MATH 676. THE LATTICE OF S-INTEGERS
Let K be a number field, and let S be a finite set of places of K containing the set S, of archimedean
places. Recall that we define the ring Ok g of S-integersin K to be the set of a € K such that a is v-integral
for all (necessarily non-archimedean!) v ¢ S; that is, [af, <1 for allv ¢ S. For a € Ok s, we have a € O ¢

if and only if @ # 0 and a,1/a € K* each lie in Ok . That is, a € ﬁ;&s if and only if a € K* and
lalv, |1/a], <1 for all v ¢ S. This final condition says |al, = 1 for all v ¢ S. Hence,

Ogs=1{r € K* ||z, =1 for all v ¢ S}.

1. PRELIMINARIES

We first wish to show that Ok g can be concretely constructed from Ok and knowledge of the class
number. For each non-archimedean place of K, we let p,, denote the corresponding prime ideal of Ok . Since
the class group is killed by the class number, for all non-archimedean v the ideal pff(K) in O is principal.
Hence, the finite product HvES—Sx pg(K) has the form as O, so 1/as € K* is non-integral at precisely those
non-archimedean v that lie in S (if S = S then this product is empty and we may interpret the product
over the empty set S — So to be the unit ideal Ok ; ag is an element of & in this case). Having constructed
one such element, we now show that any such element allows us to construct Ok g as a localization of O

Lemma 1.1. For a € O — {0}, we have Ok s = Ok|[1/a] if and only if the finite set of non-archimedean
v for which |1/al, > 1 is exactly the set S — So. (Equivalently, the condition is that the prime factors of
a0y are exactly the primes p, for v € S — Sy).

that |1/a], > 1 for the other non-archimedean places, namely those v € S — S.. Suppose otherwise, so
I1/alls, < 1 for some vy € S — Soo. That is, assume 1/a is vo-integral for some non-archimedean vy € S.
Since all elements of Ok are also vo-integral, it follows that all elements of Ok ¢ = Ok [1/a] are vg-integral.
However, this is not true: by finiteness of the class group we have p}vléK) = ag O for some ag € Ok — {0},
and clearly 1/ag € Ok, s (since ag is even a local unit at all places not in S) yet 1/ag is not vo-integral for
the place vy € S (as |1/ap|v, > 1 due to the prime factorization of agOk).

Conversely, suppose a € O is nonzero and ||1/al, > 1 for v € S — So and |1/al, < 1 for v € S, so
Ok[l/a] C Ok s and we want this to be an equality. For x € Ok g, we seek to find a large N such that
aVx € Ok. Since aNx € O g for any N > 0, the only issue is to arrange that o™z is v-integral for each
v € S — Se. Since ord,(a¥z) = Nord,(a) + ord,(x) with ord,(a) > 0, we can certainly find such a large
N. |

Proof. If Ok s = Ok[1/a] then 1/a is v-integral for all v € S, so |1/al, <1 for all v ¢ S. We wish to show

We can now make explicit how Ok s behaves with respect to extension on K.

Theorem 1.2. Let K'/K be a finite extension of number fields and let S be a finite set of places of K
containing So,. Let S’ be the set of places of K' lying over S, so S’ is a finite set of places of K' containing
the set S’ of archimedean places of K'.

The integral closure of Ok g in K' is Ok g. In particular, Ok s/ is a finite O s-module.

Proof. Choose a € Ok — {0} such that for non-archimedean v on K we have |1/a|, > 1 if and only if
v €S —Sx. By Lemma 1.1, Ok s = Ok[l/a]. Choose z € K. For a non-archimedean place v on K’ over
a place (necessarily non-archimedean) v on K, clearly € K’ is non-integral at v' if and only if z € K is
non-integral at v. Taking x = 1/a, we see that for any non-archimedean v' on K’, |1/a|, > 1 if and only if
v’ € 8" — S. Hence, by Lemma 1.1, O+ g0 = Ok+[1/a]. Our problem is to show that the integral closure
of Ok[l/a]l in K’ is Ok[1/a], and this follows from the compatibility of integral closure with respect to
localization at a multiplicative set of nonzero elements of the base ring (in this case, localization at the set
of powers of a with non-negative exponent). |



2. THE LATTICE CONDITION

Our aim is to study the geometry of the diagonal embedding
Oks— | Ko
veSs

into the finite product of the locally compact completions K, of K at the places v € S. In the classical case
S = S, this is the embedding

Ok — [[ Ko ~Req K ~R™ x C™.
v|oco
We have seen via a Z-basis of Ok (and hence ultimately by the fact that Z is discrete in R and that R/Z
is compact) that Ok is discrete (hence closed) and co-compact in R ®q K (that is, the quotient by O is
compact). We claim a similar conclusion holds for general S:
Theorem 2.1. The image of Ok s in [],cg
In general, a lattice " in a locally compact Hausdorff topological group G is a discrete subgroup such that
the locally compact Hausdorff coset space G/I" is compact. In the special case that G is a finite-dimensional
R-vector space this recovers the traditional notion of a lattice in such a vector space, and the theorem says
that Ok s is a lattice in [[, ¢ K, in general.

K, is a discrete (hence closed) and co-compact subgroup.

veS

Proof. Let S’ be a finite set of places of K containing S. We first show that if Ok s/ is a lattice in [, g Ko
then Ok s is a lattice in [], .4 Ky. Each valuation ring 0, = Ok, for v { 0o is both compact and open in
Ky, 50 [[yes Ko X [[yes—g Ov (With its product topology) is open and closed in [, g Ky. This open and
closed subgroup meets the diagonally embedded subgroup Ok s/ in the set of elements of O s whose image
in K, lies in 0, for all v € 8’ — S, and these are the elements of Ok g that are v-integral for all v € §' — S.
In other words, these are the elements of K that are integral at all non-archimedean places outside of S’ and
at all places in S’ — S, which is to say at all places outside of S: these are the elements of €k g. Hence,the
subgroup Ok s/ in [],cg Ko, meets the open and closed subgroup [],cq Ky X [[,cq/_g Ov in exactly Ok s,
and so the discreteness hypothesis for O s implies that Ok s has discrete image in Hves K, x Hves'fs O.
We may thereby infer discreteness of Ok s diagonally embedded in [], g K, via:

Lemma 2.2. Let G and G’ be Hausdorff topological groups with G' compact. Let T' be a discrete subgroup
of G x G’ such that the map T' — G is injective. The image of T in G is discrete.

Proof. We will argue with the language of nets, but the reader who prefers to use sequences to probe the
topology of a space may safely impose the condition that G and G’ have a countable base of opens around
each point (which certainly holds for metrizable spaces, the intended application). Let 7 : G x G’ — G be
the projection. Suppose that I' does not have discrete image in G, so there exists v € I" such that w(7) is a
limit of a net {m(v;)} where the ;’s lie in I' — {7}. Consider the net {v;} inI' C G x G’. Since G’ is compact
Hausdorff, by passing to a subnet we may arrange that the image of {;} in G’ has a limit. By hypothesis
the image of {7;} in G has a limit, namely ~. Hence, the net {v;} has a limit under projection to each factor
and so has a limit in G x G’. By discreteness of I' in G x G’, the net must be eventually constant, and so
the net {m(v;)} in G is eventually constant. Its limit is 7(v), so 7(7y;) = w(7) for large i. By the hypothesis
of injectivity for m we conclude ~; = -y for large i, a contradiction. |

We conclude that discreteness for Ok g in Hve s K, is a consequence of the assumed discreteness for O s/
in [[,cq Ky By closedness of discrete subgroups, the quotients ([],cg Kv)/Ok,s and ([[,cs Kv)/ Ok s
are locally compact Hausdorff topological groups and we wish to show that compactness of the latter implies
compactness of the former. Consider the natural continuous map (using quotient topologies)

j:(HKUX H ﬁv)/ﬁK,S_)(H K,)/Ok,s:.
veS veS' —S veS’

This is clearly injective, and if we can prove it is a closed embedding then the source is compact and so its
image (]],cg Kv)/OKk,s under projection to the S-factors is certainly compact as desired. Since the source
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and target of j are quotients by discrete subgroups, the map j is locally (on source and target) an open
embedding because the map [], g Ky X [[,cq_g Ov — [l,cg Ko is certainly an open embedding. It is
elementary definition-chasing to check that continuous map that is locally an open embedding is an open
embedding if and only if it is injective, so by injectivity of 7 we can indeed deduce the lattice property for
S if we have it for some S’ containing S.

Now we use the preceding considerations with a suitable S’ O S to increase S to be the preimage of a
finite set of places of Q (containing the archimedean place), and so (by Theorem 1.2) Ok g is the integral
closure of Z[1/N] in K for a suitable nonzero integer N, so Ok s = Ok[1/N]. For Sy = {o0, p| N} we have

[HE = I] J[E)~ [] £©QQuw=K®q [[ Qu-

veS voE€So v|vg v E€Sp Vo ESop

Since K = Ok [1/N] ®zp/n] Q, we get a natural isomorphism
¢: Ok[1/N]@zun [ Qo= [] Ko

VESH vES
Since Z[1/N] is a PID we may find a free basis for Ok [1/N] as a Z[1/N]-module, and it is a simple exercise
(check!) that using any such choice of basis to identify the source of ¢ with a product of copies of HUO esy Quo
makes ¢ into a topological isomorphism. Hence, upon picking such a basis we may reduce the problem of
discreteness and co-compactness for O [1/N]in [], g K, to the problem of discreteness and co-compactness
for Z[1/N] in [], cs, Qu,- This completes the reduction of our problem to the case of the field Q.

To check discreteness in the case K = Q (with Ok s = Z[1/N] for a suitable nonzero integer N) we
observe that (—1,1) X [T,  Zj is an open neighborhood of the origin in J[,. ¢ Qo that meets Ok s = Z[1/N]
in the set of elements x € Z[1/N] that are p-integral for all p|N and satisfy |z| < 1. The p-integrality for
all p|N says exactly ¢ € Z, and clearly if z € Z and |z| < 1 then = 0. This proves discreteness. For
co-compactness it suffices to prove that the natural continuous map

0,1 x [[2» = (] Qu)/Z[1/N]
pIN veES

with compact source is surjective. Pick an element 2 € [], 4 Q.. Every element of Q,/Z, admits a
representative of the form a,/p® with e, > 0 and a, € Z, and so by subtracting an element of the form
2_p|N @p/P°” € Z[1/N] we can find a representative for  mod Z[1/N] that lies in R x [,y Zp. Adjusting
by a further element of Z (diagonally embedded) allows us to find a representative for x mod Z[1/N] lying
in [0,1] x [, Zp as desired. [ |



