Algebraic Groups I. Homework 7

- 0. (optional) Read the proof (Ch. III, §11 in Mumford's Abelian Varieties) of Cartier's theorem: group schemes G locally of finite type over a field of char. 0 are smooth! (This uses left-invariant derivations.)
- 1. (i) Prove that ∂_x is an invariant vector field on \mathbf{G}_a , and $t^{-1}\partial_t$ is an invariant vector field on \mathbf{G}_m .
- (ii) Let A be a finite-dimensional associative k-algebra, and \underline{A}^{\times} the associated k-group of units. Prove $\operatorname{Tan}_e(\underline{A}^{\times}) = A$ naturally, and that the Lie algebra structure is then [a, a'] = aa' a'a. Using $A = \operatorname{End}(V)$, compute $\mathfrak{gl}(V)$. Use this to compute the Lie algebras $\mathfrak{sl}(V)$, $\mathfrak{pgl}(V)$, $\mathfrak{sp}(B)$, $\mathfrak{gsp}(B)$, $\mathfrak{so}(q)$.
- (iii) Read Corollary A.7.6 and Lemma A.7.13 (and the paragraph preceding it) in "Pseudo-reductive groups". Compute the p-Lie algebra structure on $\text{Lie}(\underline{A}^{\times})$, $\text{Lie}(\mathbf{G}_m)$, and $\text{Lie}(\mathbf{G}_a)$ when char(k) = p > 0.
- 2. Let G be a smooth group of dimension d > 0 over k.
- (i) Define the concept of left-invariant differential i-form for $i \geq 0$, and prove the space $\Omega_G^{i,\ell}(G)$ of such form has dimension $\binom{d}{i}$. Compute the 1-dimensional $\Omega_G^{d,\ell}(G)$ for $\mathrm{GL}(V)$, $\mathrm{SL}(V)$, and $\mathrm{PGL}(V)$.
- (ii) Using right-translation, construct a linear representation of G on $\Omega_G^{d,\ell}(G)$; the associated character $\chi_G: G \to \mathbf{G}_m$ is the modulus character. Prove $\chi_G|_{Z_G} = 1$ and deduce that $\chi_G = 1$ if $G/Z_G = \mathscr{D}(G/Z_G)$.
- (iii) (optional) If k is local (allow \mathbf{R} , \mathbf{C}) and X is smooth, use the k-analytic inverse function theorem to equip X(k) with a functorial k-analytic manifold structure, and use k-analytic Change of Variables to assign a measure on X(k) to a nowhere-vanishing $\omega \in \Omega_X^{\dim X}(X)$. (Serre's "Lie groups and Lie algebras" does k-analytic foundations.) Relate with Haar measures, and prove $\chi_{\mathcal{L}}^{\pm 1}|_{G(k)}$ is the classical modulus character.
- 3. Let K/k be a degree-2 finite étale algebra (i.e., a separable quadratic field extension or $k \times k$), and let σ be the unique non-trivial k-automorphism of K; note that $K^{\sigma} = k$. A σ -hermitian space is a pair (V,h) consisting of a finite free K-module equipped with a perfect σ -semilinear form $h: V \times V \to K$ (i.e., $h(cv,v')=ch(v,v'), h(v,cv')=\sigma h(v,v')$, and $h(v',v)=\sigma (h(v,v'))$). Note $v\mapsto h(v,v)$ is a quadratic form $q_h: V \to k$ over k satisfying $q_h(cv)=N_{K/k}(c)q_h(v)$ for $c\in K, v\in V$, and $\dim_k V$ is even (char(k)=2 ok!).

The unitary group U(h) over k is the subgroup of $R_{K/k}(GL(V))$ preserving h. Using $R_{K/k}(SL(V))$ gives the special unitary group SU(h). Example: V = F finite étale over K with an involution σ' lifting σ , and $h(v, v') := \text{Tr}_{F/K}(v\sigma'(v'))$; e.g., F and K CM fields, k totally real, and complex conjugations σ' and σ .

- (i) If $K = k \times k$, prove $V \simeq V_0 \times V_0^{\vee}$ with $h((v, \ell), (v', \ell')) = (\ell'(v), \ell(v'))$ for a k-vector space V_0 . Identify U(h) with $GL(V_0)$ carrying SU(h) to $SL(V_0)$. Compute q_h and prove non-degeneracy.
- (ii) In the non-split case prove that $U(h)_K \simeq GL_n$ carrying SU(h) to SL_n $(n = \dim_K V)$. Prove U(h) is smooth and connected with derived group SU(h) and center \mathbf{G}_m , and q_h is non-degenerate. Compute $\mathfrak{su}(h)$.
 - (iii) Identify U(h) with a k-subgroup of $SO(q_h)$. Discuss the split case, and all cases with $k = \mathbf{R}$.
- 4. Let a smooth k-group H act on a separated k-scheme Y. For a k-scheme S, let $Y^H(S)$ be the set of $y \in Y(S)$ invariant by the H_S -action on Y_S (i.e., $y_{S'}$ is H(S')-invariant for all S-schemes S').
- (i) If $k = k_s$, prove Y^H is represented by the closed subscheme $\bigcap_{h \in H(k)} Y^h$ where $Y^h = \alpha_h^{-1}(\Delta_{Y/k})$ for $\alpha_h : Y \to Y \times Y$ the map $y \mapsto (y, h.y)$. Then prove representability by a closed subscheme of Y for general k by Galois descent. Relate this to Exercise 2 in HW5.
 - (ii) For $y \in Y^H(k)$ explain why H acts on $\operatorname{Tan}_y(Y)$ and prove $\operatorname{Tan}_y(Y^H) = \operatorname{Tan}_y(Y)^H$.
- (iii) Assume H is a closed subgroup of a k-group G of finite type, $\mathfrak{g} := \text{Lie}(G)$ and $\mathfrak{h} := \text{Lie}(H)$. Prove $\text{Tan}_e(Z_G(H)) = \mathfrak{g}^H$ via adjoint action. Also prove $\text{Tan}_e(N_G(H)) = \cap_{h \in H(k)} (\text{Ad}_G(h) 1)^{-1}(\mathfrak{h})$ when $k = k_s$.
- 5. A diagram $1 \to G' \xrightarrow{j} G \xrightarrow{\pi} G'' \to 1$ of finite type k-groups is exact if π is faithfully flat and $G' = \ker \pi$.
- (i) For any such diagram, prove G'' = G/G' via π . Prove a diagram of k-tori $1 \to T' \to T \to T'' \to i$ s exact if and only if $0 \to X(T'') \to X(T) \to X(T') \to 0$ is exact (as **Z**-modules).
- (ii) If G' is finite then π is an *isogeny*. Prove that isogenies are *finite flat* with constant degree, and that $\pi_n : \mathrm{SL}_n \to \mathrm{PGL}_n$ is an isogeny of degree n. Compute $\mathrm{Lie}(\pi_n)$; when is it surjective?
- (iii) Prove that a short exact sequence of finite type k-groups induces a left-exact sequence of Lie algebras, short exact if G and G' are smooth. (Smoothness of G can be dropped.)
- (iv) Read §A.3 through Example A.3.4 in *Pseudo-reductive groups*, and prove $F_{X/k}: X \to X^{(p)}$ is finite flat of degree $p^{\dim X}$ for k-smooth X. Prove $\text{Lie}(F_{G/k}) = 0$, and compute $F_{G/k}$ for GL(V) and O(q).