Math 676. A lattice in the adele ring

Let K be a number field, and let S be a finite set of places of K containing the set S_{∞} of archimedean places. The S-adele ring $\mathbf{A}_{K, S}=\prod_{v \in S} K_{v} \times \prod_{v \notin S} \mathscr{O}_{v}$ is an open subring of the adele ring \mathbf{A}_{K}, and it meets the additive subgroup K in the subring $\mathscr{O}_{K, S}$ of S-integers. In class we saw that K is discrete in \mathbf{A}_{K} and $\mathscr{O}_{K, S}$ is discrete in $\mathbf{A}_{K, S}$. The purpose of this handout is to explain why each of these discrete subgroups is co-compact. The main input will be that $\mathscr{O}_{K, S}$ is a lattice in $\prod_{v \in S} K_{v}$, a fact that we saw in an earlier handout (and that was a key ingredient in the proof of the S-unit theorem).

1. The case of S-adeles

We first study $\mathbf{A}_{K, S} / \mathscr{O}_{K, S}$. This is a locally compact Hausdorff topological group since $\mathbf{A}_{K, S}$ is such a group and $\mathscr{O}_{K, S}$ is a closed subgroup. Using the continuous projection to the S-factor, we get a continuous surjection

$$
\mathbf{A}_{K, S} / \mathscr{O}_{K, S} \rightarrow\left(\prod_{v \in S} K_{v}\right) / \mathscr{O}_{K, S}
$$

to a compact group, and the kernel is surjected onto by the compact group $\prod_{v \notin S} \mathscr{O}_{v}$, so the kernel is itself compact. Hence, to infer compactness of $\mathbf{A}_{K, S} / \mathscr{O}_{K, S}$ we use the rather general:
Lemma 1.1. Let G be a locally compact Hausdorff topological group, and let H be a closed subgroup. Give the coset space G / H its locally compact Hausdorff quotient topology. The group G is compact if and only if H and G / H are compact.

Proof. If G is compact then its closed subset H is compact and its continuous image G / H is certainly compact. For the converse, choose a collection of open sets U_{i} in G with compact closure in G (such U_{i} 's exist since G is locally compact and Hausdorff). The images $U_{i} H / H$ in G / H are open since $U_{i} H$ is open in G (as it is a union of translates $U_{i} h$ for $h \in H$), and so by compactness of G / H finitely many of these cover G / H. That is, G is a union of finitely many $U_{i} H$'s. Each U_{i} has compact closure C_{i} in G, so G is a union of finitely many $C_{i} H$'s. Each $C_{i} H$ is compact because it is the image of the compact product $C_{i} \times H$ under the continuous multiplication map for G, so G is a union of finitely many compact subsets. Hence, G is compact.

2. The adelic case

Now we turn to the task of proving that \mathbf{A}_{K} / K is compact. For any $S, \mathbf{A}_{K, S}$ is an open subring of \mathbf{A}_{K}, so the continuous map

$$
\mathbf{A}_{K, S} / \mathscr{O}_{K, S} \rightarrow \mathbf{A}_{K} / K
$$

modulo discrete subgroups is an open map. It is also injective (why?), and so it is an open embedding. Hence, \mathbf{A}_{K} / K is the directed union of open subgroups $\mathbf{A}_{K, S} / \mathscr{O}_{K, S}$ that are compact. It follows that \mathbf{A}_{K} / K is compact if and only if these open embeddings are equalities for S "large enough".

Let us try to understand the cokernel of the inclusion, namely $\mathbf{A}_{K} /\left(K+\mathbf{A}_{K, S}\right)$. This is a discrete topological group (since $\mathbf{A}_{K, S}$ is an open additive subgroup of \mathbf{A}_{K}), and from the definitions we have

$$
\mathbf{A}_{K} / \mathbf{A}_{K, S}=\bigoplus_{v \notin S} K_{v} / \mathscr{O}_{v}
$$

We have a natural diagonal embedding of K in here with kernel given by the set of elements of K that are v-adically integral for all $v \notin S$, which is to say the kernel of the diagonal map from K is $\mathscr{O}_{K, S}$. Hence, we have an inclusion

$$
K / \mathscr{O}_{K, S} \hookrightarrow \bigoplus_{v \notin S} K_{v} / \mathscr{O}_{v}
$$

and our aim is to prove that this is an equality for S "large enough". Since $\mathscr{O}_{K, S}$ can always be arranged to have trivial class group by taking S to be large enough (for example, S consists of S_{∞} and non-archimedean places corresponding to prime factors of a finite set of representatives for the elements of the class group of \mathscr{O}_{K}), it suffices to prove that this inclusion is an equality whenever $\mathscr{O}_{K, S}$ has trivial class group. Rather more generally:

Theorem 2.1. Let A be an arbitrary Dedekind domain, with F its fraction field. The natural inclusion

$$
F / A \rightarrow \bigoplus_{\mathfrak{m}} F_{\mathfrak{m}} / A_{\mathfrak{m}}^{\wedge}
$$

is an equality if A has trivial class group. Here, \mathfrak{m} ranges over the maximal ideals of $A, F_{\mathfrak{m}}$ is the \mathfrak{m}-adic completion of F, and A_{m}^{\wedge} is its valuation ring.

Taking $A=\mathscr{O}_{K, S}$ gives what we need, since the completions from the primes of $\mathscr{O}_{K, S}$ are exactly the K_{v} 's and \mathscr{O}_{v} 's for $v \notin S$ (check!). Also, the map into the direct sum in the theorem makes sense because each $x \in F$ has image in $F_{\mathfrak{m}}$ that lies in $A_{\mathfrak{m}}^{\wedge}$ for all but finitely many \mathfrak{m}.

Before reading the proof of the theorem, it is instructive to first study the case $A=\mathbf{Z}$ by hand to get a feel for what is going on: can you show that $\mathbf{Q} / \mathbf{Z} \rightarrow \bigoplus_{p} \mathbf{Q}_{p} / \mathbf{Z}_{p}$ is an isomorphism "by hand"? (hint: \mathbf{Q} / \mathbf{Z} is a torsion group, so it maps isomorphically to the direct sum of its p^{∞}-torsion subgroups.)
Proof. We first get rid of completions by checking that the natural map

$$
F / A_{\mathfrak{m}} \rightarrow F_{\mathfrak{m}} / A_{\mathfrak{m}}^{\wedge}
$$

is an isomorphism, where $A_{\mathfrak{m}}$ denotes the algebraic localization of A at \mathfrak{m}; this is the special case of the theorem when A is a discrete valuation ring. That is, for any discrete valuation ring R with fraction field L we claim that the natural map

$$
L / R \rightarrow L^{\wedge} / R^{\wedge}
$$

is an isomorphism, with L^{\wedge} denoting the completion of L with respect to the canonical place arising from R and R^{\wedge} denoting its valuation ring. The injectivity of this map is the old result $L \cap R^{\wedge}=R$ inside of L^{\wedge}, a fact we saw long ago. For surjectivity, we pick $\pi \in R$ that is a uniformizer and we choose a subset $\Sigma \subseteq R$ that is a set of representatives for the residue field of R, which in turn coincides with the residue field of the discrete valuation ring R^{\wedge}. By using π-adic expansions with coefficients in Σ, consideration of L^{\wedge} / R^{\wedge} is tantamount to looking at just the "polar parts" of π-adic expansions in L^{\wedge}. Each such polar part is a finite sum $\sum_{i>0} \sigma_{i} \pi^{-i} \in L$, so the asserted surjectivity from L / R follows.

We may now restate our problem in purely algebraic terms: we wish to show that the natural inclusion

$$
F / A \rightarrow \bigoplus_{\mathfrak{m}} F / A_{\mathfrak{m}}
$$

is an isomorphism if A has trivial class group. Assume A has trivial class group. The target is generated by elements that are 0 away from a single factor, so it suffices to fix \mathfrak{m} and a nonzero \mathfrak{m}-adic polar part $\xi \in F / A_{\mathfrak{m}}$, and we have to construct $x \in F$ that is integral away from \mathfrak{m} but has \mathfrak{m}-adic polar part ξ. If ξ has \mathfrak{m}-adic order $-e$ with $e>0$ and $\pi \in A$ is a principal generator of \mathfrak{m}, then there is a well-defined residue class

$$
\pi^{e} \xi \in A_{\mathfrak{m}} / \mathfrak{m}^{e} A_{\mathfrak{m}} \simeq A / \mathfrak{m}^{e}
$$

(the isomorphism goes from right to left, and is the crux of the matter). For any $x^{\prime} \in A$ that represents this residue class in $A / \mathfrak{m}^{e}, x^{\prime} / \pi^{e} \in F$ solves our problem: it is integral away from \mathfrak{m} and has polar part ξ at \mathfrak{m}.

We conclude with a concrete example to illustrate the compactness of \mathbf{A}_{K} / K in the special case $K=\mathbf{Q}$. We claim

$$
\mathbf{A}_{\mathbf{Q}}=\mathbf{Q}+[0,1] \times \prod_{p} \mathbf{Z}_{p}
$$

which is to say that the compact subset $[0,1] \times \prod_{p} \mathbf{Z}_{p} \subseteq \mathbf{A}_{\mathbf{Q}}$ (with the induced topology given by its product topology!) maps continuously onto the quotient $\mathbf{A}_{\mathbf{Q}} / \mathbf{Q}$, thereby "explaining" the compactness of the quotient in this case. For an arbitrary adele $x=\left(x_{v}\right) \in \mathbf{A}_{\mathbf{Q}}$, for each prime p we let $y_{p}=\sum_{i>0} a_{i} / p^{i} \in \mathbf{Q}$ (with $a_{i} \in \mathbf{Z}, 0 \leq a_{i}<p$) be the finite-tailed p-adic polar part of $x_{p} \in \mathbf{Q}_{p}$, so $y_{p} \in \mathbf{Z}[1 / p]$ is integral away from p for each p and $y_{p}=0$ for all but finitely many p (as $x_{p} \in \mathbf{Z}_{p}$ for all but finitely many p). Hence, if $\ell \neq p$ are distinct primes then y_{ℓ} has image in \mathbf{Q}_{p} that lies in \mathbf{Z}_{p}, so the rational number $y=\sum_{p} y_{p} \in \mathbf{Q}$ makes sense and its image in $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ is represented by y_{p} for each p. Thus, $x_{p}-y \in \mathbf{Q}_{p}$ lies in \mathbf{Z}_{p} for every p
because modulo \mathbf{Z}_{p} it is represented by $x_{p}-y_{p} \in \mathbf{Z}_{p}$ (due to the choice of y_{p}). To summarize, the diagonally embedded adele y in $\mathbf{A}_{\mathbf{Q}}$ differs from the adele x by an adele that is integral at all non-archimedean places. That is,

$$
x-y=\left(x_{v}-y\right) \in \mathbf{R} \times \prod_{p} \mathbf{Z}_{p} \subseteq \mathbf{A}_{\mathbf{Q}}
$$

If we further replace y by a Z-translate then we do not affect this property of $x-y$, but we can adjust the archimedean component of the difference to lie in $[0,1]$. That is, for a suitable integer n we have $x-(y+n) \in[0,1] \times \prod_{p} \mathbf{Z}_{p}$, giving the desired result. This argument shows slightly more: $[0,1) \times \prod_{p} \mathbf{Z}_{p}$ maps bijectively onto $\mathbf{A}_{\mathbf{Q}} / \mathbf{Q}$, so it serves as a "fundamental domain".
Remark 2.2. The preceding worked example applies quite generally to \mathbf{A}_{K} whenever \mathscr{O}_{K} has class number 1 , and it says that in such cases if $P \subseteq \mathbf{R} \otimes_{\mathbf{Q}} K=\prod_{v \mid \infty} K_{v}$ is a fundamental parallelotope for the quotient $\left(\mathbf{R} \otimes_{\mathbf{Q}} K\right) / \mathscr{O}_{K}$ then $\mathbf{A}_{K}=K+P \times \prod_{v \nmid \infty} \mathscr{O}_{v}$, so $P \times \prod_{v \nmid \infty} \mathscr{O}_{v}$ serves as a "fundamental domain" for \mathbf{A}_{K} / K. Of course, in general one cannot expect to find such a simple description of a fundamental domain, and working directly with the adele ring and its quotients is the best way to bypass undue complications caused by class groups.

