1. Let G be a smooth connected affine group over a field k.

 (i) For a maximal k-torus T in G and a smooth connected k-subgroup N in G that is normalized by T, prove that $T \cap N$ is a maximal k-torus in N (e.g., smooth and connected!). Show by example that $S \cap N$ can be disconnected for a non-maximal k-torus S. Hint: first analyze $Z_G(T) \cap N$ using $T \times N$ to reduce to the case when T is central in G, and then pass to G/T.

 (ii) Let H be a smooth connected normal k-subgroup of G, and P a parabolic k-subgroup. If $k = \bar{k}$ then prove $(P \cap H)^0_{\text{red}}$ is a parabolic k-subgroup of H, and use Chevalley’s theorem on parabolics being their own normalizers on geometric points (applied to H) to prove $P \cap H$ is connected (hint: work over \bar{k}).

 (iii) Granting $Q = N_H(Q)$ scheme-theoretically for parabolic Q in H (Prop. 3.5.7 in Pseudo-reductive Groups; rests on structure theory of reductive groups), prove $P \cap H$ in (ii) is smooth. (Hint: prove $(P \cap H)^0_{\text{red}}$ is normal in P, hence in $P \cap H$!) In particular, $B \cap H$ is a Borel k-subgroup of H for all Borels B of G.

2. Let k be a field, and $G \in \{\text{SL}_2, \text{PGL}_2\}$.

 (i) Define a unique PGL_2-action on SL_2 lifting conjugation. Prove a k-automorphism of G preserving the standard Borel k-subgroup and the diagonal k-torus is induced by the action of a diagonal k-point of PGL_2.

 (ii) Prove that the homomorphism $\text{PGL}_2(k) \to \text{Aut}_k(G)$ is an isomorphism. In particular, every k-automorphism of PGL_2 is inner. Show that SL_2 admits non-inner k-automorphisms if and only if $k^x \neq (k^x)^2$.

3. Let $\lambda : G_m \to G$ be a 1-parameter k-subgroup of a smooth affine k-group G. Define $\mu : U_G(\lambda^{-1}) \times P_G(\lambda) \to G$ to be multiplication. We seek to prove it is an open immersion. Let $g = \text{Lie}(G)$.

 (i) For $n \in Z$ define g_n to be the n-weight space for λ (i.e., $\text{ad}(\lambda(t))X = t^n X$). Define $g_{\lambda > 0} = \oplus_{n > 0} g_n$, and similarly for $g_{\lambda < 0}$. Prove $\text{Lie}(P_G(\lambda)) = g_{\lambda > 0}$, $\text{Lie}(U_G(\lambda)) = g_{\lambda < 0}$, and $\text{Tan}_{(e,e)}(\mu)$ is an isomorphism.

 (ii) If $\text{G = GL}(V)$ and the G_m-action on V has weights $e_1 > \cdots > e_m$, justify the block-matrix descriptions of $U_G(\lambda^{\pm 1})$, $Z_G(\lambda)$, and $P_G(\lambda)$. Deduce $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth and have trivial intersection.

 (iii) Working over \bar{k} and using suitable left and right translations by geometric points, prove that $d\mu(\xi)$ is an isomorphism for all \bar{k}-points ξ of $U_G(\lambda^{-1}) \times P_G(\lambda)$. Deduce that if $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth (OK for $\text{GL}(V)$ by (ii)) then μ induces an isomorphism between complete local rings at all \bar{k}-points, and conclude that μ is flat and quasi-finite. Hence, μ has open image in such cases.

 (iv) Using valuative criterion for properness, prove a flat quasi-finite separated map $f : X \to Y$ between noetherian schemes is proper if all fibers X_y have the same rank. (Hint: base change to \bar{Y} the spectrum of a dvr.) By Zariski’s Main Theorem, proper quasi-finite maps are finite. Deduce μ is an open immersion if $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth with trivial intersection. (Hint: finite flat of fiber-degree 1 is isomorphism.)

 This settles GL(V); handout on “dynamic approach to algebraic groups” yields the general case from this!

4. Let $\lambda : G_m \to G$ be a 1-parameter k-subgroup of a smooth affine k-group. For any integer $n \geq 1$, prove that $P_G(\lambda^n) = P_G(\lambda)$, $U_G(\lambda^n) = U_G(\lambda)$, and $Z_G(\lambda^n) = Z_G(\lambda)$.

5. Let G be a reductive group over a field k, and N a smooth closed normal k-subgroup. Prove N is reductive. In particular, $\mathcal{P}(G)$ is reductive.

6. Prove that $\mu_n[d] = \mu_d$ for $d|n$, and that $\mathbb{Z}/n\mathbb{Z} \to \text{End}(\mu_n)$ is an isomorphism.

7. Prove that a rational homomorphism (defined in evident manner: respecting multiplication as rational map) between smooth connected groups over a field k extends uniquely to a k-homomorphism. (Hint: pass to the case $k = k_s$ by Galois descent, and then use suitable k-point translations.)

8. (optional) Let G be a smooth connected affine group over an algebraically closed field k, char(k) = 0.

 (i) If all finite-dimensional linear representations of G are completely reducible, then prove that G is reductive. (Hint: use Lie-Kolchin, and behavior of semisimplicity under restriction to a normal subgroup. This will not use characteristic 0.)

 (ii) Conversely, assume that G is reductive. The structure theory of reductive groups implies that g is a semisimple Lie algebra, and a subspace of a finite-dimensional linear representation space for G is G-stable if and only if it is g-stable under the induced action $g \to \text{End}(V)$ since char(k) = 0. Prove that all finite-dimensional linear representations of G are completely reducible.