MATH 676. A LATTICE IN THE ADELE RING
Let K be a number field, and let S be a finite set of places of K containing the set S, of archimedean
places. The S-adele ring Ax 5 = [],cg Ko X vas 0, is an open subring of the adele ring A i, and it meets
the additive subgroup K in the subring Ok ¢ of S-integers. In class we saw that K is discrete in Ax and
Ok s is discrete in Ak g. The purpose of this handout is to explain why each of these discrete subgroups
is co-compact. The main input will be that Ok g is a lattice in HUES K,, a fact that we saw in an earlier
handout (and that was a key ingredient in the proof of the S-unit theorem).

1. THE CASE OF S-ADELES

We first study Ak, s/0k,s. This is a locally compact Hausdorff topological group since Ak g is such a
group and O g is a closed subgroup. Using the continuous projection to the S-factor, we get a continuous
surjection

Axs/0ks — (]| Kv)/Ok.s
veS
to a compact group, and the kernel is surjected onto by the compact group vas O,, so the kernel is itself
compact. Hence, to infer compactness of Ag ¢/0k s we use the rather general:

Lemma 1.1. Let G be a locally compact Hausdorff topological group, and let H be a closed subgroup. Give
the coset space G/H its locally compact Hausdorff quotient topology. The group G is compact if and only if
H and G/H are compact.

Proof. If G is compact then its closed subset H is compact and its continuous image G/H is certainly
compact. For the converse, choose a collection of open sets U; in G with compact closure in G (such U;’s
exist since G is locally compact and Hausdorff). The images U;H/H in G/H are open since U;H is open
in G (as it is a union of translates U;h for h € H), and so by compactness of G/H finitely many of these
cover G/H. That is, G is a union of finitely many U;H’s. Each U; has compact closure C; in G, so G is a
union of finitely many C; H’s. Each C;H is compact because it is the image of the compact product C; x H
under the continuous multiplication map for G, so G is a union of finitely many compact subsets. Hence, G
is compact. |

2. THE ADELIC CASE

Now we turn to the task of proving that Ay /K is compact. For any S, Ak g is an open subring of Ak,

so the continuous map
Aks/0ks — Ax/K

modulo discrete subgroups is an open map. It is also injective (why?), and so it is an open embedding.
Hence, Ak /K is the directed union of open subgroups A, s/0k s that are compact. It follows that Ay /K
is compact if and only if these open embeddings are equalities for .S “large enough”.

Let us try to understand the cokernel of the inclusion, namely Ag /(K + Ak, ). This is a discrete
topological group (since Ak g is an open additive subgroup of Ag), and from the definitions we have

Ag/Aks = @K’U/ﬁv-
vgS
We have a natural diagonal embedding of K in here with kernel given by the set of elements of K that are
v-adically integral for all v ¢ S, which is to say the kernel of the diagonal map from K is Ok s. Hence, we
have an inclusion
K/ﬁK,S — @Kv/ﬁvv
vES
and our aim is to prove that this is an equality for S “large enough”. Since Ok s can always be arranged to
have trivial class group by taking S to be large enough (for example, S consists of S, and non-archimedean
places corresponding to prime factors of a finite set of representatives for the elements of the class group of
Ok), it suffices to prove that this inclusion is an equality whenever Ok g has trivial class group. Rather
more generally:



Theorem 2.1. Let A be an arbitrary Dedekind domain, with F its fraction field. The natural inclusion
F/A— P Fu/Aj
m

is an equality if A has trivial class group. Here, m ranges over the maximal ideals of A, Fy is the m-adic
completion of F, and A} is its valuation ring.

Taking A = Ok s gives what we need, since the completions from the primes of Ok g are exactly the K,,’s
and O,’s for v ¢ S (check!). Also, the map into the direct sum in the theorem makes sense because each
x € F has image in Fy, that lies in A, for all but finitely many m.

Before reading the proof of the theorem, it is instructive to first study the case A = Z by hand to get a
feel for what is going on: can you show that Q/Z — @1) Qp/Z, is an isomorphism “by hand”? (hint: Q/Z
is a torsion group, so it maps isomorphically to the direct sum of its p>-torsion subgroups.)

Proof. We first get rid of completions by checking that the natural map
F/Ay — Fo /AL

is an isomorphism, where A, denotes the algebraic localization of A at m; this is the special case of the
theorem when A is a discrete valuation ring. That is, for any discrete valuation ring R with fraction field L
we claim that the natural map
L/R— L"/R"
is an isomorphism, with L” denoting the completion of L with respect to the canonical place arising from R
and R” denoting its valuation ring. The injectivity of this map is the old result L N R® = R inside of L",
a fact we saw long ago. For surjectivity, we pick 7 € R that is a uniformizer and we choose a subset ¥ C R
that is a set of representatives for the residue field of R, which in turn coincides with the residue field of
the discrete valuation ring R". By using m-adic expansions with coefficients in ¥, consideration of L/ R" is
tantamount to looking at just the “polar parts” of m-adic expansions in L”. Each such polar part is a finite
sum >, o0y " € L, so the asserted surjectivity from L/R follows.
We may now restate our problem in purely algebraic terms: we wish to show that the natural inclusion

F/AH@F/AT“

is an isomorphism if A has trivial class group. Assume A has trivial class group. The target is generated
by elements that are 0 away from a single factor, so it suffices to fix m and a nonzero m-adic polar part
¢ € F/Ay, and we have to construct x € F that is integral away from m but has m-adic polar part £. If £
has m-adic order —e with e > 0 and m € A is a principal generator of m, then there is a well-defined residue
class
e € A /mPAy ~ A/m°

(the isomorphism goes from right to left, and is the crux of the matter). For any 2’ € A that represents this
residue class in A/m¢, '/n¢ € F solves our problem: it is integral away from m and has polar part £ at
m. ]

We conclude with a concrete example to illustrate the compactness of Ak /K in the special case K = Q.
We claim

Aq=Q+[0,1] x[]2,
p

which is to say that the compact subset [0,1] x [[,Z, C Aq (with the induced topology given by its
product topology!) maps continuously onto the quotient Ag/Q, thereby “explaining” the compactness of
the quotient in this case. For an arbitrary adele x = (2,,) € Aq, for each prime p we let y, = > . a;/pt € Q
(with a; € Z, 0 < a; < p) be the finite-tailed p-adic polar part of x, € Q,, so y, € Z[1/p] is integral away
from p for each p and y, = 0 for all but finitely many p (as x, € Z, for all but finitely many p). Hence, if
¢ # p are distinct primes then y, has image in Q, that lies in Z,, so the rational number y = Zp Yp € Q
makes sense and its image in Q,/Z, is represented by y, for each p. Thus, z, —y € Q, lies in Z,, for every p



3

because modulo Z,, it is represented by x, —y, € Z, (due to the choice of y,). To summarize, the diagonally
embedded adele y in Aq differs from the adele x by an adele that is integral at all non-archimedean places.
That is,

r—y=(z, —y) ERXHZPQAQ.
p

If we further replace y by a Z-translate then we do not affect this property of x — y, but we can adjust
the archimedean component of the difference to lie in [0,1]. That is, for a suitable integer n we have
z — (y+mn) € [0,1] x [, Zy, giving the desired result. This argument shows slightly more: [0,1) x [],Z,
maps bijectively onto Aq/Q, so it serves as a “fundamental domain”.

Remark 2.2. The preceding worked example applies quite generally to A whenever Ok has class number
1, and it says that in such cases if P C R®q K = Hv|oo K, is a fundamental parallelotope for the quotient
(R®qK)/OKk then Ak = K+ P x ][], Ov,s0 Px]],, Oy serves as a “fundamental domain” for A /K.
Of course, in general one cannot expect to find such a simple description of a fundamental domain, and
working directly with the adele ring and its quotients is the best way to bypass undue complications caused
by class groups.



