1. Let $T \subset \text{Sp}_{2n}$ be the torus of points $\left(\begin{smallmatrix} 1 & t \\ 0 & 1 \end{smallmatrix}\right)$ for diagonal $t \in \text{GL}_n$. Prove $Z_G(T) = T$ (so T is a maximal torus!), and deduce $Z_{\text{Sp}_{2n}} = \mu_2$. See the handout on orthogonal groups for a computation of $Z_{\text{SO}(q)}$.

2. Prove that PGL_n is smooth using the infinitesimal criterion, and prove that it is connected by a suitable “action” argument. Then read the handout on smoothness and connectedness for orthogonal groups.

3. Let X be a scheme over a field k, and $x \in X(k)$. Recall that $\text{Tan}_x(X)$ is identified as a set with the fiber of $X(k[ε]) \to X(k)$ over x. Let $k[ε, ε'] = k[t, t']/(t, t')^2$, so this is 3-dimensional with basis $\{1, ε, ε'\}$.
 (i) For $c \in k$, consider the k-algebra endomorphism of $k[ε]$ defined by $ε \mapsto cc$. Show that the resulting endomorphism of $X(k[ε])$ over $X(k)$ restricts to scalar multiplication by c on the fiber $\text{Tan}_x(X)$.
 (ii) Using the two natural quotient maps $k[ε, ε'] \to k[ε], k[ε, ε'] \to k[ε']$, define a natural map
 $$X(k[ε, ε']) \to X(k[ε]) \times_{X(k)} X(k[ε'])$$
 and prove it is bijective. Using the natural quotient map $k[ε, ε'] \to k[ε], k[ε, ε'] \to k[ε']$, show that the resulting map
 $$X(k[ε]) \times_{X(k)} X(k[ε']) \to X(k[ε])$$
 induces addition on $\text{Tan}_x(X)$: the k-linear structure on $\text{Tan}_x(X)$ is encoded by the functor of X!
 (iii) For $(X, x) = (G, e)$ with a k-group G, relate addition on $\text{Tan}_x(X)$ to the group law on G: for $m : G \times G \to G$, show that $\text{Tan}_e(G) \times \text{Tan}_e(G) = \text{Tan}_{(e, e)}(G \times G) \to \text{Tan}_e(G)$ is addition.

4. Let A be a finite-dimensional associative algebra over a field k. Define the ring functor A on k-algebras by $A(R) = A \otimes_k R$ and the group functor A^\times by $A^\times(R) = (A \otimes_k R)^\times$.
 (i) Prove that A is represented by an affine space over k. Using the k-scheme map $N_{A/k} : A \to A_k^1$ defined functorially by $u \mapsto \det(m_n)$, where $m_n : A \otimes_k R \to A \otimes_k R$ is left multiplication by $u \in A(R)$, prove that A^\times is represented by the open affine subscheme $N_{A/k}^{-1}(G_m)$. (This is often called “A^\times viewed as a k-group”, a phrase that is, strictly speaking, meaningless, since A^\times does not encode the k-algebra A.)
 (ii) For $A = \text{Mat}_n(k)$ show that $A^\times = \text{GL}_n$, and for $k = \mathbb{Q}$ and $A = \mathbb{Q}(\sqrt{d})$ identify it with an explicit \mathbb{Q}-subgroup of GL_2 (depending on d).
 (iii) How does the kernel of $N_{A/k} : A^\times \to G_m$ (the group of norm-1 units) relate to Exercise 4(iii) in HW1 as a special case? For $A = \text{Mat}_n(k)$, show that this homomorphism is the nth power (!) of the determinant.

5. This exercise develops a very important special case of Exercise 4. Let A be a finite-dimensional central simple algebra over k. By general theory, this is exactly the condition that $A_K \simeq \text{Mat}_n(K)$ as k-algebras (for some $n \geq 1$), and such an isomorphism is unique up to conjugation by a unit (Skolem-Noether theorem).
 (i) By a clever application of the Skolem-Noether theorem (see Exercise 30, Chapter 3 of the book by Farb/Dennis on non-commutative algebra), it is a classical fact that the linear derivations of a matrix algebra over a field are precisely the inner derivations (i.e., $x \mapsto yx - xy$ for some y). Combining this with length-induction on artin local rings, prove the Skolem-Noether theorem for $\text{Mat}_n(R)$ for any artin local ring R (i.e., all R-algebra automorphisms are conjugation by a unit).
 (ii) Construct an affine k-scheme I of finite type such that naturally $I(R) = \text{Isom}_R(A_R, \text{Mat}_n(R))$, the set of R-algebra isomorphisms. Note that $I(\overline{k})$ is non-empty! Prove I is smooth by checking the infinitesimal criterion for $I_{\overline{k}}$ with the help of (i). Deduce that $A_K \simeq \text{Mat}_n(K)$ for a finite separable extension K/k.
 (iii) By (ii), we can choose a finite Galois extension K/k and a K-algebra isomorphism $θ : A_K \simeq \text{Mat}_n(K)$, and by Skolem-Noether this is unique up to conjugation by a unit. Prove that for any choice of $θ$, the determinant map transfers to a multiplicative map $A_K^\times \to A_k^1$ which is independent of $θ$. Deduce that it is $\text{Gal}(K/k)$-equivariant, and so descends to a multiplicative map $\text{Nrd}_{A/k} : A \to A_k^1$ which “becomes” the determinant over any extension F/k for which $A_F \simeq \text{Mat}_n(F)$. Prove that $\text{Nrd}_{A/k}^* = N_{A/k}$ (explaining the name reduced norm for $\text{Nrd}_{A/k}$), and conclude that $A^\times = \text{Nrd}_{A/k}^{-1}(G_m)$.
 (iv) Let $\text{SL}(A)$ denote the scheme-theoretic kernel of $\text{Nrd}_{A/k} : A^\times \to G_m$. Prove that its formation commutes with any extension of the ground field, and that it becomes isomorphic to SL_n over K. In particular, $\text{SL}(A)$ is smooth and connected; it is a “twisted form” of SL_n. (This is false for $K_{A/k}$ whenever $\text{char}(k) | n$)