
Math 676. Completion of algebraic closure

1. Introduction

Let K be a field complete with respect to a non-trivial non-archimedean absolute value | · |. It is natural
to seek a “smallest” extension of K that is both complete and algebraically closed. To this end, let K
be an algebraic closure of K, so this is endowed with a unique absolute value extending that on K. If K
is discretely-valued and π is a uniformizer of the valuation ring then by Eisenstein’s criterion we see that
Xe − π ∈ K[X] is an irreducible polynomial with degree e for any positive integer e, so K has infinite
degree over K. In particular, K with its absolute value is never discretely-valued. In general if K is not
algebraically closed then K must be of infinite degree over K. Indeed, recall from field theory that if a
field F is not algebraically closed but its algebraic closure is an extension of finite degree then F admits an
ordering (so F has characteristic 0 and only ±1 as roots of unity) and F (

√
−1) is an algebraic closure of F

(see Lang’s Algebra for a proof of this pretty result of Artin and Schreier). However, a field K complete with
respect to a non-trivial non-archimedean absolute value cannot admit an order structure when the residue
characteristic is positive (whereas there are examples of order structures on R((t))). Indeed, this is obvious
if K has positive characteristic, and otherwise K contains some Qp and hence it is enough to show that the
fields Qp do not admit an order structure. For p > 3 there are roots of unity in Qp other than ±1, and
for p > 2 there are many negative integers n that satisfy n ≡ 1 mod p and thus admit a square root in Q3.
Similarly, any negative integer n satisfying n ≡ 1 mod 8 has a square root in Q2. This shows that indeed
[K : K] must be infinite if the complete non-archimedean field K is not algebraically closed and its residue
field has positive characteristic.

Although finite extensions of K are certainly complete with respect to their canonical absolute value (the
unique one extending the absolute value on K), for infinite-degree extensions of K it seems plausible that
completeness (with respect to the canonical absolute value) may break down. Indeed, it is a general fact that
K is not complete if it has infinite degree over K. See 3.4.3/1 in the book “Non-archimedean analysis” by
Bosch et al. for a proof in general, and see Koblitz’ introductory book on p-adic numbers for a proof of non-
completeness in the case K = Qp. We do not require these facts, but they motivate the following question:
is this completion of K algebraically closed? If not, then one may worry that iterating the operations of
algebraic closure and completion may yield a never-ending tower of extensions. Fortunately, things work out
well:

Theorem 1.1. The completion CK of K is algebraically closed.

The field CK is to be considered as an analogue of the complex numbers relative to K, and for K = Qp it
is usually denoted Cp. Observe that since Aut(K/K) acts on K by isometries, this action uniquely extends
to an action on CK by isometries. The algebraic theory of infinite Galois theory therefore suggests the
natural question of computing the fixed field for Aut(K/K) on CK . Observe that this is not an algebraic
problem, since the action on CK makes essential use of the topological structure on CK . It is a beautiful and
non-trivial theorem of Tate that if char(K) = 0 and K is discretely-valued with residue field of characteristic
p (for example, a local field of characteristic 0) then the subfield of Gal(K/K)-invariants in CK coincides
with K. That is, “there are no transcendental invariants” in such cases. This theorem is very important at
the beginnings of p-adic Hodge theory.

The purpose of this handout is to present a proof of Theorem 1.1. Note that this theorem is proved in
Koblitz’ book in the special case K = Qp, but his proof unfortunately is written in a way that makes it
seem to use the local compactness of Qp. The proof we give is a more widely applicable variant on the same
method, and we use the same technique to also prove a result on continuity of roots that is of independent
interest.

2. Proof of Theorem 1.1

Choose f = Xn + an−1X
n−1 + · · · + a0 ∈ CK [X] with n > 0. Since K is dense in CK , there exists

polynomials
fj = Xn + an−1,jX

n−1 + · · ·+ a0,j ∈ K[X]
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with aij → ai in CK as j → ∞. If ai 6= 0 then we may arrange that |aij − ai| < min(|ai|, 1/j) for all j,
so |aij | = |ai| for all j. If ai = 0 then we may take aij = 0 for all j. Hence, for all 0 ≤ i ≤ n − 1 we have
|aij | = |ai| and |aij −ai| < 1/j for all j. Of course, we have no control over the finite extensions K(aij) ⊆ K
as j varies for a fixed i.

Since K is algebraically closed, we can pick a root rj ∈ K for fj for all j. The idea is to find a subsequence
of the rj ’s that is Cauchy, so it has a limit r in the complete field CK , and clearly f(r) = lim fj(rj) = 0.
This gives a root of f in CK . Since fj(rj) = 0 for all j, we have

|rn
j | =

∣∣∣∣∣−
n−1∑
i=0

aijr
i
j

∣∣∣∣∣ ≤ max
i
|aij ||rj |i = max

i
|ai||rj |i

because |aij | = |ai| for all j. Hence, for each j there exists 0 ≤ i(j) ≤ n − 1 such that |rj |n ≤ |ai(j)||rj |i(j),
so |rj | ≤ |ai(j)|1/(n−i(j)). Thus,

|rj | ≤ C
def= max(|a0|1/n, |a1|1/(n−1), . . . , |an−1|)

for all j. Note that C only depends on the coefficients ai of f .
Since f and fj are monic with the same degree n > 0, we have

|f(rj)| = |f(rj)− fj(rj)| =

∣∣∣∣∣
n−1∑
i=0

(ai − aij)ri
j

∣∣∣∣∣ ≤ max
0≤i≤n−1

|ai − aij ||rj |i ≤ max
0≤i≤n−1

|ai − aij | ·max(1, Cn−1)

because |rj |i ≤ Ci ≤ Cn−1 for all i if C ≥ 1 and |rj |i ≤ Ci ≤ 1 for all i if C ≤ 1. Recall that we choose aij

so that |aij − ai| < 1/j for all j, so we conclude

|f(rj)| ≤
max(1, Cn−1)

j

for all j. Hence, f(rj) → 0 as j →∞. We shall now use this fact to infer that {rj} has a Cauchy subsequence
in CK , which in turn will complete the proof.

Let L be a finite extension of CK in which the monic f splits, say f(X) =
∏

k(X − ρk). We (uniquely)
extend the absolute value on the (complete) field CK to one on L, so we may rewrite the condition f(rj) → 0
as

lim
j→∞

n∏
k=1

(rj − ρk) = 0

in L. In other words,
∏n

k=1 |rj − ρk| → 0 in R. Hence, by the pigeonhole principle, since there are only
finitely many k’s we must have that for some 1 ≤ k0 ≤ n the sequence {|rj − ρk0 |}j has a subsequence
converging to 0. Some subsequence of the rj ’s must therefore converge to ρk0 in L, so this subsequence is
Cauchy in CK .

3. Continuity of roots

Let f =
∑

aiX
i ∈ K[X] be monic of degree n > 0, so the roots of f in CK lie in K. An inspection of

the proof of Theorem 1.1 shows that the argument yields the following general result:

Lemma 3.1. Let {fj} be a sequence of monic polynomials fj =
∑

aijX
j of degree n in K[X] such that

aij → ai as j →∞ for all 0 ≤ i ≤ n− 1. Let rj ∈ K be a root of fj for each j. There exists a subsequence
of {rj} that converges to a root of f in K.

We may now deduce the following general result that is usually called “continuity of roots” (in terms of
their dependence on the coefficients of f).

Theorem 3.2. Let r ∈ K be a root of a degree-n monic polynomial f =
∑

aiX
i ∈ K[X], with ordr(f) = µ >

0. Fix ε0 > 0 such all roots of f in K distinct from r have distance at least ε0 from r. (If there are no other
roots, we may use any ε0 > 0.) For all 0 < ε < ε0 there exists δ = δε,f > 0 such that if g =

∑
biX

i ∈ K[X]
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is monic with degree n and |ai − bi| < δ for all i then g has exactly µ roots (with multiplicity) in the open
disc Bε(r) = {x ∈ K | |x− r| < ε}.

Proof. We argue by contradiction. Fix a choice of ε. If there exists no corresponding δ, then we would get
a sequence of monic polynomials fj =

∑
aijX

i ∈ K[X] with degree n such that aij → ai as j → ∞ for
each i and each fj does not have exactly µ roots on Bε(r). Pick factorizations fj =

∏n
k=1(X − ρjk) upon

enumerating the n roots (with multiplicity) for each fj in K. By Lemma 3.1 applied to {ρj1}, we can pass
to a subsequence of the fj ’s so ρj1 → ρ1 with ρ1 some root of f in K. Successively working with {ρjk}j for
k = 2, . . . , n and passing through successive subsequence of subsequences, etc., we may suppose that there
exist limits ρjk → ρk in K as j →∞ for each fixed 1 ≤ k ≤ n.

Each ρk must be a root of f , but we claim more: every root of f arises in the form ρk for exactly as
many k’s as the multiplicity of the root. Working in the finite-dimensional K-vector space of polynomials
of degree ≤ n (given the sup-norm with respect to an arbitrary K-basis, the choice of which does not affect
the topology), we have

fj =
n∏

k=1

(X − ρjk) →
n∏

k=1

(X − ρk),

yet also fj → f . Hence, f =
∏n

k=1(X − ρk) in K[X]. That is, {ρk} is indeed the set of roots of f in K
counted with multiplicites. Hence, r = ρk for exactly µ values of k, say for 1 ≤ k ≤ µ by relabelling.

By passing to a subsequence we may arrange that for each 1 ≤ k ≤ n, |ρjk−ρk| < ε for all j. In particular,
if 1 ≤ k ≤ µ we have |ρjk − r| < ε. Since all roots r′ of f distinct from r have distance ≥ ε0 > ε from r, by
the non-archimedean triangle inequality we have |ρjk − r′| = |r − r′| ≥ ε0 > ε for all 1 ≤ k ≤ µ and any j.
However, if k > µ then ρk is such an r′, yet |ρjk−ρk| < ε for all j and all k, so for each fixed j we must have
|ρjk − r| ≥ ε0 > ε for all k > µ. Thus, for the j’s that remain (as we have passed to some subsequence of
the original sequence), ρj1, . . . , ρjµ are precisely the roots of fj (with multiplicity) that are within a distinct
< ε from the root r of f . This contradicts the assumption on the fj ’s. �

Here is an important corollary that is widely used.

Corollary 3.3. Let f ∈ K[X] be a separable monic polynomial with degree n. Choose ε > 0 as in Theorem
3.2. For each monic g ∈ K[X] with degree n and coefficients sufficiently close to those of f , g is separable
and each root of g in Ksep is within a distance < ε from a unique root of f in Ksep. Moreover, if f is
irreducible then g is irreducible.

Proof. We apply Theorem 3.2 with µ = 1 to conclude that if such a g is coefficientwise sufficiently close to
f then each of the n roots of g (with multiplicity) is within a distance < ε from a unique root of f . In
particular, g has n distinct roots and hence is separable. Thus, all roots under consideration lie in Ksep.
The uniqueness aspect, together with the fact that Gal(Ksep/K) acts on Ksep by isometries, implies that the
Gal(Ksep/K)-orbit of a root of g has the same size as the Gal(Ksep/K)-orbit of the corresponding nearest
root of f . Hence, the degree-labelling of the irreducible factorization of g over K “matches” that of the
separable f , and in particular if f is irreducible then g is irreducible. �


