Math 676. The lattice of S-integers

Let K be a number field, and let S be a finite set of places of K containing the set S_{∞} of archimedean places. Recall that we define the ring $\mathscr{O}_{K, S}$ of S-integers in K to be the set of $a \in K$ such that a is v-integral for all (necessarily non-archimedean!) $v \notin S$; that is, $\|a\|_{v} \leq 1$ for all $v \notin S$. For $a \in \mathscr{O}_{K, S}$, we have $a \in \mathscr{O}_{K, S}^{\times}$ if and only if $a \neq 0$ and $a, 1 / a \in K^{\times}$each lie in $\mathscr{O}_{K, S}$. That is, $a \in \mathscr{O}_{K, S}^{\times}$if and only if $a \in K^{\times}$and $\|a\|_{v},\|1 / a\|_{v} \leq 1$ for all $v \notin S$. This final condition says $\|a\|_{v}=1$ for all $v \notin S$. Hence,

$$
\mathscr{O}_{K, S}^{\times}=\left\{x \in K^{\times} \mid\|x\|_{v}=1 \text { for all } v \notin S\right\} .
$$

1. Preliminaries

We first wish to show that $\mathscr{O}_{K, S}$ can be concretely constructed from \mathscr{O}_{K} and knowledge of the class number. For each non-archimedean place of K, we let \mathfrak{p}_{v} denote the corresponding prime ideal of \mathscr{O}_{K}. Since the class group is killed by the class number, for all non-archimedean v the ideal $\mathfrak{p}_{v}^{h(K)}$ in \mathscr{O}_{K} is principal. Hence, the finite product $\prod_{v \in S-S_{\infty}} \mathfrak{p}_{v}^{h(K)}$ has the form $a_{S} \mathscr{O}_{K}$, so $1 / a_{S} \in K^{\times}$is non-integral at precisely those non-archimedean v that lie in S (if $S=S_{\infty}$ then this product is empty and we may interpret the product over the empty set $S-S_{\infty}$ to be the unit ideal $\mathscr{O}_{K} ; a_{S}$ is an element of \mathscr{O}_{K}^{\times}in this case). Having constructed one such element, we now show that any such element allows us to construct $\mathscr{O}_{K, S}$ as a localization of \mathscr{O}_{K} :
Lemma 1.1. For $a \in \mathscr{O}_{K}-\{0\}$, we have $\mathscr{O}_{K, S}=\mathscr{O}_{K}[1 / a]$ if and only if the finite set of non-archimedean v for which $\|1 / a\|_{v}>1$ is exactly the set $S-S_{\infty}$. (Equivalently, the condition is that the prime factors of $a \mathscr{O}_{K}$ are exactly the primes \mathfrak{p}_{v} for $\left.v \in S-S_{\infty}\right)$.

Proof. If $\mathscr{O}_{K, S}=\mathscr{O}_{K}[1 / a]$ then $1 / a$ is v-integral for all $v \notin S$, so $\|1 / a\|_{v} \leq 1$ for all $v \notin S$. We wish to show that $\|1 / a\|_{v}>1$ for the other non-archimedean places, namely those $v \in S-S_{\infty}$. Suppose otherwise, so $\|1 / a\|_{v_{0}} \leq 1$ for some $v_{0} \in S-S_{\infty}$. That is, assume $1 / a$ is v_{0}-integral for some non-archimedean $v_{0} \in S$. Since all elements of \mathscr{O}_{K} are also v_{0}-integral, it follows that all elements of $\mathscr{O}_{K, S}=\mathscr{O}_{K}[1 / a]$ are v_{0}-integral. However, this is not true: by finiteness of the class group we have $\mathfrak{p}_{v_{0}}^{h(K)}=a_{0} \mathscr{O}_{K}$ for some $a_{0} \in \mathscr{O}_{K}-\{0\}$, and clearly $1 / a_{0} \in \mathscr{O}_{K, S}$ (since a_{0} is even a local unit at all places not in S) yet $1 / a_{0}$ is not v_{0}-integral for the place $v_{0} \in S$ (as $\left\|1 / a_{0}\right\|_{v_{0}}>1$ due to the prime factorization of $a_{0} \mathscr{O}_{K}$).

Conversely, suppose $a \in \mathscr{O}_{K}$ is nonzero and $\|1 / a\|_{v}>1$ for $v \in S-S_{\infty}$ and $\|1 / a\|_{v} \leq 1$ for $v \notin S$, so $\mathscr{O}_{K}[1 / a] \subseteq \mathscr{O}_{K, S}$ and we want this to be an equality. For $x \in \mathscr{O}_{K, S}$, we seek to find a large N such that $a^{N} x \in \mathscr{O}_{K}$. Since $a^{N} x \in \mathscr{O}_{K, S}$ for any $N>0$, the only issue is to arrange that $a^{N} x$ is v-integral for each $v \in S-S_{\infty}$. Since $\operatorname{ord}_{v}\left(a^{N} x\right)=\operatorname{Nord}_{v}(a)+\operatorname{ord}_{v}(x)$ with $\operatorname{ord}_{v}(a)>0$, we can certainly find such a large N.

We can now make explicit how $\mathscr{O}_{K, S}$ behaves with respect to extension on K.
Theorem 1.2. Let K^{\prime} / K be a finite extension of number fields and let S be a finite set of places of K containing S_{∞}. Let S^{\prime} be the set of places of K^{\prime} lying over S, so S^{\prime} is a finite set of places of K^{\prime} containing the set S_{∞}^{\prime} of archimedean places of K^{\prime}.

The integral closure of $\mathscr{O}_{K, S}$ in K^{\prime} is $\mathscr{O}_{K^{\prime}, S^{\prime}}$. In particular, $\mathscr{O}_{K^{\prime}, S^{\prime}}$ is a finite $\mathscr{O}_{K, S}$-module.
Proof. Choose $a \in \mathscr{O}_{K}-\{0\}$ such that for non-archimedean v on K we have $\|1 / a\|_{v}>1$ if and only if $v \in S-S_{\infty}$. By Lemma 1.1, $\mathscr{O}_{K, S}=\mathscr{O}_{K}[1 / a]$. Choose $x \in K$. For a non-archimedean place v^{\prime} on K^{\prime} over a place (necessarily non-archimedean) v on K, clearly $x \in K^{\prime}$ is non-integral at v^{\prime} if and only if $x \in K$ is non-integral at v. Taking $x=1 / a$, we see that for any non-archimedean v^{\prime} on $K^{\prime},\|1 / a\|_{v^{\prime}}>1$ if and only if $v^{\prime} \in S^{\prime}-S_{\infty}^{\prime}$. Hence, by Lemma 1.1, $\mathscr{O}_{K^{\prime}, S^{\prime}}=\mathscr{O}_{K^{\prime}}[1 / a]$. Our problem is to show that the integral closure of $\mathscr{O}_{K}[1 / a]$ in K^{\prime} is $\mathscr{O}_{K^{\prime}}[1 / a]$, and this follows from the compatibility of integral closure with respect to localization at a multiplicative set of nonzero elements of the base ring (in this case, localization at the set of powers of a with non-negative exponent).

2. The lattice condition

Our aim is to study the geometry of the diagonal embedding

$$
\mathscr{O}_{K, S} \rightarrow \prod_{v \in S} K_{v}
$$

into the finite product of the locally compact completions K_{v} of K at the places $v \in S$. In the classical case $S=S_{\infty}$ this is the embedding

$$
\mathscr{O}_{K} \hookrightarrow \prod_{v \mid \infty} K_{v} \simeq \mathbf{R} \otimes_{\mathbf{Q}} K \simeq \mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}
$$

We have seen via a \mathbf{Z}-basis of \mathscr{O}_{K} (and hence ultimately by the fact that \mathbf{Z} is discrete in \mathbf{R} and that \mathbf{R} / \mathbf{Z} is compact) that \mathscr{O}_{K} is discrete (hence closed) and co-compact in $\mathbf{R} \otimes_{\mathbf{Q}} K$ (that is, the quotient by \mathscr{O}_{K} is compact). We claim a similar conclusion holds for general S :
Theorem 2.1. The image of $\mathscr{O}_{K, S}$ in $\prod_{v \in S} K_{v}$ is a discrete (hence closed) and co-compact subgroup.
In general, a lattice Γ in a locally compact Hausdorff topological group G is a discrete subgroup such that the locally compact Hausdorff coset space G / Γ is compact. In the special case that G is a finite-dimensional \mathbf{R}-vector space this recovers the traditional notion of a lattice in such a vector space, and the theorem says that $\mathscr{O}_{K, S}$ is a lattice in $\prod_{v \in S} K_{v}$ in general.

Proof. Let S^{\prime} be a finite set of places of K containing S. We first show that if $\mathscr{O}_{K, S^{\prime}}$ is a lattice in $\prod_{v \in S^{\prime}} K_{v}$ then $\mathscr{O}_{K, S}$ is a lattice in $\prod_{v \in S} K_{v}$. Each valuation ring $\mathscr{O}_{v}=\mathscr{O}_{K_{v}}$ for $v \nmid \infty$ is both compact and open in K_{v}, so $\prod_{v \in S} K_{v} \times \prod_{v \in S^{\prime}-S} \mathscr{O}_{v}$ (with its product topology) is open and closed in $\prod_{v \in S^{\prime}} K_{v}$. This open and closed subgroup meets the diagonally embedded subgroup $\mathscr{O}_{K, S^{\prime}}$ in the set of elements of $\mathscr{O}_{K, S^{\prime}}$ whose image in K_{v} lies in \mathscr{O}_{v} for all $v \in S^{\prime}-S$, and these are the elements of $\mathscr{O}_{K, S^{\prime}}$ that are v-integral for all $v \in S^{\prime}-S$. In other words, these are the elements of K that are integral at all non-archimedean places outside of S^{\prime} and at all places in $S^{\prime}-S$, which is to say at all places outside of S : these are the elements of $\mathscr{O}_{K, S}$. Hence, the subgroup $\mathscr{O}_{K, S^{\prime}}$ in $\prod_{v \in S^{\prime}} K_{v}$ meets the open and closed subgroup $\prod_{v \in S} K_{v} \times \prod_{v \in S^{\prime}-S} \mathscr{O}_{v}$ in exactly $\mathscr{O}_{K, S}$, and so the discreteness hypothesis for $\mathscr{O}_{K, S^{\prime}}$ implies that $\mathscr{O}_{K, S}$ has discrete image in $\prod_{v \in S} K_{v} \times \prod_{v \in S^{\prime}-S} \mathscr{O}_{v}$. We may thereby infer discreteness of $\mathscr{O}_{K, S}$ diagonally embedded in $\prod_{v \in S} K_{v}$ via:
Lemma 2.2. Let G and G^{\prime} be Hausdorff topological groups with G^{\prime} compact. Let Γ be a discrete subgroup of $G \times G^{\prime}$ such that the map $\Gamma \rightarrow G$ is injective. The image of Γ in G is discrete.

Proof. We will argue with the language of nets, but the reader who prefers to use sequences to probe the topology of a space may safely impose the condition that G and G^{\prime} have a countable base of opens around each point (which certainly holds for metrizable spaces, the intended application). Let $\pi: G \times G^{\prime} \rightarrow G$ be the projection. Suppose that Γ does not have discrete image in G, so there exists $\gamma \in \Gamma$ such that $\pi(\gamma)$ is a limit of a net $\left\{\pi\left(\gamma_{i}\right)\right\}$ where the γ_{i} 's lie in $\Gamma-\{\gamma\}$. Consider the net $\left\{\gamma_{i}\right\}$ in $\Gamma \subseteq G \times G^{\prime}$. Since G^{\prime} is compact Hausdorff, by passing to a subnet we may arrange that the image of $\left\{\gamma_{i}\right\}$ in G^{\prime} has a limit. By hypothesis the image of $\left\{\gamma_{i}\right\}$ in G has a limit, namely γ. Hence, the net $\left\{\gamma_{i}\right\}$ has a limit under projection to each factor and so has a limit in $G \times G^{\prime}$. By discreteness of Γ in $G \times G^{\prime}$, the net must be eventually constant, and so the net $\left\{\pi\left(\gamma_{i}\right)\right\}$ in G is eventually constant. Its limit is $\pi(\gamma)$, so $\pi\left(\gamma_{i}\right)=\pi(\gamma)$ for large i. By the hypothesis of injectivity for π we conclude $\gamma_{i}=\gamma$ for large i, a contradiction.

We conclude that discreteness for $\mathscr{O}_{K, S}$ in $\prod_{v \in S} K_{v}$ is a consequence of the assumed discreteness for $\mathscr{O}_{K, S^{\prime}}$ in $\prod_{v \in S^{\prime}} K_{v}$. By closedness of discrete subgroups, the quotients $\left(\prod_{v \in S} K_{v}\right) / \mathscr{O}_{K, S}$ and $\left(\prod_{v \in S^{\prime}} K_{v}\right) / \mathscr{O}_{K, S^{\prime}}$ are locally compact Hausdorff topological groups and we wish to show that compactness of the latter implies compactness of the former. Consider the natural continuous map (using quotient topologies)

$$
j:\left(\prod_{v \in S} K_{v} \times \prod_{v \in S^{\prime}-S} \mathscr{O}_{v}\right) / \mathscr{O}_{K, S} \rightarrow\left(\prod_{v \in S^{\prime}} K_{v}\right) / \mathscr{O}_{K, S^{\prime}}
$$

This is clearly injective, and if we can prove it is a closed embedding then the source is compact and so its image $\left(\prod_{v \in S} K_{v}\right) / \mathscr{O}_{K, S}$ under projection to the S-factors is certainly compact as desired. Since the source
and target of j are quotients by discrete subgroups, the map j is locally (on source and target) an open embedding because the map $\prod_{v \in S} K_{v} \times \prod_{v \in S^{\prime}-S} \mathscr{O}_{v} \rightarrow \prod_{v \in S^{\prime}} K_{v}$ is certainly an open embedding. It is elementary definition-chasing to check that continuous map that is locally an open embedding is an open embedding if and only if it is injective, so by injectivity of j we can indeed deduce the lattice property for S if we have it for some S^{\prime} containing S.

Now we use the preceding considerations with a suitable $S^{\prime} \supseteq S$ to increase S to be the preimage of a finite set of places of \mathbf{Q} (containing the archimedean place), and so (by Theorem 1.2) $\mathscr{O}_{K, S}$ is the integral closure of $\mathbf{Z}[1 / N]$ in K for a suitable nonzero integer N, so $\mathscr{O}_{K, S}=\mathscr{O}_{K}[1 / N]$. For $S_{0}=\{\infty, p \mid N\}$ we have

$$
\prod_{v \in S} K_{v}=\prod_{v_{0} \in S_{0}}\left(\prod_{v \mid v_{0}} K_{v}\right) \simeq \prod_{v_{0} \in S_{0}} K \otimes_{\mathbf{Q}} \mathbf{Q}_{v_{0}} \simeq K \otimes_{\mathbf{Q}} \prod_{v_{0} \in S_{0}} \mathbf{Q}_{v_{0}}
$$

Since $K=\mathscr{O}_{K}[1 / N] \otimes_{\mathbf{Z}[1 / N]} \mathbf{Q}$, we get a natural isomorphism

$$
\phi: \mathscr{O}_{K}[1 / N] \otimes_{\mathbf{Z}[1 / N]} \prod_{v \in S_{0}} \mathbf{Q}_{v} \simeq \prod_{v \in S} K_{v}
$$

Since $\mathbf{Z}[1 / N]$ is a PID we may find a free basis for $\mathscr{O}_{K}[1 / N]$ as a $\mathbf{Z}[1 / N]$-module, and it is a simple exercise (check!) that using any such choice of basis to identify the source of ϕ with a product of copies of $\prod_{v_{0} \in S_{0}} \mathbf{Q}_{v_{0}}$ makes ϕ into a topological isomorphism. Hence, upon picking such a basis we may reduce the problem of discreteness and co-compactness for $\mathscr{O}_{K}[1 / N]$ in $\prod_{v \in S} K_{v}$ to the problem of discreteness and co-compactness for $\mathbf{Z}[1 / N]$ in $\prod_{v_{0} \in S_{0}} \mathbf{Q}_{v_{0}}$. This completes the reduction of our problem to the case of the field \mathbf{Q}.

To check discreteness in the case $K=\mathbf{Q}$ (with $\mathscr{O}_{K, S}=\mathbf{Z}[1 / N]$ for a suitable nonzero integer N) we observe that $(-1,1) \times \prod_{p \mid N} \mathbf{Z}_{p}$ is an open neighborhood of the origin in $\prod_{v \in S} \mathbf{Q}_{v}$ that meets $\mathscr{O}_{K, S}=\mathbf{Z}[1 / N]$ in the set of elements $x \in \mathbf{Z}[1 / N]$ that are p-integral for all $p \mid N$ and satisfy $|x|<1$. The p-integrality for all $p \mid N$ says exactly $x \in \mathbf{Z}$, and clearly if $x \in \mathbf{Z}$ and $|x|<1$ then $x=0$. This proves discreteness. For co-compactness it suffices to prove that the natural continuous map

$$
[0,1] \times \prod_{p \mid N} \mathbf{Z}_{p} \rightarrow\left(\prod_{v \in S} \mathbf{Q}_{v}\right) / \mathbf{Z}[1 / N]
$$

with compact source is surjective. Pick an element $x \in \prod_{v \in S} \mathbf{Q}_{v}$. Every element of $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ admits a representative of the form $a_{p} / p^{e_{p}}$ with $e_{p} \geq 0$ and $a_{p} \in \mathbf{Z}$, and so by subtracting an element of the form $\sum_{p \mid N} a_{p} / p^{e_{p}} \in \mathbf{Z}[1 / N]$ we can find a representative for $x \bmod \mathbf{Z}[1 / N]$ that lies in $\mathbf{R} \times \prod_{p \mid N} \mathbf{Z}_{p}$. Adjusting by a further element of \mathbf{Z} (diagonally embedded) allows us to find a representative for $x \bmod \mathbf{Z}[1 / N]$ lying in $[0,1] \times \prod_{p \mid N} \mathbf{Z}_{p}$ as desired.

