polynomial f = Y- a; X" € K[X], with ord,(f) = p >
0. Fizeg > 0 such all roots of f in K distinct from r have distance at least eg from r. (If there are no other
roots, we may use any o > 0.) For all 0 < & < &g there exists § = 6.5 > 0 such that if g = b; X" € K[X]
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is monic with degree n and |a; — b;j| < & for all i then g has evactly p roots (with multiplicity) in the open
disc Be(r) ={z € K ||z —r| < &}.

Proof. We argue by contradiction. Fix a choice of €. If there exists no corresponding §, then we would get
a sequence of monic polynomials f; = > a;; X ¢ € K[X] with degree n such that aj; — a; as j — oo for
each ¢ and each f; does not have exactly p roots on B, (rLPick factorizations f; = [[r_;(X — pjx) upon
enumerating the n roots (with multiplicity) for each f; in K. By Lemma 3.1 applied to {p;1}, we can pass
to a subsequence of the f;’s so pj1 — p1 with p; some root of f in K. Successively working with {p;}; for
k =2,...,n and passing through successive subsequence of subsequences, etc., we may suppose that there
exist limits p; — pr in K as j — oo for each fixed 1 < k < n.

Each pi must be a root of f, but we claim more: every root of f arises in the form pj for exactly as
many k’s as the multiplicity of the root. Working in the finite-dimensional K-vector space of polynomials
of degree < n (given the sup-norm with respect to an arbitrary K-basis, the choice of which does not affect
the topology), we have

n n
Fi=TI&X = o) = TT(X = p),
k=1 k=1
yet also f; — f. Hence, f = [[}_;(X — px) in K[X]. That is, {p)} is indeed the set of roots of f in K
counted with multiplicites. Hence, r = py, for exactly pu values of k, say for 1 < k < u by relabelling.

By passing to a subsequence we may arrange that for each 1 < k < n, |p;jr—pr| < € for all j. In particular,
if 1 <k < p we have |pji — 7| < e. Since all roots ’ of f distinct from r have distance > ¢y > ¢ from r, by
the non-archimedean triangle inequality we have |pj, —r'| = |r —7/| > g9 > ¢ for all 1 < k < p and any j.
However, if k > p then py, is such an 1/, yet |pr — pi| < € for all j and all k, so for each fixed j we must have
lpjk — 7| > €0 > ¢ for all k > pu. Thus, for the j’s that remain (as we have passed to some subsequence of
the original sequence), pj1,. .., pj. are precisely the roots of f; (with multiplicity) that are within a distinct
< ¢ from the root r of f. This contradicts the assumption on the f;’s. |

Here is an important corollary that is widely used.

Corollary 3.3. Let f € K[X] be a separable monic polynomial with degree n. Choose € > 0 as in Theorem
3.2. For each monic g € K[X] with degree n and coefficients sufficiently close to those of f, g is separable
and each root of g in Kgep is within a distance < € from a unique root of f in Ksep. Moreover, if f is
irreducible then g is irreducible.

Proof. We apply Theorem 3.2 with g = 1 to conclude that if such a g is coefficientwise sufficiently close to
f then each of the n roots of g (with multiplicity) is within a distance < ¢ from a unique root of f. In
particular, g has n distinct roots and hence is separable. Thus, all roots under consideration lie in Kep.
The uniqueness aspect, together with the fact that Gal(Kgep/K) acts on Kgep by isometries, implies that the
Gal(Kgep/K)-orbit of a root of g has the same size as the Gal(Kgep/K)-orbit of the corresponding nearest
root of f. Hence, the degree-labelling of the irreducible factorization of g over K “matches” that of the
separable f, and in particular if f is irreducible then g is irreducible. |



