
Math 676. The lattice of S-integers

Let K be a number field, and let S be a finite set of places of K containing the set S∞ of archimedean
places. Recall that we define the ring OK,S of S-integers in K to be the set of a ∈ K such that a is v-integral
for all (necessarily non-archimedean!) v 6∈ S; that is, ||a||v ≤ 1 for all v 6∈ S. For a ∈ OK,S , we have a ∈ O×K,S
if and only if a 6= 0 and a, 1/a ∈ K× each lie in OK,S . That is, a ∈ O×K,S if and only if a ∈ K× and
||a||v, ||1/a||v ≤ 1 for all v 6∈ S. This final condition says ||a||v = 1 for all v 6∈ S. Hence,

O×K,S = {x ∈ K× | ||x||v = 1 for all v 6∈ S}.

1. Preliminaries

We first wish to show that OK,S can be concretely constructed from OK and knowledge of the class
number. For each non-archimedean place of K, we let pv denote the corresponding prime ideal of OK . Since
the class group is killed by the class number, for all non-archimedean v the ideal p

h(K)
v in OK is principal.

Hence, the finite product
∏
v∈S−S∞ p

h(K)
v has the form aSOK , so 1/aS ∈ K× is non-integral at precisely those

non-archimedean v that lie in S (if S = S∞ then this product is empty and we may interpret the product
over the empty set S−S∞ to be the unit ideal OK ; aS is an element of O×K in this case). Having constructed
one such element, we now show that any such element allows us to construct OK,S as a localization of OK :

Lemma 1.1. For a ∈ OK − {0}, we have OK,S = OK [1/a] if and only if the finite set of non-archimedean
v for which ||1/a||v > 1 is exactly the set S − S∞. (Equivalently, the condition is that the prime factors of
aOK are exactly the primes pv for v ∈ S − S∞).

Proof. If OK,S = OK [1/a] then 1/a is v-integral for all v 6∈ S, so ||1/a||v ≤ 1 for all v 6∈ S. We wish to show
that ||1/a||v > 1 for the other non-archimedean places, namely those v ∈ S − S∞. Suppose otherwise, so
||1/a||v0 ≤ 1 for some v0 ∈ S − S∞. That is, assume 1/a is v0-integral for some non-archimedean v0 ∈ S.
Since all elements of OK are also v0-integral, it follows that all elements of OK,S = OK [1/a] are v0-integral.
However, this is not true: by finiteness of the class group we have p

h(K)
v0 = a0OK for some a0 ∈ OK − {0},

and clearly 1/a0 ∈ OK,S (since a0 is even a local unit at all places not in S) yet 1/a0 is not v0-integral for
the place v0 ∈ S (as ||1/a0||v0 > 1 due to the prime factorization of a0OK).

Conversely, suppose a ∈ OK is nonzero and ||1/a||v > 1 for v ∈ S − S∞ and ||1/a||v ≤ 1 for v 6∈ S, so
OK [1/a] ⊆ OK,S and we want this to be an equality. For x ∈ OK,S , we seek to find a large N such that
aNx ∈ OK . Since aNx ∈ OK,S for any N > 0, the only issue is to arrange that aNx is v-integral for each
v ∈ S − S∞. Since ordv(aNx) = Nordv(a) + ordv(x) with ordv(a) > 0, we can certainly find such a large
N . �

We can now make explicit how OK,S behaves with respect to extension on K.

Theorem 1.2. Let K ′/K be a finite extension of number fields and let S be a finite set of places of K
containing S∞. Let S′ be the set of places of K ′ lying over S, so S′ is a finite set of places of K ′ containing
the set S′∞ of archimedean places of K ′.

The integral closure of OK,S in K ′ is OK′,S′ . In particular, OK′,S′ is a finite OK,S-module.

Proof. Choose a ∈ OK − {0} such that for non-archimedean v on K we have ||1/a||v > 1 if and only if
v ∈ S − S∞. By Lemma 1.1, OK,S = OK [1/a]. Choose x ∈ K. For a non-archimedean place v′ on K ′ over
a place (necessarily non-archimedean) v on K, clearly x ∈ K ′ is non-integral at v′ if and only if x ∈ K is
non-integral at v. Taking x = 1/a, we see that for any non-archimedean v′ on K ′, ||1/a||v′ > 1 if and only if
v′ ∈ S′ − S′∞. Hence, by Lemma 1.1, OK′,S′ = OK′ [1/a]. Our problem is to show that the integral closure
of OK [1/a] in K ′ is OK′ [1/a], and this follows from the compatibility of integral closure with respect to
localization at a multiplicative set of nonzero elements of the base ring (in this case, localization at the set
of powers of a with non-negative exponent). �
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2. The lattice condition

Our aim is to study the geometry of the diagonal embedding

OK,S →
∏
v∈S

Kv

into the finite product of the locally compact completions Kv of K at the places v ∈ S. In the classical case
S = S∞ this is the embedding

OK ↪→
∏
v|∞

Kv ' R⊗Q K ' Rr1 ×Cr2 .

We have seen via a Z-basis of OK (and hence ultimately by the fact that Z is discrete in R and that R/Z
is compact) that OK is discrete (hence closed) and co-compact in R ⊗Q K (that is, the quotient by OK is
compact). We claim a similar conclusion holds for general S:
Theorem 2.1. The image of OK,S in

∏
v∈S Kv is a discrete (hence closed) and co-compact subgroup.

In general, a lattice Γ in a locally compact Hausdorff topological group G is a discrete subgroup such that
the locally compact Hausdorff coset space G/Γ is compact. In the special case that G is a finite-dimensional
R-vector space this recovers the traditional notion of a lattice in such a vector space, and the theorem says
that OK,S is a lattice in

∏
v∈S Kv in general.

Proof. Let S′ be a finite set of places of K containing S. We first show that if OK,S′ is a lattice in
∏
v∈S′ Kv

then OK,S is a lattice in
∏
v∈S Kv. Each valuation ring Ov = OKv for v - ∞ is both compact and open in

Kv, so
∏
v∈S Kv ×

∏
v∈S′−S Ov (with its product topology) is open and closed in

∏
v∈S′ Kv. This open and

closed subgroup meets the diagonally embedded subgroup OK,S′ in the set of elements of OK,S′ whose image
in Kv lies in Ov for all v ∈ S′ − S, and these are the elements of OK,S′ that are v-integral for all v ∈ S′ − S.
In other words, these are the elements of K that are integral at all non-archimedean places outside of S′ and
at all places in S′ − S, which is to say at all places outside of S: these are the elements of OK,S . Hence,the
subgroup OK,S′ in

∏
v∈S′ Kv meets the open and closed subgroup

∏
v∈S Kv ×

∏
v∈S′−S Ov in exactly OK,S ,

and so the discreteness hypothesis for OK,S′ implies that OK,S has discrete image in
∏
v∈S Kv×

∏
v∈S′−S Ov.

We may thereby infer discreteness of OK,S diagonally embedded in
∏
v∈S Kv via:

Lemma 2.2. Let G and G′ be Hausdorff topological groups with G′ compact. Let Γ be a discrete subgroup
of G×G′ such that the map Γ→ G is injective. The image of Γ in G is discrete.

Proof. We will argue with the language of nets, but the reader who prefers to use sequences to probe the
topology of a space may safely impose the condition that G and G′ have a countable base of opens around
each point (which certainly holds for metrizable spaces, the intended application). Let π : G × G′ → G be
the projection. Suppose that Γ does not have discrete image in G, so there exists γ ∈ Γ such that π(γ) is a
limit of a net {π(γi)} where the γi’s lie in Γ−{γ}. Consider the net {γi} in Γ ⊆ G×G′. Since G′ is compact
Hausdorff, by passing to a subnet we may arrange that the image of {γi} in G′ has a limit. By hypothesis
the image of {γi} in G has a limit, namely γ. Hence, the net {γi} has a limit under projection to each factor
and so has a limit in G × G′. By discreteness of Γ in G × G′, the net must be eventually constant, and so
the net {π(γi)} in G is eventually constant. Its limit is π(γ), so π(γi) = π(γ) for large i. By the hypothesis
of injectivity for π we conclude γi = γ for large i, a contradiction. �

We conclude that discreteness for OK,S in
∏
v∈S Kv is a consequence of the assumed discreteness for OK,S′

in
∏
v∈S′ Kv. By closedness of discrete subgroups, the quotients (

∏
v∈S Kv)/OK,S and (

∏
v∈S′ Kv)/OK,S′

are locally compact Hausdorff topological groups and we wish to show that compactness of the latter implies
compactness of the former. Consider the natural continuous map (using quotient topologies)

j : (
∏
v∈S

Kv ×
∏

v∈S′−S
Ov)/OK,S → (

∏
v∈S′

Kv)/OK,S′ .

This is clearly injective, and if we can prove it is a closed embedding then the source is compact and so its
image (

∏
v∈S Kv)/OK,S under projection to the S-factors is certainly compact as desired. Since the source
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and target of j are quotients by discrete subgroups, the map j is locally (on source and target) an open
embedding because the map

∏
v∈S Kv ×

∏
v∈S′−S Ov →

∏
v∈S′ Kv is certainly an open embedding. It is

elementary definition-chasing to check that continuous map that is locally an open embedding is an open
embedding if and only if it is injective, so by injectivity of j we can indeed deduce the lattice property for
S if we have it for some S′ containing S.

Now we use the preceding considerations with a suitable S′ ⊇ S to increase S to be the preimage of a
finite set of places of Q (containing the archimedean place), and so (by Theorem 1.2) OK,S is the integral
closure of Z[1/N ] in K for a suitable nonzero integer N , so OK,S = OK [1/N ]. For S0 = {∞, p|N} we have∏

v∈S
Kv =

∏
v0∈S0

(
∏
v|v0

Kv) '
∏
v0∈S0

K ⊗Q Qv0 ' K ⊗Q

∏
v0∈S0

Qv0 .

Since K = OK [1/N ]⊗Z[1/N ] Q, we get a natural isomorphism

φ : OK [1/N ]⊗Z[1/N ]

∏
v∈S0

Qv '
∏
v∈S

Kv.

Since Z[1/N ] is a PID we may find a free basis for OK [1/N ] as a Z[1/N ]-module, and it is a simple exercise
(check!) that using any such choice of basis to identify the source of φ with a product of copies of

∏
v0∈S0

Qv0

makes φ into a topological isomorphism. Hence, upon picking such a basis we may reduce the problem of
discreteness and co-compactness for OK [1/N ] in

∏
v∈S Kv to the problem of discreteness and co-compactness

for Z[1/N ] in
∏
v0∈S0

Qv0 . This completes the reduction of our problem to the case of the field Q.
To check discreteness in the case K = Q (with OK,S = Z[1/N ] for a suitable nonzero integer N) we

observe that (−1, 1)×
∏
p|N Zp is an open neighborhood of the origin in

∏
v∈S Qv that meets OK,S = Z[1/N ]

in the set of elements x ∈ Z[1/N ] that are p-integral for all p|N and satisfy |x| < 1. The p-integrality for
all p|N says exactly x ∈ Z, and clearly if x ∈ Z and |x| < 1 then x = 0. This proves discreteness. For
co-compactness it suffices to prove that the natural continuous map

[0, 1]×
∏
p|N

Zp → (
∏
v∈S

Qv)/Z[1/N ]

with compact source is surjective. Pick an element x ∈
∏
v∈S Qv. Every element of Qp/Zp admits a

representative of the form ap/p
ep with ep ≥ 0 and ap ∈ Z, and so by subtracting an element of the form∑

p|N ap/p
ep ∈ Z[1/N ] we can find a representative for x mod Z[1/N ] that lies in R ×

∏
p|N Zp. Adjusting

by a further element of Z (diagonally embedded) allows us to find a representative for x mod Z[1/N ] lying
in [0, 1]×

∏
p|N Zp as desired. �


