
Math 676. A lattice in the adele ring

Let K be a number field, and let S be a finite set of places of K containing the set S∞ of archimedean
places. The S-adele ring AK,S =

∏
v∈S Kv×

∏
v 6∈S Ov is an open subring of the adele ring AK , and it meets

the additive subgroup K in the subring OK,S of S-integers. In class we saw that K is discrete in AK and
OK,S is discrete in AK,S . The purpose of this handout is to explain why each of these discrete subgroups
is co-compact. The main input will be that OK,S is a lattice in

∏
v∈S Kv, a fact that we saw in an earlier

handout (and that was a key ingredient in the proof of the S-unit theorem).

1. The case of S-adeles

We first study AK,S/OK,S . This is a locally compact Hausdorff topological group since AK,S is such a
group and OK,S is a closed subgroup. Using the continuous projection to the S-factor, we get a continuous
surjection

AK,S/OK,S � (
∏
v∈S

Kv)/OK,S

to a compact group, and the kernel is surjected onto by the compact group
∏
v 6∈S Ov, so the kernel is itself

compact. Hence, to infer compactness of AK,S/OK,S we use the rather general:
Lemma 1.1. Let G be a locally compact Hausdorff topological group, and let H be a closed subgroup. Give
the coset space G/H its locally compact Hausdorff quotient topology. The group G is compact if and only if
H and G/H are compact.

Proof. If G is compact then its closed subset H is compact and its continuous image G/H is certainly
compact. For the converse, choose a collection of open sets Ui in G with compact closure in G (such Ui’s
exist since G is locally compact and Hausdorff). The images UiH/H in G/H are open since UiH is open
in G (as it is a union of translates Uih for h ∈ H), and so by compactness of G/H finitely many of these
cover G/H. That is, G is a union of finitely many UiH’s. Each Ui has compact closure Ci in G, so G is a
union of finitely many CiH’s. Each CiH is compact because it is the image of the compact product Ci ×H
under the continuous multiplication map for G, so G is a union of finitely many compact subsets. Hence, G
is compact. �

2. The adelic case

Now we turn to the task of proving that AK/K is compact. For any S, AK,S is an open subring of AK ,
so the continuous map

AK,S/OK,S → AK/K

modulo discrete subgroups is an open map. It is also injective (why?), and so it is an open embedding.
Hence, AK/K is the directed union of open subgroups AK,S/OK,S that are compact. It follows that AK/K
is compact if and only if these open embeddings are equalities for S “large enough”.

Let us try to understand the cokernel of the inclusion, namely AK/(K + AK,S). This is a discrete
topological group (since AK,S is an open additive subgroup of AK), and from the definitions we have

AK/AK,S =
⊕
v 6∈S

Kv/Ov.

We have a natural diagonal embedding of K in here with kernel given by the set of elements of K that are
v-adically integral for all v 6∈ S, which is to say the kernel of the diagonal map from K is OK,S . Hence, we
have an inclusion

K/OK,S ↪→
⊕
v 6∈S

Kv/Ov,

and our aim is to prove that this is an equality for S “large enough”. Since OK,S can always be arranged to
have trivial class group by taking S to be large enough (for example, S consists of S∞ and non-archimedean
places corresponding to prime factors of a finite set of representatives for the elements of the class group of
OK), it suffices to prove that this inclusion is an equality whenever OK,S has trivial class group. Rather
more generally:
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Theorem 2.1. Let A be an arbitrary Dedekind domain, with F its fraction field. The natural inclusion

F/A→
⊕
m

Fm/A
∧
m

is an equality if A has trivial class group. Here, m ranges over the maximal ideals of A, Fm is the m-adic
completion of F , and A∧m is its valuation ring.

Taking A = OK,S gives what we need, since the completions from the primes of OK,S are exactly the Kv’s
and Ov’s for v 6∈ S (check!). Also, the map into the direct sum in the theorem makes sense because each
x ∈ F has image in Fm that lies in A∧m for all but finitely many m.

Before reading the proof of the theorem, it is instructive to first study the case A = Z by hand to get a
feel for what is going on: can you show that Q/Z→

⊕
p Qp/Zp is an isomorphism “by hand”? (hint: Q/Z

is a torsion group, so it maps isomorphically to the direct sum of its p∞-torsion subgroups.)

Proof. We first get rid of completions by checking that the natural map

F/Am → Fm/A
∧
m

is an isomorphism, where Am denotes the algebraic localization of A at m; this is the special case of the
theorem when A is a discrete valuation ring. That is, for any discrete valuation ring R with fraction field L
we claim that the natural map

L/R→ L∧/R∧

is an isomorphism, with L∧ denoting the completion of L with respect to the canonical place arising from R
and R∧ denoting its valuation ring. The injectivity of this map is the old result L ∩ R∧ = R inside of L∧,
a fact we saw long ago. For surjectivity, we pick π ∈ R that is a uniformizer and we choose a subset Σ ⊆ R
that is a set of representatives for the residue field of R, which in turn coincides with the residue field of
the discrete valuation ring R∧. By using π-adic expansions with coefficients in Σ, consideration of L∧/R∧ is
tantamount to looking at just the “polar parts” of π-adic expansions in L∧. Each such polar part is a finite
sum

∑
i>0 σiπ

−i ∈ L, so the asserted surjectivity from L/R follows.
We may now restate our problem in purely algebraic terms: we wish to show that the natural inclusion

F/A→
⊕
m

F/Am

is an isomorphism if A has trivial class group. Assume A has trivial class group. The target is generated
by elements that are 0 away from a single factor, so it suffices to fix m and a nonzero m-adic polar part
ξ ∈ F/Am, and we have to construct x ∈ F that is integral away from m but has m-adic polar part ξ. If ξ
has m-adic order −e with e > 0 and π ∈ A is a principal generator of m, then there is a well-defined residue
class

πeξ ∈ Am/m
eAm ' A/me

(the isomorphism goes from right to left, and is the crux of the matter). For any x′ ∈ A that represents this
residue class in A/me, x′/πe ∈ F solves our problem: it is integral away from m and has polar part ξ at
m. �

We conclude with a concrete example to illustrate the compactness of AK/K in the special case K = Q.
We claim

AQ = Q + [0, 1]×
∏
p

Zp,

which is to say that the compact subset [0, 1] ×
∏
p Zp ⊆ AQ (with the induced topology given by its

product topology!) maps continuously onto the quotient AQ/Q, thereby “explaining” the compactness of
the quotient in this case. For an arbitrary adele x = (xv) ∈ AQ, for each prime p we let yp =

∑
i>0 ai/p

i ∈ Q
(with ai ∈ Z, 0 ≤ ai < p) be the finite-tailed p-adic polar part of xp ∈ Qp, so yp ∈ Z[1/p] is integral away
from p for each p and yp = 0 for all but finitely many p (as xp ∈ Zp for all but finitely many p). Hence, if
` 6= p are distinct primes then y` has image in Qp that lies in Zp, so the rational number y =

∑
p yp ∈ Q

makes sense and its image in Qp/Zp is represented by yp for each p. Thus, xp− y ∈ Qp lies in Zp for every p
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because modulo Zp it is represented by xp−yp ∈ Zp (due to the choice of yp). To summarize, the diagonally
embedded adele y in AQ differs from the adele x by an adele that is integral at all non-archimedean places.
That is,

x− y = (xv − y) ∈ R×
∏
p

Zp ⊆ AQ.

If we further replace y by a Z-translate then we do not affect this property of x − y, but we can adjust
the archimedean component of the difference to lie in [0, 1]. That is, for a suitable integer n we have
x − (y + n) ∈ [0, 1] ×

∏
p Zp, giving the desired result. This argument shows slightly more: [0, 1) ×

∏
p Zp

maps bijectively onto AQ/Q, so it serves as a “fundamental domain”.
Remark 2.2. The preceding worked example applies quite generally to AK whenever OK has class number
1, and it says that in such cases if P ⊆ R⊗Q K =

∏
v|∞Kv is a fundamental parallelotope for the quotient

(R⊗QK)/OK then AK = K+P ×
∏
v-∞Ov, so P ×

∏
v-∞Ov serves as a “fundamental domain” for AK/K.

Of course, in general one cannot expect to find such a simple description of a fundamental domain, and
working directly with the adele ring and its quotients is the best way to bypass undue complications caused
by class groups.


